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As an illustration of the molecular theory of surface regions, the singlet and pair distribution functions 
are evaluated for very dilute ionic solutions. When they are substituted into the statistical mechanical 
formulas for surface tension, expressions are obtained for the increase in surface tension over that of the 
pure solvent. The results of the theory are in better agreement with experiment than the earlier calculation 
of Onsager and Samaras, which was based on integration of the Gibbs adsorption equation. Finally, the 
distribution function approach is simply related to Mayer's recent virial coefficient theory for strong electro
lyte solutions. 

I. 

T HE initial evaluation of the surface tension of 
strong electrolyte solutions was carried out by 

Wagner! in the early days of the Debye-Hiickel theory. 
He employed the Poisson-Boltzmann equation for the 
calculation of the superficial excess, which, in con
nection with a numerical integration of the Gibbs 
adsorption equation, yielded the increase in surface 
tension over that of the pure solvent. On the basis of 
minor simplifications, Onsager and Samaras2 succeeded 
subsequently in effecting elegant analytical integrations 
of Wagner's theory, leading to results in substantial 
agreement with the earlier work. It is the purpose of 
this investigation to present the statistical mechanical 
formulation of the problem employing the conventional 
model for very dilute electrolyte solutions. For this 
purpose, the molecular distribution functions are cal
culated from a generalized form of Kirkwood's integral 
equation,3.4 while the surface tension increase is directly 
computed from the molecular theory5.6 for this thermo
dynamic parameter. Apart from its intrinsic interest to 
related problems in electrocapillarity, the present 
problem serves to clarify the difficulties encountered in 
the general program7 of computing density variations 
in the interfacial region. Furthermore, we have suc
ceeded in simply relating Mayer's8 irreducible cluster 
expansion approach to both the integral equation 
method and the stress tensor integral for the surface 
tension increase. A comparison between theory and 
experiment is presented in Table I. 

As a preliminary to the statistical mechanical theory, 
we recall that the general Kirkwood-Buff9 or McMillan
Mayer!O solution theories emphasize that under osmotic 

1 C. Wagner, Physik. Z. 25, 474 (1924). 
2 L. Onsager and N. N. T. Samaras, J. Chern. Phys. 2, 528. (1934). 
3 J. G. Kirkwood, J. Chern. Phys. 3, 300 (1935). 
• J. G. Kirkwood, Chern. Revs. 19,275 (1936). 
6 F. P. Buff, Z. Elektrochem. 56, 311 (1952). 
e F. P. Buff, J. Chem. Phys. 23, 419 (1955). 
7 F. P. Buff, Conference on Nucleation and Interfacial Phe

nomena, August, 1951, Geophysical Research Directorate Report, 
A. F. Cambridge Research Center, Cambridge, Massachusetts. 

8 J. E. Mayer, J. Chern. Phys. 18, 1426 (1950). 
D J. G. Kirkwood and F. P. Buff, J. Chem. Phys. 19,1774 (1951). 

In the special case of osmotic conditions this theory reduces to 
the results of reference 10. 

10 W. G. McMillan and J. E. Mayer, J. Chern. Phys. 13, 276 
(1945). 

conditions explicit solute-solute interactions occur ex
clusively in the general formulation. In view of this 
advantage, the molecular calculations will be carried 
out under these thermodynamic conditions. Next, we 
define the generic center-of-mass number density 
pnl(n)'"n.(l, .. ·n) as the average density of sets con
taining nl molecules of species 1, n2 molecules of 
species 2, etc., at the points R1, .,. RN in an osmotic 
system of fixed volume V, where 

Designating the solvent by the subscript zero and the 
solute species by the subscript a, we observe that in the 
interior of the bulk phase the singlet densities p(!) of 
the several species are equal to their respective uniform 
volume concentrations c. Furthermore, it is frequently 
convenient to introduce correlation functions 

(n) 

gnl" .n.(l, .. ·n) 

which are defined by the following equation 

(n) • na 
pn!" 'n.(l, .. ·n)= II II Pa(!)(Ria) 

a=l ia =1 

These molecular distribution functions are related by 
grand ensemble theory to thermodynamic variables and 
potentials of molecular force. In the semiclassical limit 

00 • exp (fJN aila') 
p(n)=#f1 :E II ----

Nl=nl" ·N.=n. a=1 (Na-na)! 

p(O)=lj fJ=l/kT, 

ila'=ila-P,a*j P,a*= lim (ila-kTlnca), 
co-->O 

{CaJ-->O 

D= -11' V +~'Ys, 

.! 

(2) 
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IONIC SOLUTION, SURFACE TENSIONS 313 

where k is Boltzmann's constant, T is the absolute tem
perature, ila is the partial potential of solute a, 7r is the 
osmotic pressure, .1/' is the surface tension difference 
between the osmotic solution and the pure solvent, V 
is the volume of the system, and a piston of cross 
section s is located at the plane z= 0 of a Cartesian 
coordinate system. We shall now assume that WO(N), the 
potential of average force for sets {N} of solute species 
evaluated in the pure solvent, may be expressed in the 
form 

• Na 

WO(N)=L: L: V a (1) (Ria) 
a=-l ia=l 

Na N{3 

+t L: L: L: Va{3(Ria,Ri{3). (3) 
a;{3~l ia =1 i{3 =1 

It will be shown in Sec. II that for our problem 

Va (1) (Ri) = Va (1) (Zi; Co) ; 

V a{3 (2) (Ri,R j) = Va{3 (2) (R;h Ri/ im) ; Co), 

R ij= IRi-Rjl; Ri/im) = IRi-R j +2zjkl, 

(4) 

where k is the unit vector directed along the Z axis. 
Kirkwood, in his pioneering investigation of homo
geneous fluids, has shown that for the evaluation of 
distribution functions it is convenient to introduce a 
parameter Ala which partially couples molecule 1 of 
type a to the rest of the system. We similarly define 

O(N) 
WNl···N.(1, •• ·N; Ala) by the relation 

+AlauP(1,·· ·N), (5) 

• N{3 

wO(1,···N)=Va(!)(Rl)+L: L: Va{3(2)(Rl,R;{3); 
{3=1 i{3=l 

o ~Ala ~ 1, 

where WO(N) (Ala= 1) corresponds to the actual potential 
of average force. The generalized distribution function 

(n) 

Pnl:' .n.(l,·· ·n; AI") corresponding to the potential (5) 
may then be shown to be 

00 

p(n) (Ala) = exp[ljQt(Al")] L: 
Nl=nl" ·NJI=n, 

• exp({3N "ila') IV xII .. , 
a=l (N,,-na)! 

where p(n) (Ala~ 1) again is equal to the actual number 
density p(n). When Aa is equated to zero in Eq. (6), an 

elementary rearrangement yields the relation 
(n) 

Pnl" 'n,," .n.(1, •• ·n; Ala=O) 

(n-l) 

Xpnl" ·na-l·· ·n. (2, .. ·n; Ala= 1) 

implying that 

(n) 

Pnl" 'n,," .n.(1, •• ·n; Ala=O) 

(7) 

(n-l) 

=Pa(l)(l)pnl" 'na-1" .n.(2, .. ·n). (8) 

Next, Eq. (6) is differentiated with respect to Ala 

(

iJp(n) ) 

iJAla T,{{3ila'},v 

which, upon integration, leads to the desired expressions 
when Eqs. (7) and (8) are utilized 

(3ila' = lnpa(!) (Rl)+{3V a(l) (Rl) 

+(3 El i l 
dAla f p{3(I) (R2) V a{3(2) (Rl,R2) 

Xga,s(2) (Rl,R2; Ala)dv2, (10) 

x f V a{3(2) (RI,Rn-tl)P{3(l) (Rn-tl) 

x[g~~·l:n{3+1" .n.(1, .. ·n+1; Ala) 

(n) 

gnl" .nv(l,·· ·n; Ala) 

- g",.J (1, n+ 1; ".) Y'''''' (11) 

Equations (10) and (11) were originally derived by 
Kirkwood3 for the special case of homogeneous fluids on 
the basis of petit ensemble theory. In this case Pa(l) re
duces to the uniform concentration Ca , and Eqs. (11) 
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314 F. P. BUFF AND F. H. STILLINGER, JR. 

may be solved independently of Eq. (to), the latter rela
tion providing a formula for the chemical potential J1.a. 
For inhomogeneous fluids Eqs. (10) and (11) must be 
solved simultaneously, subject to constancy of the par
tial potentials {.£ia}. The physically realizable distribu
tion functions pen) (A= 1) are, of course, obtained by 
setting A= 1 at the end of this procedure. 

We conclude this section by presenting the relevant 
statistical mechanical expressions for AI'. When the 
techniques of reference 5 are employed, the equivalent 
thermodynamic definitions 

and 
(an) lI'V 

~'Y= - +-
as T, {.£ia}, VIS S 

(12) 

A'Y= (an) 
as T, {.£i,,}, v 

(13) 

imply that for WO(N) given by Eqs. (3) and (4) 

A'Y= foo [UT(Z)-UT( 00 )]dz, 
o 

and* 

(15) 

XPa{J(2) (R1,R2)dx2dy:dZ2. 

It is of interest to recall" that when rigorous distribution 
functions are utilized, Eq. (14) may be transformed into 
Eq. (15) and that these equations also lead to the Gibbs 
adsorption equation 

d'Y= - E radJ1.aj r a= foo cP,,(l) (z)-ca]dz. (16) 

Consequently, an internal comparison provides a rough 
criterion for the failure of approximations required for 
the numerical implementation of the theory. 

II. 

In this section the detailed calculation of AI' will be 
carried out on the basis of the conventional model for 
very dilute ionic solutions. We shall assume that our 
solution consists of a structureless solvent of every
where uniform dielectric constant D, and of ionic species 
treated as point charges for the sake of simplicity. 
This permits calculation of the local free energy WO(N) 

by electrostatics. Let 1/; be the electrostatic potential in 
the solution and 1/;0 be the electrostatic potential in the 
region separated from the ionic solution by the z=o 
plane. 1/;CR) is then obtained by solving 

411' N 
V~=--Pej Pe=L EiO(R· .. R;)j (17) 

D i~1 

inside the ionic solution, 

V2l/t0=0, outside the ionic solution, 

subject to 

(1/;)z~o= (1/;o)z~oj kX (V1/;- V1/;o)z=o=O, 

k· (DW-DoV1/;o)z=o=O. 
(18) 

Here Ei is the charge of ion i, Do is the dielectric constant 
of the external region and o(R-R') is the Dirac delta 
function. In the absence of mutual polarization of the 
ions, the solution of these equations is given by the 
expression 

N Ei D-Do N Ei 
1/;(R)=L +-- L (19) 

i=1 DIR-Ril D+Do i~1 DI R-Ri+2kzi l 

so that WO(N) follows directly 

N EiEj D- Do N Ei2 

L -+--L-
i<j~1 DRij D+ Do i-14Dz 

D-Do N EiEj 
+-- L . t20) 

D+ Do i<j~1 DRi/im) 

Here the first sum is the usual Coulomb interaction, 
the second sum extends over the "external image poten
tials" and the last sum is over the "intermolecular 
image potentials." We note that for an aqueous medium 
(D-Do)/(D+Do) is effectively unity, and we shall 
henceforth ignore this factor. 

For the estimation of the singlet and pair distribution 
functions we terminate the first member of Eqs. (11) 
by the superposition approximation3 

* Equation (15) illustrates that surface tension is not alw~ys ga{3-y (3) (R
I
,R

2
,R

3
; Ala) = ga/2) (R

I
,R

2
; Ala) 

given by f(UT-UN)dz since in our problem the first term, arismg 
from the image potential, provide~ convergence. As in t~e t~e?ry X (2) (R R ~) (2) (R R) (21) 
of curved fluid interfaces Eq. (14) IS of more general applicabIlity. g,,-y I, 3; Ala g{J-y 2, 3· 
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IONIC SOLUTION, SURFACE TENSIONS 315 

We note that Kirkwood and Poirierll have recently 
shown the validity of this approximation for the Debye
Htickellimiting law, and we remark that the formula
tion of Sec. III constitutes an independent verification 
for inhomogeneous phases. Next the treatment is 
restricted to symmetrical ions and the pair correlation 
function is linearized 

(3€a€{3Ala 
ga{3(2) (RI,R2 ; Ala) = 1 x(R1,R2), (22) 

D 

again only valid in the limiting case. 
Substitution of Eqs. (20), (21), and (22) into Eqs. 

(10) and (11) and utilization of the electroneutrality 
condition 

2 

K2(Z)=4?r{3 L Pa(l) (z)ec?/D; 
a=l 

1 Ilf"''''''' 
x(1,2)=-+-.--- f J K2(Za) 

R12 R12(,m) 411" 0 --00-'" 

X [_1 +_l_]x (2,3)dxadyadza. 
R13 R 13(im) 

Although Eqs. (23) and (24) ideally constitute a coupled 
set of integral equations, we employ the approximation 
K2(Z) = ~(oo)= K2 and note that when x(1,2) is defined 
to be an even function in z, both integrations may be 
extended over the whole space. In particular 

1 1 K2 J 
x(12)=-+----

, R12 R 12 (im) 4?r 

X(2,3) 
--dva. 

RIa 
(25) 

whole space 

This integral equation is now amenable to direct 
solution by the Fourier transform technique, with the 
result 

2 f'" t sintRl2 2 f'" t sintR12\im) 
x(1,2) =- dt+ dt 

1I"R12 0 f+K2 1I"R 12(im) 0 f+~ 

exp( -KR12) exp( -KRI2 (im)) 

--------+----------
R12 R I2 Um) 

x(1,2) (26) 

11 J. G. Kirkwood and J. C. Poirier, J. Phys. Chern. 58, 591 
(1954). 

12 A. Erdelyi, Tables of Integral Transforms (McGraw-Hill Book 
Company, Inc., New York, 1954), Vol. I, p. 65. 

When x(1,2) is substituted into Eq. (23) and the result
ing expression is evaluated with use of dipolar coor
dinates, the well-known Debye-Htickel limiting law is 
obtained 

(27) 

as well as the relation 

i.e., 
pCI) = c exp{ -{3€2e-2KZ /4Dz}. 

Equation (28), previously obtained by different tech
niques,z·2 clearly shows the screening effect on the image 
potential. 

Our next task is the evaluation of the stresses UT 

and UN given by Eqs. (14) and (15), and the last two 
members of Eq. (20). We again linearize ga{3(2), utilize 
the electroneutrality condition and Eq. (26), and take 
K2 constant 

(29) 

(30) 

These integrals can be evaluated with use of dipolar 
coordinates, with the result 

U=2KZ, 

(32) 

Upon designating the surface tension increase corre
sponding to Eq. (14) by ..:l-yI and the increase according 
to Eq. (15) by ..:l-yII, these quantities may be exhibited 
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316 F. P. BUFF AND F. H. STILLINGER, JR. 

as follows: 

CE2{ (1 1 )i'" .:l'Y1=- --- [exp( -ye-u/u)-1]du 
D 6 2y 0 

L'" [1 1 e-
U

] } + exp( -ye-u/u) ----- du ; (33) 
o u3 u2y 2u 

(34) 

The analytical evaluation of prototype integrals is 
presented in the appendix and leads to 

L(y) = -t InY-'Y+I, 

(n2-2) nn 
An I = (n+1)"----(Sn2-3n-2); 

2 6 

(n+1)" 
Bn I = {(n2-2)(ln(n+1)+1) 

2 

-n(n+ 1)1f(n+ 1)- (n-1) (n+2)1f(n+2) 

n" 
+2(n+1)1f(n+3)}--{ (5n2-3n-2) Inn 

6 

+ (5n2+3n-2)+2(n+1) (n+2)1f(n+ 1) 

-6n2[1f(n)+1f(n+3)]} ; 

AnII = (n+1)n+I(n-1)-3nn+2 ; 

BnII = (n+1)n+I{ (n-1)[ln(n+ 1)+ 1-1f(n+1)] 

- (n+2)1f(n+2)+31f(n+3)} 

n-I 1 
1f(n)=-'Y+ L-; 

m-lm 

'Y=Euler's constant=O.5772157···. 

It will be noted that the same limiting law is obtained 
for cases I and II, which for a uni-univalent electrolyte 
takes the form 

80.00 1.130 X 10-13 (DT) 3 c(moles/lit~r) 
.::l'Y=--cloglO ; (36) 

D c 'Y(dynes/cm) 

when recentI3 values are employed for the physical 
constants. The limiting law obtained is also identical 
with that found by Onsager and Samaras on the basis 
of their integration of the Gibbs adsorption equation 
(16), subject to relations (27) and (28). This result is 
to be expected owing to the validity of the approxima
tions in this region. In more concentrated solutions, the 
basic model begins to break down and, furthermore, the 
use of approximate distribution functions in rigorous 
formulas for thermodynamic variables leads to internal 
discrepancies. For example, the difference between 
.:l'YI and .:l'YII arises from the failure of the hydrostatic 
condition, since it can be shown that although the 
approximated Born and Green equations imply Eqs. 
(26) and (28), the first moment of the singlet 
Born and Green equation is already in error at higher 
concentrations. Despite the fact that the Gibbs adsorp
tion equation satisfies an important thermodynamic 
consistency relation, its use similarly produces some 
discrepancies when charge expansions to different 
orders are employed for rand /.l. 

In order to illustrate these numerical differences and 
to indicate the applicability of the theory in the experi
mental region, we express .:l'Y in the form 

.::l'Y/y2(dynes/cm) = 7.868 X lG-12VT3F(y), 

y2 = 1.766 X 1013 (DT)-3c(moles/liter). 

Table I summarizes the results for our cases I and II, 
the corresponding Onsager-Samaras A.:la/2 values 
(O.S.), and the experimental values obtained by passing 
a curve through Schwenker's14 rather scattered data 
(Exp.). The agreement between (O.S.) and I is quite 
close, although II is in better agreement with the 
difficult experimental measurements. In closing, we 
remark that within the framework of the model, slightly 
better agreement could be achieved by taking into 
account the finite size of the ions as well as the explicit 
variation of K(Z). 

TABLE 1. 

FO. 8 .(y) pl(y) FIl(y) 
,(moles/liter) 

y' FE,p.(y) at 18°C-

0.0063 1.486 1.492 1.549 0.0046 
0.0126 1.325 1.333 1.405 0.0091 
0.0189 1.233 1.242 1.323 0.0137 
0.0315 1.117 1.130 1.223 1.25 0.0228 
0.0378 1.077 1.090 1.189 1.22 0.0273 
0.0630 0.966 0.981 1.095 1.18 0.0456 
0.0944 0.880 0.899 1.023 1.14 0.0683 
0.1259 0.819 0.839 0.974 1.12 0.0911 
0.1574 0.772 0.794 0.937 1.06 0.1138 
0.1889 0.735 0.758 0.908 1.03 0.1366 
0.2014 0.722 0.745 0.897 1.02 0.1457 
0.2266 0.697 0.722 0.879 1.00 0.1639 

a The dielectric constant of water has been calculated from the Akerlof-
Oshry equation, J. Am. Chern. Soc. 72, 2844 (1950), 

D = (5321/T) +233.76 -0.9297T+0.OO1417T' -0.0.8292T', 
T =273.1 +1. 

13]. W. M. DuMond and R. E. Cohen, Revs, Modern Phys, 
25, 691 (1953). 

14 G. Schwenker, Ann. Physik 11, 525 (1931). 
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III. 

It is the purpose of this section to relate our particular 
application of the general distribution function approach 
to Mayer's recent electrolyte theory8 which he based 
on the osmotic virial expansion10 for homogeneous 
fluids. It will be recalled that for verification of the 
Debye-Huckellimiting law Mayer first evaluated, with 
use of a convergence factor, the individual linearized 
cyclic irreducible cluster integrals and then summed 
their contribution to the thermodynamic variables. On 
the other hand, we have found that, particularly for the 
inhomogeneous case, it is advantageous to reverse this 
order of evaluation. Upon directly summing the cyclic 
cluster integrals in a formal manner, the relevant sums 
can be shown to obey our earlier integral Eq. (24). 
Consequently, a simple technique is provided for the 
calculation of the cluster sums and, by comparison 
with the distribution function theory, an additional 
justification becomes available for the validity of 
superposition in the limiting concentration range. In 
summary, the following analysis again leads to the 
earlier singlet density and to an expression for ~'Y 
identical with the previous ~"l. 

Although in the presence of external fields the usual 
virial development must be extended,15 this generaliza
tion is straightforward for the cyclic diagrams due to 
their symmetry. Restricting this treatment to the con
tribution from cyclic clusters and employing a WO(N) 

given by Eq. (20), it is found that the desired formulas 
may be expressed in the form 

For the evaluation of the auxiliary function <T a(1; ~) 
we first expand 

,BEaEfl 1 ,B2Ea2El 
/afl(1,2) = --k(1,2)+---k2(1,2)-···, 

D 2 D2 

1 1 
(41) 

k(1,2) =-+-.-
R12 R 12 (·m) 

so that to terms of the same order, with use of the 
electroneu trali ty condition, 

,BEa2 J K2(2)k(1,2) 
<Ta(1; ~)=-- K(l,2; ~)dV2' 

2D 47r 
where 

e 
K(1,2; ~) =k(1,2) -- JK2(3)k(2,3)k(3,l)dva 

47r 

( ~2)2 + 47r J JK2(3)K2(4)k(2,3) 

Xk(3,4)k(4,l)dvadv4. (42) 

From the theory of integral equations,16 the coef
ficients in Eq. (42) are recognized as iterated kernels 
so that this equation is the Neumann series for the 
reciprocal kernel,17 which itself satisfies the integral 
equation 

K(l,2;~) =k(1,2)-~ fK2(3)k(1,3)K(3,l; ~)dV3. (43) 
47r 

,Bjia' =lnpa(1) (l)+,BV a (1) (1) +<T a(1; ~= 1), (37) This equation has already been encountered and its 
solution is 

~'Y= i"'[7r( 00 )-7r(z)]dz, (38) 

,B7r(Z)=~ Pa(1)(1)+~ pa(l)(l){<Ta(1; ~=1) 

-£1 <Ta(1; ~Wd~2}, (39) 

where 

<Ta(1; ~)=7 fp~(l)(2)/a~(1,2)dv2 

and 

-t L ef fp~(l)(2)p . ./1)(3)/afl(1,2) 
fl.'f 

Xh'Y(2,3)/'Ya(3,1)dv2dVa 

-t L ~4JJJPfl(1)(2)p'Y(1)(3)pa(1)(4) 
fl.'Y.B 

x / a~( 1 ,2) /13'( (2,3) / 'fa (3,4) faa (4, l) 

XdV2dvadv4- ... ; 0 ~ ~ ~ 1 (40) 

/afl(i,j) =exp[ -,BVafl(2) (i,j)]-1. 
----

16 J. Yvon, Actualites scientifiques et industrielles (Hermann 
and Cie, Paris, 1935), No. 203. 

exp[ -~KR12] exp[ -~KR12\im)] 
K(1,2;~)= + . ; 

R12 R12 (,m) 

for K2 constant (44) 

so that again using earlier results 

,BEa2K ,BEa2 
<Ta(1; ~)=-----(l-e-2f"); 

2D~ 4Dze 
for K2 constant. (45) 

Substituting of <Ta(1;~) into Eqs. (37) and (39) then 
leads to 

p(l)=cexp(-ye-U/u); y=E2K/2DkT; U=2KZ, 

and 

7r(z) =2p(l) (z) {kT _ E2K[~+~_ e-
u 

_ e-
U 
_ e-

U

]}. 

D 6 u3 2u u2 u3 

(46) 

(47) 

By comparison with Eq. (32) it is seen that 7r(z) 
= -<TT(Z) and that Eq. (47) in conjunction with Eq. 
(38) implies our earlier expression for ~'YI, Eq. (33). 

16 R. Courant and D. Hilbert, Methoden der Mathematischen 
Physik (Verlag Julius Springer, Berlin, 1931), p. 116. 

17 Reference 16, p. 119. 
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Consequently, the A'YI column of the table serves as a 
numerical summary for the results of both Sees. II 
and III. 

APPENDIX 

Equations (33) and (34) lead to integrals of the type 

I a.(Y) = (-I)"f"" exp( -ye-uju) .e-
EU

du 
o u" 

a, t integers (AI) 

f
o eEZ a;?: E;?: 1; 

= exp(yezjz)·-dz 
-eo z" a;?: 2 when E=O 

f"" [exp(-ye-UjU)-lJdU=!Y Iu(y)dy. (A2) 
o 0 

These integrals may be evaluated by expansion in 
terms of modified Bessel functions of the third kind or, 
more directly, by a straightforward extension of the 
contour integral technique developed by Onsager and 
Samaras2 in their calculation of the left-hand side of 
Eq. (A2). Let 

1 f(o+) e .. (ez)fJ 
CP=-. exp(yez/z)·- - dz 

211'$ -00 z" Z 

!,B! <1; largzl ~11', (A3) 

where the contour is taken from - OC) counterclockwise 
around the origin and back to - oc). In analogy with 
Hankel's treatment of the gamma function,18 r(z), Eq. 
(A3) may be transformed 

sin1l',B I-O e" 
¢=-- exp(yezjz) ·-efJz ( -z)-fJdz 

11' -eo z" 

1 I (0+) eEZ(eZ)fJ +-. exp(yeZjz).-: - dz (A4) 
211'$ _00 z Z 

=cpl+¢2. 

Then it follows that 

I -lim fJcp!_ [fJcp-cp2] 
"'< - {J-->O fJ,B - fJ,B fJ=o' 

(AS) 

For the evaluation of cp, exp{ye'j z} is expanded, and in 
the resulting series, Hankel's formula for the gamma 
function is utilized 

(A6) 
'" y" (n+f+,B)n+a+fJ-l 

=2:- . 
,,=0 n! r (n+a+,B) 

18 E. T. Whittaker and G. N. Watson, A Course of Modern 
Analysis (Cambridge University Press, New York, 1943), p. 244. 

¢1 is evaluated by setting t=ze-z, and then employing 
the extended form of Lagrange's theoreml9 . 

00 tn (E-a+n+1) ndt 
e«-")zdz= 2: I t! ~ e-1• (A7) 

n=O n! 

Therefore, 

so that the substitution v= t-1 finally yields 

00 (E-a+n+l)n 1 j(o+) 
¢2 = 2: ellVvfJ+a-n-2dv 

n=O n! 211'i_oo 

00 (E-a+n+l)n yn-a-fJ+l 
= L -----------

n=O n! f(n-a-,B+2) 

Then, I",. is directly evaluated 

{ 
iJ 00 1 [(n+E+,B)n+a+IH 

1",,= -2: - y" 
iJ,B n=O n! f(n+a+,B) 

-f(n+ l)-f(n+a)]+ (-1)" E: 

(A9) 

(a-E-n-l)" 
X (a-n-2)!y,,-a+1; E;?: 1 (AW) 

n! 

where 

fez) = f' (z)jr(z), 

-f(n+1)-f(n+a)]+<-l)a E: 
(a-n-l)" 

X (a-2-n)!yn-a+l; E=O (All) 
n! 

when it is recognized20 that for negative integers-m 

fez) 
lim -= (-l)m-lm!. (Al2) 

z-->-m f(z) 

19 Reference 18, p. 132. 
20 A. Erdelyi, Higher Transcendental Functions (McGraw-Hill 

Book Company, Inc., New York 1953), Vol. I, pp. 46--47. 
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