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By means of a spin-magnitude variation parameter, equations
are derived for spin-pair correlation functions in classical lattice
theories. Specifically, the case of two spin states present in equal
average numbers is considered, but with arbitrary scalar inter-
action between pairs of spin sites. It is pointed out that in this
case the spin-triplet correlation functions which occur in the
theory, as well as all higher odd-order correlation functions, may
'be reduced exactly to linear combinations of lower-order correla-
tion functions. The nature of spin-quadruplet correlations, which
are also required in this method for rigorous determination of the
pair functions, unfortunately have no corresponding reduction,
but their character is discussed qualitatively. The approximate

theory resulting from use of a simple closure relation for quad-
ruplets is examined, with particular attention to the position of
the critical temperature for ferromagnetic coupling of varying
range. It is remarked, on the basis of the approximate theory, that
spin-pair correlations at large distance tend to become independent
of direction (relative to the fundamental axes of the lattice) as
the critical temperature is approached, when the interaction
satisfies a certain second-moment isotropy condition.

An alternative, and apparently more accurate, closure relation
for determination of spin-quadruplet correlation functions is pro-
posed with a view toward possible application to modern com-
puting techniques.

known techniques applicable to the nearest-neighbor
models are not discussed below at any length, in view
of the available standard reviews on the subject. ' ' We
are interested here, however, in developing techniques
applicable to the general case of arbitrary scalar inter-
actions. It is in fact possible to exhibit an estimate of
the manner in which ferromagnetic Curie temperatures
depend upon range and isotropy of the interaction
potential LEq. (35)], so that the following analysis has
the capacity to describe those often more realistic lattice
theories that have not received the intensive study
devoted to the Ising model. We do not, however,
consider at all in this paper the case of finite external
fields, which produce a preference of one spin state over
the other.

Section II de6nes the spin correlation functions, and
states their elementary properties. For the purposes of
later development, the spin-magnitude coupling param-
eter is introduced ab imlio. Section III is devoted to
derivation of a fundamental relation satis6ed by pair
correlation functions, and it is shown how the spin-
triplet correlation functions arising in the course of this
derivation may exactly be eliminated in favor of pair

ERHAPS the most central quantity in classical
order-disorder problems is the distribution of pairs

of spins (or "particles" in lattice gas terminology)
separated by a given distance in the lattice of interest.
Not only does this pair distribution lead to the mean
energy of the system (by multiplying by the site-site
interaction, and summing over all pairs of positions in
the lattice) and subsequently to the other thermo-
dynamic properties, but its Fourier transform yields the
response of the system to small, externally applied,
periodic force fields. Likewise, one may obtain as well
from this pair distribution the scattering character of
the lattice for incident radiation.

There have been previous proposals' ' for determina-
tion of spin-pair distribution functions. These tech-
niques tended, however, to rely upon Bethe's' ' notions
of average local 6elds acting on clusters of one or more
sites, these fields being independent of the state of the
chosen set of sites. As a result, the local configurational
free energy changes associated with change in state of
the chosen small set of spins are unfortunately over-
simpli6ed, in the sense that one disregards the rather
complicated back reaction of the surrounding set of
spins on the chosen small cluster, due to the fact that
they are "polarized" by the state of this cluster.

In the following, we have attempted to provide an
alternative discussion of spin-pair correlation functions
based upon a systematic development of classical order-
disorder theory (where each lattice site has two possible
states with equal a priori probability), from the
fundamentals of Gibbsian statistical mechanics. In the
event that interactions are restricted solely to nearest
neighbors, our considerations apply then to the resulting
Ising model in vanishing external 6eld. The many well-

functions. As an application of this fundamental rela-
tion, Sec. III also indicates its solution for the one-
dimensional field-free Ising model.

In Sec. IV, a second fundamental equation is ob-
tained for the effect of a nearby partially coupled site
on the spin correlation for a chosen pair of lattice sites.
The occurrence of irreducible quadruplet correlation
functions in this latter expression, however, necessitates
use of a closure relation for deduction of distribution of
spin pairs (except in certain special situations, as the
one-dimensional Ising model). Such a closure relation
is suggested, and the resulting approximate theory is
developed. In particular, one then easily establishes the
aforementioned ferromagnetic Curie point relation.' F. Zernike, Physics 7, 565 (1940).

2R. J. Elliott and W. Marshall, Revs. Modern Phys. 30, /5
|',1958).' H. A. Bethe, Proc. Roy. Soc. (London) A150, 522 (1935).

4P. I. Richards, Manual of Mathematica/ Physics (Pergamo
Press, New York, 1959), pp. 219—20.

5 G. F. Newell and E. %.Montroll, Revs. Modern Phys. 25, 353
(1953).

n C. Bomb, Advancesin Physics, edited by N. F. Mott (Taylor
and Francis, Ltd. , London, 1960), Vol. 9, pp. 149—361.
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Furthermore, it is pointed out that pair correlations at
large distance are predicted to become isotropic as the
critical point T. is approached from above, if the inter-
action satisfies certain second moment conditions
(Appendix 8).

Section V discusses the nature of the pair correlations
below T„in the case that two ferromagnetic phases may
coexist, and it is remarked that solution of the funda-
mental equations (at zero external field) would allow

the boundary of the two-phase region to be plotted in the
relevant temperature-composition diagram (Fig. 1).

Finally, Sec. VI presents an alternative closure rela-
tion to the rather crude one whose consequences were
developed in Sec. IV. This second procedure, though
somewhat awkward to apply, is argued to be more
accurate on the basis of certain limit properties.

It should be remarked that the following analysis
was largely prompted by a desire ultimately to under-
stand the relation between the well-known integral
equation methods' in the theory of dense Quid distribu-
tion functions, and the standard approaches to the
Ising theory. For proper comparison, it was necessary
to generate a method not specially restricted to nearest-
neighbor interactions.

The approach outlined below admittedly has much
in common with certain aspects of the continuum Quid

theories, for example, the use of a coupling parameter, '
as well as stress given to distribution functions for small
sets of spins. In this connection, it seemed important to
examine the lattice analog of the traditional liquid
theory superposition approximation. ' The fact that
lattice triplet distributions (at zero external field) have
a nearly trivially demonstrable reduction to a linear
combination of pair functions rather than a super-
position-like product is worthy of future attempted
clarification, especially since an inverted order of
precision can be exhibited for ordinary Quids. '

Ke consider a regular lattice of S sites, with periodic
boundary conditions imposed at the surface of the
lattice. Each site i has two possible states which may
be characterized by a "spin" parameter p;, having
values ~1. The total interaction energy V for the
lattice has the form:

span many nearest™neighbor spacings in the lattice;
imposition of the periodic boundary condition however
demands that the displacement I',; for a given pair of
sites refer to the shortest such vector connecting the
respective sites to one another or to their images.

If the interacting system of spins is brought into
thermal contact with a heat reservoir at absolute
temperature T, then the probability for spin configura-
tions may be taken as the canonical density,

~' '( " . )=I:~(~)j '
pL

—U( " )/»j,
(2)

Z(T) = 2 expL —U(~i ~v)l&~j
P,l . IJN=21

where k is Boltzmann's constant.
Although the two physically significant site states are

specified by the discrete values ~1 for the p;, we shall
follow a convenient artihce that has found widespread
application in liquid state theory, and therefore intro-
duce a coupling parameter X, attached arbitrarily to the
site numbered 1; this parameterization is accomplished
by replacing pj with XLM&. The corresponding modifica-
tion of the potential energy V is just

I ~P)=~2~(1i)~i + 2 ~(si)l ~, (~)

The configuration probability density I"N& and parti-
tion function Z have obvious generalizations appro-
priate to inclusion of the coupling parameter ),.

The effect of X is quite clear. Setting ) =~1 repro-
duces the original fully coupled physical situation. As
A. is allowed to decrease to zero, however, the extent to
which site 1 can interact with its neighbors diminishes
continuously until this sites state is entirely inde-
pendent of the surroundings, when ) =0.

In view of the fact that our model is free of external
fields acting to bias the spin population at any given site
i, the fraction of members of a representative ensemble
of identical lattice systems which have either ii;=+1
or pi= —1 is just 2. The probability, P("), that a given
subset of all the S sites (specifically we choose 1 n)
has a given set of spins p, i. p„, irrespective of the value
of the remaining S—e p's, may be found by summing
I'(N' over this latter extraneous set of spins:

N

U(lit y~) = Q (sj)pry;,
I""'(p p ))= ~'"'(ur . ~~,~). (4)

~(si) —=~(r' ).

The absence of terms linear in the p, 's reQects our initial
assumption of no external fields acting on the "spins"
pr ii~. The interaction potential w(r) will, for our
general remarks, be arbitrary, and its range may thus

T. I . Hill, Statistica/ mechanics (McGraw-Hill Book
Company, Inc. , New York, 1956), Chap. 6.' J. G. Kirkwood, J. Chem. Phys. 3, 300 (1935).' F. H. Stillirrger, J. Fluid Phys. 3, 725 i1960l.

Although the chosen set p&
. p„ includes the partially

coupled spin p&, a similar relation can be utilized for any
set of spins not including p, ~, the resulting ) dependence
of the P' & obtained, however, would generally differ
from that of Eq. (4).

If the temperature is suA~ciently high, the set of spins
will exhibit no long-range order. Under this circum-
stance, a set of e sites selected far from one another by
comparison with the range of v (r), will have independent
spins, so P&"& must equal (s)", for any values of lii p,
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p &'&(ri»)=—1. (6)

(e) When X vanishes, p p. ..„&"& is independent of n:

p+ &

„"&(r&..i. r„p =O)=p s...„&"&(r, r„,I&=0). (7)

(f) Finally, notice should be given to a set of normali-
zation conditions satisfied by the spin correlation
functions which follows from Eqs. (4) and (5). Upon
summing over any subscript in p&"&, the next lower-
order spin correlation function is obtained:

p-& '+&"&(ri" r--»)+p-p-' &"&(ri" r-»)-
=2p.p. ..„&"-'&(r, r„„»). (g)

The result of these considerations for the spin-pair
correlation functions p t&&2&(ri, r2») is that one may
write:

p++ "(ri,r2») =p ' (ri,r„»)= I+&p(r&2»),
9

p~ "&(ri, r2») =p +&'& (ri, r2») = 1—
&p (r&2»).

Thus, a single function tp of relative position suffices to
describe the average distribution of spin pairs in the
lattice, one member of which is partially coupled. The
probabilistic definition of the spin-pair correlation func-
tions demands that for T&0,

—1(&P(r») (+1.

and X. By way of stressing the nonrandom joint spin
probability for sites which are close enough to interact
statistically, we define "e-spin correlation functions, "
p s...,&"& (ri . .r„»), by factoring the a priori individual
spin probabilities out of E' ':

&'"'(pi p l&) = (2)"p-&i-""'(ri .r. ~) (5)

The subscript o& stands, respectively, for + or —if spin
pi on the site at ri has value +1 or —1. Subscripts
P. p are assigned accordingly, from the values p2 p„.

Certain general properties of the p&
"& are immediately

' obvious:

(a) Vanishing of external fields along with imposition
of periodic boundary conditions implies that all local
properties of the spin system, and in particular each
p&"&, are translation invariant when X=+1. Further-
more, the p&"& must also exhibit rotational symmetry
appropriate to the regular lattice considered.

(b) Above the transition temperature T, to any
possible long-range ordered state, the p&"& exhibit a
factorization property: If 1'~ ~ ~ ~ 1'„separate into two sets
of positions, with all members of one set much farther
from all members of the other set than the range of
&&(r), than p&"& reduces to the product of the two lower-
order p's appropriate to those sets.

(c) By virtue of the lack of external Acids, one
recognizes that our model has complete symmetry with
respect to + and —spins. As a result, each p t&. ..,& "& is
unchanged if all +'s in its set of subscripts are changed
to —'s, and vice versa.

(d) The single-spin correlation function is trivial:

The major task of the statistical theory of Geld-free
classical lattices thus amounts to determination of the
single function &p. It is the purpose of the following
discussion to indicate the nature of a possible calculation
procedure.

For this reason, we set pi and p2 in Eq. (2) equal to
+1, and compute the X derivative of the result, when
rI,=2. One finds, after some straightforward manip-
ulation

&&f(12»)= —io(12)[I+& (12»)7

1 N

2 2=3

+[1+&(»»)7Z (»)e(lj»), (»)

where io(1j)=v(1j)/kT. Notice that the first summa-
tion exempts both sites 1 and 2, but the second exempts
only 1. As usual, we adhere to the simplifying conven-
tion of replacing r&. . rN by 1 . S when they appear
as arguments of &&,w, P, etc. It is understood that
differential Eq. (11) is ultimately to be solved subject
to the boundary condition

P(12»=0) =0, (12)

p+„+&'&(123»)+p +„&3&(123»)= 2p+~&2& (23
~
X)

p++ &'&(123»)+p + &3&(123»)=2p+ &2&(23iX)

p„+"&(123,X)+p +&'& (123»)= 2p +&2& (23 j X)

p+ &'& (123»)+p &'& (123»)= 2p &'& (23
~
X);

(13)

p „&'&(123»)+p "&(123»)= 2p „&'&(13»)

p~+ &3&(123»)+p~ &'&(123»)=2p~ &'&(13»)

p ~+&3&(123»)+p +&3&(123»)=2p +&'&(13»)

p „@&(123»)+p "&(123»)=2p &"(13»);

p+++ ' (123 l&)+ p++—' (123»)= 2p++ ' (12 l&)

p+-+ "&(123»)+p+—"&(123»)= 2p+-"& (12»)

p ~+&3&(123»)+p .&. &3&(123»)=-2p ~&"(12»)

p +&3& (123»)+p "& (123»)= 2p &" (12,X).

(15)

rejecting the fact that a completely decoupled spin can
in no way correlate with its neighbors.

The appearance of the spin-triplet functions p&'& in
Eq. (11) is typical in derivation of pair-function rela-
tions for interacting systems. Obviously, it is necessary
to have some information regarding their behavior
before Eq. (11) may be considered useful for prediction
of the basic quantity &p. We therefore examine the
entire set of normalization conditions (8) for spin-triplet
correlation functions; written out in detail, they are:
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For the sake of clarity, we have introduced a vertical
slash in each p, p"'(23

~
X) to stress that this function is

only indirectly dependent on ), since neither p, 2 nor p, 3

are themselves partially coupled. This latter set of
spin-pair correlation functions depends on both r2 and
r~ (and not just the relative position r~s) since the
position of the partially coupled spin jM& can vary
relative to both.

The twelve relations (13)—(15) obviously are not all
independent; in particular, it has already been noted
two such equations differing only by complete sign
reversal of all subscripts are actually identical. Never-
theless, this set does include enough information to
allow all p"'s to be formally replaced by p&"'s. Thus,
for example, if the third of Eq. (14) is used to eliminate

p ++&'& from the first of Eqs. (13), and then the last of
Eqs. (15) utilized in elimination of p +"' from the
result, one Ands:

p+++"'(123,I&) = 2p++'2'(23
I X)—2p +&"(13,X)

+2p &" (12,X)—p "&(123,X). (16)

By virtue of subscript sign change invariance, the
remaining triplet-correlation functions are identical.
Making as well the substitutions

p &'& (12,X) =p~„&"(12,X),

p-+"& (13,I ) = 2—p++" & (13,~ ),
one obtains

p &3& (123,X) =p "' (12,X)+p "' (13,X)

+p.-."'(23ll) —2. (»)
The relations (13)—(15) may now be used in turn to
find similar expressions for the remaining p&"s. For any
n,P,&=+,—,the general result may simply be written

P p~&" (123,X)=P p&'& (12,X)+P &'& (13,X)

+pp, &" (23
i X) —2. (18)

It should be emphasized that this reduction Eq. (18)
depends in no way on the fact that site 1 is partially
coupled, for a similar expression involving exclusively

p p&" (ij ~X) functions would apply to three sites not
including 1. It is also noteworthy that Eq. (18) is
rigorously true for lattices of arbitrary dimensionality;
it is also valid for any interaction &&(r), and thus is not
restricted to Ising models. The fact that triplet-
correlation functions may be eliminated in favor of pair
functions is a result of symmetry inherent in the zero-
field model under consideration. In the case of a non-
vanishing external field, however, reduction (18)
is no longer valid, and apparently has no obvious
generalization.

Equation (18) may now be used to simplify Eq. (11):
&I&P (12,X)= — (12)+I"(~)&(»~)—2 (Ij)4(j2l~),

(19)

On account of the relation (9) of i/i to the density of spin
pairs in the lattice, the auxiliary function FP,) may
easily be identified as proportional to the mean energy
of interaction at temperature T of a partially coupled
spin to its surroundings. Equation (19) is consistent
with the intuitively clear facts that &P(12,X) must be an
odd function of X, and each &P(j2~X) must be even.

On account of distinction between the functions
&P (r», X) and &P (r;,r,

~
I&), Eq. (19) is certainly not sufhcient

to predict the distribution of spin pairs in the lattice.
If both members of the pair i j are su@ciently far re-
moved from the partially coupled site, though, they will

be completely unaffected by the existence of this
"weakened" site, and as a consequence, one has the
identity

&p(r, ,r;~X)=&p(r...X=1), (ri, and r~, large), (20)

i&&(z) = J/kT, x=1-;
=0, (21)

Equation (19) may adopt either of two forms, depend-
ing on whether or not sites 1 and 2 are nearest neighbors;
if they are nearest neighbors, the sum on the right side
of Eq. (19) has only one nonvanishing term, otherwise
there are two. It may readily be shown by substitution
that the &P function for any two sites may be found just
by multiplying together factors for each nearest-
neighbor interval between the chosen pair of sites. One
utilizes a factor tanh(J/kT) for each interval between
two fully coupled sites, and a factor tanh(XJ/kT) for
intervals one end point of which is a partially coupled
site. Hence, for two sites an integer distance x apart,
where one of these sites is the partially coupled one:

It (x,X)= tanh(X J/k T)t tanh(J/k T))'—'. (22)

On the other hand, if the chosen sites for which spin-pair
correlation is sought are fully coupled,

for all values of ) in the left member. As a crude theory
of pair correlation, one could assume Eq. (20) were
valid for at/ pairs ij not including site 1, and solve the
corresponding approximate version of Eq. (19); we

shall not however attempt such a program. The follow-

ing section is devoted especially to examination of the )
dependence of f(ij ~

X), and we shall presume that even
partial success in establishing this dependence will be
useful in more fully understanding the statistical
mechanics of lattices beyond what is possible with the
crude approach.

Vte close this section by noting that functional Eq.
(19) has a very simple solution for the one-dimensional

Ising model. Here, it may be supposed that the linear
array of sites are unit distance apart, and

F(~)=2 ~(1j)4(1j,~).
&P (z

~
I&) = Ltanh(J/k T)], (23)

if the partially coupled site lies outside the segment
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IV.

Attention now may be turned to the indirect e8ect of
a nearby partially coupled site on the correlation be-
tween spins on a chosen pair of sites, both fully coupled.
The neighboring partially coupled site will still be
identihed as that numbered 1, and the chosen sites in
its vicinity for which we seek the pair correlation may
for convenience be identified as 2 and 3. We have

ps, &" (23
~
X) = 4LZ (T,X)] '

PI, IJ,4 ~ ~ ~ AN=+1

y expL —V(li, p,,X)/k T]. (25)

One proceeds to compute the X derivative of g (23~X)
from Eq. (2$) with P,y =+ which, after some simplifica-
tions analogous to those yielding Eq. (19), may be put
into the form:

BP(23
~
X) = —(w(12)+w(13)]

Xg (12,&)+i('(13,X)]+P(X)$1+i('(23
~
X)]

PrIJjw(1j)Pr++, ' (123j,X). (26)
4 7~ Pl eP7=+I

The point of major significance insofar as the result
Eq. (26) is concerned, is occurrence of spin-quadruplet
correlation functions, unlike the maximum of triplet
functions in Eq. (11)."One therefore again faces the
necessity of formally replacing these higher-order corre-
lation functions by suitable combinations of purely
spin-pair quantities before rigorous solution for the
statistical thermodynamics of the lattice may be
accomplished.

The immediate temptation is to try elimination of
p&'&'s from the set of normalization conditions obtained
from Eq. (8) with I=4, in view of success in the is=3
case. All such attempts fail, however, for unlike the
possibility of obtaining an expression analogous to
Eq. (16) with p++++"& in one member and p
(the same function, by subscript sign change symmetry)
in the other member with opposite sign, it invariably
happens that both have the sanse sign, and therefore
cancel. The success for e=3 and failure for e=4 is a
direct result of the former integer's oddness, and the
latter's evenness. In fact, it is always possible in
principle to express rigorously the field-free lattice p&"'s
of any odd order in terms of lower-order functions, but
no analogous simpli6cation presents itself in any even
ordel .

joining the pair, or

P(x ~)I.) =
I tanh(XJ/kT]'Ltanh(J/kT]* ' (24)

if it lies between the pair.

Nevertheless, the simple reduction Eq. (18) for p&'&'s

is rather suggestive of the qualitative form of p&4i's.

Since Eq. (18) consists of a sum of the three possible pair
correlation functions minus a constant, one naturally
examines the four-spin analog (qualitatively correct in
the absence of long-range order):

p-Pvs"' (1234,)i) =p-s"' (12,~)+p-7"' (13,)i)

+p, "&(14X)+p& "&(23
~
X)

+pss "' (24
I
)t)+p.s "' (34

l
~) —3, (27)

r)ll (23
I X)/B = —w(12)f(13,X)—w(13)g (12,X)

+~()t)y(23
~
Z). (28)

This expression, together with Eq. (19), constitute a
coupled pair of di6erential equations which are subject
to boundary conditions (12) and (20). Their solution
should provide an approximate account of spin-pair
correlations above T,.

It is convenient to define a new function:

r) (»
l
)~) =2 w (1j)0 (2j l

)i). (29)

Then Eqs. (19) and (28) may be rewritten )when in the
latter 3 is replaced by j, and j is summed as in Kq.
(»)]:
Big (12,X)/N, = —w (12)+F(X)P(12,X)—r) (12 i X),

Br) (12
i X)/BX = —F(X)w (12)—8'(12)g (12,X) (30)

+Z() )~(12
~
)t),

where

8'(12) = —2w'(12)+P w'(1 j).
7=-2

(31)

where now six p"'s must be included. Above T, (below
which long-range order sets in) each p'"' must approach
unity as the positions of its arguments recede from one
another to infinity; the subtractive constant 5 was
selected in Eq. (27) in order that this equation be
consistent with that fact. It may easily be checked that
expression (27) exactly satisfies the normalization
conditions (8).

In the next section, we consider (in detail for ferro-
magnetism) the T&T, situation, where it will be seen
that Eq. (27) is no longer appropriate. It will therefore
be understood for the remainder of this section that
T& T„and we shall accordingly examine the effect of
approximation (27) on fundamental Eq. (26). If the
appropriate substitutions are made, Eq. (26) adopts the
approximate form:

'0 Certain p (')'s appearing at intermediate steps in deduction of
Eq. (26) were eliminated by means of Eqs. (18) and (9). In Appendix A it is shown that the solution to Eqs. (30)
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for P(12,)), subject to condition (12), is (0(12))0).

P(12,)~) = 2w(12) exp
0

sinh[0(12) X)
F(~')dV

0(12)

dVcosh[0(12)(X —X')] exp — F(X")dX"

+sinh[0(12)X) exp F(X')dX' f(12), (32)

—0(12) cosh[8(12)]f(12)=h(12)

+sinh[0(12)] 2 w(1j)f(j2), (33)

where the "inhomogeneous" function h is defined

where f(12) is a function only of the relative positions
of spins 1 and 2, and not of ) . If the reduced interaction
m has only a short range, then the function f alone holds
the key to the way in which spin-pair correlations decay
as the pair distance increases. f is determined by the
requirement when X=1 that solution (32) satisfy Eq.
(20) for all r; and r, when this latter condition is trans-
formed to one involving g by means of the operation
(29); setting the resulting q expression equal to that
obtained upon substituting Eq. (32) directly into the
first of Eqs. (30) leads to a difference equation for f(12):

thus form a convenient basis for investigation of certain
complicated lattice systems.

Since we are interested for the moment in tempera-
tures above T„so that f(12) decays to zero with
increasing r», h serves only as a "source" term in
Eq. (33) which determines the magnitude of large-ri2
correlations, but not their distance rate of decay. For
this rea, son, one can circumvent the complication in
determination of h, while obtaining an explicit expression
giving the dependence of T, for ferromagnetic systems
upon the nature of the interaction e.

%hen examined just above T„lattices which exhibit
low-temperature ferromagnetic order exhibit very large
susceptibility, as well as critical opalescence to incident
radiation. This indicates that the rate of decay of spin-
pair correlations with increasing distance is very slow.
At T. one may therefore choose r» in Eq. (33) suffi-
ciently large that not only is h(12) zero, but also that
f(j2) is sensibly constant over the short range of m(1j).
Thus, replacing the f's in Eq. (33) by a constant leads
to the critical point condition:

N—0(12) cosh[0(12)]=sinh[0(12)) Q w(1 j),

or, utilizing the definition of 8 in Eq. (31), and realizing
that r» is sufficiently large that w(12) is a vanishing
quantity:

1
2

Q ie(1j) Q w'(1j)
2—2

&& sinh[0(12) (1—X)) exp
0

F(V)dX' dX

sinh[0(12)]
+2 2 ~(1j)~(j2) ——

(12)

h(12) =—2w(12) cosh[0(12))—0(12)
X tanh Q w'(1 j) = —1. (35)

7'=2

The sums of the reduced interaction and its square have
been extended to include all relative positions in the
lattice.

For reference, it may be recognized that Eq. (35) is
especially simple for the Ising model, where w is J/kT—
for the s nearest neighbors of a given site, but 0 other-
wise. One Ands

+ cosh[0(12)(1—X)) exp F(~')dX' dZ . or

z'* tanh[zV/k2', ]= 1,

&T,/zJ=[zI arctanh(1/zi)) '.
(34)

For the Ising model, h(12) vanishes identically for
distances beyond the second nearest-neighbor
separation.

By virtue of the dependence of the auxiliary function
F(X) on the desired result for P, the detailed solution
of Eq. (33), whose inhomogeneous part requires know-
ledge of Ii, involves a problem of self-consistency.
Nevertheless, Eqs. (33) and (34), which represent the
approximate theory of spin™pair correlations, are
amenable to standard numerical techniques, and may

As demonstrated by Table I, this critical temperature
relation is not remarkable for its accuracy. It is more
reliable than the Bragg-Williams (mean-field) estimate,
but not as good as Guggenheim's quasi-chemical
approach. In common with all approximate theories of
the Ising model, it becomes more and more accurate
as s increases.

The value of approximate result Eq. (35) lies not in
its absolute accuracy, but rather in its ability to
estimate relative changes in T, brought about by varia-
tions in the range of the pair interaction. Thus, for
example, if the original Ising potential is expanded to
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TABLE l. Values of the reduced critical temperature kT,/sJ in
various lattices for the Ising model, computed on the basis of
Eq. (36), and compared with the results of other methods t BW
=Bragg-Williams (mean field approximation), a QC =quasi-
chemical, ' E="exact"}."

linear (z=2}
square (z=4)
simple cubic (s =6)
body-centered cubic (z=8)
face-centered cubic (z= 12)

BW Eq. (36)

1 0.802
0.910
0.942

1 0.957
1 0972

QC

0
0.721
0.822
0.869
0.914

0
0.567
0.75
0,79
0.81

~ D. ter Haar, Elements of Statist''cal Mechanics (Rinehart and Company,
Inc. , New York, 1954), Chap. 12.

b See reference 14.

include a larger number s~ of neighbors than the
original set of s, but where each of the s* interacts with
the central site with a strength J* satisfying

sJ=s*j*,
so as to preserve "total interaction strength, " Eq. (35)
suAices to demonstrate that T, always increases. More
generally, if one considers a set of interaction functions
u(fj) all of which have identical values of the total
strength

(37)

then the higher the value of

(3S)

The considerations of the preceding section were
directed toward computation of pair distribution above
T,. We now turn attention to the case T&T., specifi-
cally for ferromagnetic ordering. Figure 1 shows schema-

the lower the corresponding T.. One concludes therefore
that an interaction potential which is long ranged and
slowly varying in space (not only in the radial direction,
but for angular variations as well) is more effective in
cooperatively producing long-range order than a
locally stronger, but abruptly decaying potential of the
same total interaction strength Eq. (37).

Appendix 8 points out conditions on u(ij) under
which the approximate formulation of this section leads
one to conclude spin-pair correlations at large distances
become isotropic as 1'. is approached. For this class of
v s, the principle directions of the lattice have no
tendency to orient the large wavelength spin-density
fluctuations which cause critical opalescence. Also,
Appendix B indicates the manner in which T, may be
located for lattice systems whose low-temperature
behavior is not ferromagnetic, as well as partially to
establish what is the alternative type of long-range
order in these lattices.

tically the phase diagram of a system which undergoes
the requisite ferromagnetic transition. The abscissa
represents the fraction of + spins in the lattice, which
may be varied by application of a homogeneous external
field. "The vertical dotted line bisecting the diagram,
and passing through the critical point, is the locus of
field-free points, on which we have assumed from the
outset our lattice of spins lies. The phase diagram must
of course be symmetric about this line.

Below T„ the lattice of spins will break up into
domains predominately of one type of spin or the other.
Since we shall continue to consider only the field-free
situation, it is necessary to acknowledge that any given
site in the lattice chosen at random may be found with
equal probability in either of the two types of domains.
On the other hand, if this site is examined only when it
possesses a + spin, the chances are greater that the site
is immersed at that moment in a predominately +
domain. We shall denote by x(T,X) the probability that
a + spin, coupled to extent X, is found in a predomi-
nately + domain; likewise then, x(T,X) also equals the
fraction of time a given partially coupled —spin spends
in predominately —domains. One has

x(T,X) &-', , (39)

where equality is attained for X=o, or when T=T,.
It should be realized that below T, the domains are

of macroscopic extent, comparable in dimension to the
system itself. In fact, if as expected the interfacial free
energy between opposite domains is positive, and if n is
suKciently short ranged, then in the overwhelming
majority of cases the system will instantaneously con-
sist of single domains occupying the whole lattice. If
the size of the lattice system is allowed to become

"The total configurational energy, analogous to Hq. (3), then
would be of the form (I represents the field):

N N N

U(pr .p~X)=Xp~ I+ 2 e(1J')p; +I Z p;+ Z v(ij)p;p;.
j=2 , i(j=2

ZERO
FlELD LOCUS

l

t

I

I

I

I

l

I

TWO PHASES
t

I

I

I

l

I

1/2
FRACTlON OF + SPINS

FIG. 1. Phase diagram for a ferromagnetic lattice; it is corn-
pletely symmetrical about the composition corresponding to zero
external field. The two branches of the boundary to the two-phase
region are denoted by x(T,1) and 1—a(T,1).
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infinite, the mean domain size becomes infinite as well,
so that if one site of a given pair separated by a fixed
distance is located, say, in a + rich domain, the other
will be found in the same domain, except for a, small
probability which vanishes as system size becomes
infinite.

Ke may now examine in the light of these observa, -

tions the nature of (ferromagnetic) spin-distribution
functions below T.. It will be assumed tha, t the infinite-
system size limit has already been taken, so that the
chance of a given set of positions spanning a domain
boundary is negligible. Let the set of sites be as before
denoted by 1 m. The a priori probability that these
sites are instantaneously in + rich, or a —rich, domain
is just —,. By virtue of the differing compositions in the
two types of domains, the eth order spin probability
functions P("& for regions characterized by these domain
compositions will not be the same, and might, respec-
tively, be denoted by"

P.p. ..„'"+'(12 ts, X) and P.p. ..,i" & (12 m. X);

once again the possibility of a partially coupled spin is
indicated by appearance of ) as a variable. These func-
tions will be the two distinct limits obtained for P' ) if
one passes, at a fixed 7&T„ to zero external field from
either positive or negative field values. The P("& at zero
field. is just P&" +' times the probability that sites 1 m

are in a predominately + domain, added to the anal-

ogous quantity for the predominately —domain:

P.p. ..,& "& (12 e,X) = —',P.p. ..,&" +& (12 n, )&)

+tsP p
in, —&(12 ts,X). (40)

%hen positions 1 . m are each significantly farther
from one another than the interaction range (though
still within the same domain, by our order of limit
taking), P p. ..„&"+& and P p. ..„'" & each reduce to a
product of factors x(T,X) or 1—x(T,X) depending on
the subscripts rrP &, as a consequence of spins on the
sites being uncorrelated beyond the effect of long-range
order inherent in the domain. Thus, for example,

P i'+& (12345,X) ~ x(T;A)[1—x(T,1)]
)&[1—x(T,1)]x(T,1)[1—x(T,1)),

P~ + i' &(12345,)t) —+ [1——x(T,X)]x(T,1)x(T,1)
y [1—x(T,1)]x(T,1).

In particular, above T„ the spin-pair correlation
quantity f(12,X) was found to drop to zero as the
distance r~~ increased. Below T., on the other hand,

Eq. (40) leads to the asymptote

lim P(12,)&,) = [2x(T,X) —1][2x(T,1)—1]. (41)
7' ' 2~GQ

Because of this result, we see that if one can compute
the correlation between spin pairs in the absence of
external fields at all temperatures, it will be possible to
map out in detail the boundary of the two-phase region
which, as I'ig. 1 shows, lies off the zero-field locus.

The rigorous reduction Eq. (18) of triplet correlation
functions must of course be consistent with these
asymptotes. One may readily check that the asymptotic
result for each P&a& obtained from Eq. (40) with I=3,
and replacement of P'"+) and P'" ) with the appro-
priate product of x's and (1—x)'s, equals the expression
obtained by use of Eq. (41) in the right member of
Eq. (18).

In the case of spin quadruplets, though, the situation
is not entirely trivial. Although above T, the approxi-
mation Eq. (27) for p«& is qua, litatively correct, with a
subtractive constant chosen equal to 5, this is no longer
valid below T„since the right member of Eq. (27) fails
to exhibit the correct asymptote. It is however true that
Eq. (27) may be made formally exact for all nPy8 and
all positions 1234, by adding to (or subtracting from)
its right side a single function y:

P.p„«& (1234,) ) =P.pi»(12, ) )+P.,i & (13,) )
+P- "'(14))+Pp "'(231))
+Pps

"& (241) )+P.s"'(341) )
—Say(1234 )&.) (42)

the sign of y is positive or negative depending on
whether there are an even or an odd number of + 's in
the set rr&(Ip8. &a Above T„yvanishes as the positions 1234
are far removed from one another, but below T, one
finds in this limit:

y(1234, ) ) ~ 1+4x() )—12x(1)
+24[x(1)]'—24*()t)[*(1)]'

—8[x(1)]'+16x()&.)[x(1)]', (43)

(for simplicity the temperature argument of x has been
suppressed).

If the complete expression (42), rather than Eq. (27),
it utilized for p«&'s in fundamental Eq. (26), the
formally exact version of approximate Eq. (28) is

ay(231) ) = —w (12)P (13,X)—w (13)P (12,)&.)

+F(X)P(231K)—P w(1 j)y(123j,'n). (44)

"Qriginally, as in Eq. (4), the E(")'s were written with the
relevant p's as arguments. Now, however, for the sake of nota-
tional clarity and conceptual completeness, we utilize the
p ...„&")(r1 ~ r„,X) scheme, Eq. (5), indicating by subscript the
spin signs, and using site positions as arguments. No confusion
should be created.

"The fact that only a single defect function y serves to remove
the error oi the simple closure relation (27) stems from the
necessity of satisfying all p(4) normalization conditions (8); in
these conditions the defects must always cancel exactly between
pairs of p(4)'s (one having an even and the other an odd number
of + subscripts) to leave just a p&'& of form (I8).
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The approximate spin-pair correlation theory outlined
in the previous section for T& T, amounts to replace-
ment of y(1234,X) for all positions 1234 by its vanishing
asymptote. If, analogously, expression (43) is used
everywhere in place of y in Eq. (44), it is possible to
predict an approximate boundary for the two-phase
region. Once again, T, (the temperature at the "top" of
this region) will be implicitly given by solution to Eq.
(35). Unfortunately, it does not seem possible to obtain
x(T,X) without solving for the entire position depend-
ence of P(12,X) t in spite of result Eq. (41), which would
lead one to try to determine only the large-distance
asymptotej since the occurrence of F(X) in both
Eq. (19) and (44) necessitates finding values of f for
small separations. Nevertheless, we have been able to
display the pair of functional Eqs. (19) and (44) Lthe
latter using approximation (43)j which are capable of

reproducing at all temperatures the qualitative char-
acter of spin-pair correlations, as well as an approxima-
tion to the complete statistical thermodynamics of
zero-field classical lattice theories with arbitrary
ferromagnetic pair interaction.

VI.

In the notation of Sec. V, the fact which prevents
exact deduction of pair correlation functions is lack of
complete knowledge about y(1234,X). We now present
an interpolation scheme for y from which an approxi-
mation to this function may be deduced above T,. If
this approximation is used in Eq. (44), it should permit
more accurate calculation of P than is possible by the
less exacting approach of Sec. IV.

Consider the quotient (for T)T,):

p+++~&4&(1234,&)p~~ &'&(1234,X)P+ + ~'&(1234,),)P+ ~&4&(1234,X)
Q(1234,X)=

p ~+~~'& (1234,&)p~ ++~4& (1234,X)P~+ +"&(1234,'A)P+++ &'& (1234,X)
(45)

The numerator contains p&'&'s each with an even number
of + subscripts; the denominator contains only those
with an odd number.

Note that Q reduces to unity:
(a) if X=O, for in this limit, Eq. (7) shows

P ... '"&(12.. e,X=O) =P p &"&(12 n,X=O)

=P, »... „'"&(12 e,X=O),

and complete cancellation occurs between the factors
in numerator and denominator of Eq. (45);

(b) if any one of the sites 1234 is very much farther
from the other three than the range of i&(r), because a
reduction of numerator and denominator to a product
of p&'&'s occurs, and complete cancellation takes place
again; and also for an analogous reason if 1234 con-
stitute two widely separated pairs;

(c) at high temperature, where each p &i,
q'4& reduces

to a product of Boltzmann factors

exp) i&(ij )p;p, /k—T),
or

exp) —
i& (1j)X&M,ui, /k T),

for each of the six pairs in the set 1234;
(d) if the system is a linear array with only nearest-

neighbor interactions (the one-dimensional Ising
model), because then the p&4&'s are precisely equal to
the product of three p&'&'s corresponding to the sequence
of pairs along the line, and once again identical factors
cancel.

Below T., the quantity Q definitely deviates signifi-
cantly from unity. In fact, the p"& asymptotes that
follow from Eqs. (41)—(43) show that at these lower
temperatures, even if all four sites are far removed from
one another, Q is a rather complicated combination
of x's. For this expanded configuration, however, Q

smoothly reduces to unity as T approaches T, from
below, consistent with (b).

In view of exact conditions (a)—(d) on Q, it appears
convenient to set Q equal to unity for all configurations
of 1234, all X, and all temperatures greater than T„and
to regard the resulting expression as an interpolation
formula which implicitly determines the unknown
quantity y(1234,X). It also appears that the resulting
procedure, which may prove to be a valuable closure
relation in detailed numerical solution of the spin-pair
correlation equations, is the simplest one that may be
formulated to draw simultaneously on all four exact
relations (a)—(d).

It must. of course be acknowledged that Eq. (45),
with Q set equal to 1, may not have a unique solution;
it leads generally to a cubic equation in y whose coeS.-
cients involve sums of products of f's. But in connection
with (b), for example, one knows that the proper root
becomes zero as any one of the four sites recedes from
the other three. Inversely, it might be supposed that
the appropriate root for a given close grouping of four
sites is the one which steadily increases from zero as one
of these sites is brought up from infinity to the required
position.

It ma, y readily be established that the Q = 1 relation
implies that the rate of decay of y to zero as one of
1, 2, 3, or 4 recedes to infinity is of the same order as
the rate of decay of P evalua, ted for any of the increasing
pair distances. For this reason, inclusion of such a
function y in the P equations causes a shift in the
predicted temperature T, at which the exponential rate
of decay of f to zero with increasing distance vanishes.
For the cases in which exact temperatures T, are
available from other analyses (specifically the one- and
two-dimensional Ising models), approximate relation
(35) does not yield the correct T,. By implication, then,
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the exact y must. have the same sort of asymptotic
decay rate property as implied by Eq. (45) with Q=1.

Another indication of the comparable decay rates of

y and f is mentioned in Appendix 8, based upon the
predicted critical spin-pair correlations. In addition,
the "reduced" value of T„at, least for Ising models,
depends only on s according to Eq. (36), in spite of the
fact that pairs of lattices with the same s (two-dimen-
sional triangular and the simple cubic with s=6, or the
hexagonal close-pa, eked and the face-centered cubic
with s=-12) exhibit different T,'s. '4 The Q=1 closure
relation will begin to distinguish between members of
these pairs.

Observation (d) above indicates that this more
elaborate closure relation yields an exact one-
dimensional Ising theory, so T, predicted by Eq. (36)
is lowered from the finite value exhibited in Table I to
its proper value 0. The information available from other
analyses for T, in higher-dimensional lattices, at lea, st
with nearest-neighbor interactions, demonstrates that
the estimated T, found from Eq. (36) is always high.
The interpretation that may be assigned to the apparent
existence of long-range order at temperatures that are
too high, is that approximation (27) for p"'s tends to
correlate spin quadruplets too strongly. The effect of y,
if properly taken into account, is therefore to reduce
such correlation. In view of exactness in reducing such
correlation for the one-dimensional Ising model, it would
seem not unreasonable to guess that the corrected T,'s
computed on the basis of Eq. (45) are always nearer to
their true values than when the rougher closure relation
(27) is used.

Application of the Q=1 closure relation does not
appear exceptionally easy in practice. Specifically, we
have not yet been able to deduce an explicit relation for
the resulting T, in terms of the interaction potential v,

analogous to the simple expression (35).
It seems desirable, then, as a future investigation,

either to seek partial justification of the Q=1 assump-
tion by a Monte Carlo calculation, or to replace it by a
suitable alterna tive. In the former case, it would
probably be wise to examine the two-dimensional Ising
model, with X= 1, for a, configuration having sites 1, 2, 3,
and 4 all close to one another, since just above T, this
should provide the most severe test of the proposed
closure relation.

APPENDIX A

0~(12~&)= —w(12)F(X) exp—
0

F(~')D.'

—0'(12)1'(12,'A). (A3)

Digerentiate Eq. (A2) once with respect to X, then
insert Eq. (A3) to obtain:

0'g(12/X)/N, '—0'(12)g(12,X) = W(12)X)1 (A4)
where

W(12,X)= 2w(12)F (X) exp—
el 0

FP,')dh' .

The independent solutions to the homogeneous equation
corresponding to Eq. (A4) may be taken as (0(12)&0):

sinh[0(12)X], cosh(0(12)X].

By means of these functions, it is possible to construct
the general solution to inhomogeneous Eq. (A4) by
sta,ndard techniques":

P(12,X) = sinh[0(12)X] ~ f(12)+-
0(12)

&& d)" cosh[0(12)X']W(12,7'')

+cosh[0(12)X] g(12)—
0(12)

X dX' sinh[0(12, X')]W(12,&'), (A6)

f and g are arbitrary functions of relative configuration
r», but are independent of X.

Since 1', and hence p, must vanish when X=0, we may
immediately set g=0 for all r». If the full expression
for W is inserted into the correspondingly shortened 1'
expression the final form for P is easily verified to be

1'(12,X) = exp
0

F(X')dX' sinh[0(12)),]f(12)

2w(12)
dX' sinh[0(12) (X—X')]F(X')

0(12) o

The pair Fq. (30) is equivalent to

01'(12,X)= —w(12) exp — F(X')dl ' —g(12~1), (A2)
8X 0

Simultaneous Eqs. (30) may immediately be sim-
plified by introduction of a suitable integrating factor;
let

Xexp FP ")dX" (A7)

(P,g) =- g,g) exp— F(X')A' .
The function f, as yet arbitrary, is determined by
Eq. (33). Equation (32) differs from Eq. (A7) only by
a partial integration.

"Reference 6, p. 287. Reference 4, p. 346.
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APPENDIX 8

For relative pair distances r~~ greater than the range
of interaction s(r), 8(12) is constant (we denote this
limit simply by 8), and result Eq. (32) for P(12,X)
shows that at these separations, it is essentially the
behavior of f(12) that determines the rate of decay, or
the persistence, of spin-pair correlations in the lattice.
Equation (33), which determines f, may be slightly
modified to read

where the linear difference operator 0 is defined

explicitly to be

sinho
X(k)= — P t (r') cos(k. r') —8 cosh8. (87)

kT ~'&o

In this result, we have used reflection symmetry of n(r')
to convert complex exponentials to cosines.

For a lattice of macroscopic extent, the k vectors
form a very dense set confined to the first Brillouin
zone z."For this reason it is permissible to convert the
k summation in Eq. (86) to an integral. Inserting
Eq. (87), one finds:

0 f(ris)=—
sinho

P tt(r„)f(r„)—8cosh8f(r„), (82)
rI3&0

G(r)=- dk exp(ik r)
T

and the inhomogeneous "source" function / differs from
It in Eq. (33) only to the extent that the r»-independent
limit 8 appears in Eq. (82), as well as a sum over till

lattice sites exclusive of the origin, r~3=0, whereas in

Eq. (33), two sites were exempted from summation.
Both / and h vanish identically beyond twice the range
of s.

The desired solution f may formally be written

f(r )= Xi(r )G(r ),

where G is the Green's function for the operation 0.
6 satisfies the relations

0 G(r)=8(r),

lim G(r) =0 (T)T,);
fr [-+oo

5(r) is the Kronecker delta function for the lattice,
vanishing everywhere but at the origin, where its value
is unity.

If the lattice consists of a total of S sites subject to
periodic boundary conditions, the normalized eigen-
functions of 0 are just plane waves:

in which the vectors k are chosen to satisfy the requisite
boundary periodicity.

It is well known" that G may be formally expressed
as a bilinear sum involving the entire set of y~'s:

G(rs —ri) = P pi*(rs) pi, (ri)/X(k).

sinh8
P v(r') cos(k. r') —8 cosh8

i

ItT ~ &o

Q'hen the temperature T is very high, the integrand's
denominator in Eq. (BS) varies fractionally very little
from the value 0 over the entire zone v-. Under this
condition, techniques exist" for demonstrating that
G(r) decays to zero with increasing

~
r~ no less rapidly

than exponentially. The corresponding large-
~
r, s

~

form of f, given by Eq. (83), will generally exhibit
non-negligible angular variation for di6erent directions
of r~2 relative to the fundamental lattice directions.

As T is lowered, the first term in the denominator of
Eq. (BS) provides variation over r which becomes more
and more pronounced. In the case of ordinary ferro-
magnetic coupling, the quantity

—Q v(r') cos(k r')
r')0

has a maximum value within r which is greater than
zero, and which occurs at the origin of k space. The
ferromagnetic Curie point, T,, is that temperature at
which the denominator of Eq. (BS) first displays a zero
(it of course occurs at k=0), and therefore it is the
temperature at which the integrand becomes singular.
This T, is precisely given by Eq. (35).

For nearest-neighbor interactions (Ising model) the
Green's function G(r) is well-known quantity. ""Even
for a more general ferromagnetic e, though, it is possible
to examine the large-r decay property of G(r) at T,
using slight generalization of a technique that has been
used for the nearest neighbor case."@le quote only the
result (valid at T, and asymptotically for large ~r~&

and assuming for concreteness that the lattice is three

If the plane wave expression (85) for pi is operated on

by the specific operator form Eq. (82), X(k) is found

' P. M. Morse and H. Feshbach, methods of Theore&ca/ Physics
(McGraw-Hill Book Company, Inc. , New York, 1953), Vol. I,
p. 884.

~7 For the simple cubic lattice it will be recalled that v. is:
m'&k k1f k &+m' E. W. Montroll and R. B. Potts, Phys. Rev. 102, 72 (1956)."E. W. Montroll, Proceedings of the Third Berkeley Synsposinns

ort Mathematical Statistics and Probability (University of California
Press, Berkeley, California, 1956), p. 237.

20 E. W. Montroll, J. Soc. Indust. Appl. Math. 4, 241 (1956)."Reference 19, Appendix III.
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dimensional):
4x'kT,

(810)

in which 8,=8(T,), a,nd t is related to r by a, suitable
scaling of each of the latter's components:

r= xu—,+yu, +su„

+ —g (s')'v(r') su„. (811)
r'&0

the u's are unit vectors along arbitrarily chosen
Cartesia, n axes. If the intera, ction v(r) is isotropic to the
extent that each of its second moments appearing as
scaling factors in t are identical, then G(r) is asymp-
totically proportional just to inverse distance

~

r
~

', and
so is isotropic itself in this limit. If v(r) has finite range,
so that the inhomogeneous function / in Eq. (83) has
also finite range, one may conclude from Eq. (83) that
the spin-pair correlations at T, (but not at higher
temperatures) are asymptotically isotropic. If the
second moments are not identical, the asymptotic
nature of G at T„and of the spin-pair correlations, will

be given by Eq. (810), and the angular dependence
of t, from Eq. (811).

Although our conclusions about development of
asymptotically isotropic correlations (for certain v's)

as T decreases to T, are probably true, in spite of the
approximate analysis used to establish them, there are
strong indications that the simple inverse distance
asymptote is not quite correct, but that decay should
follow a, larger inverse power of ~r~." To render the

s' F. H. Stillinger and H. L. Frisch, Physics 27, 751 (1961).

critical point theory correct requires a function
y(1234,X) with the rate of decay (as one of the four sites
recedes) comparable to the pair correlations themselves,
as mentioned in Sec. VI. %e are unable to answer as yet
the delicate question of whether closure relation Eq.
(45) can at T, lead to a greater inverse power of distance
for spin-pair correlations.

For the case of antiferromagnetic coupling, which
tends to force nearest neighbors to be unlike pairs, the
integrand of Eq. (88) develops simultaneous singu-
larities at the vertices of 7, rather than at its center.
G(r) and the spin-pair correlations are found to vary in
sign from site to site, consistent with long-range anti-
ferromagnetic ordering below the characteristic Neel
temperature.

Finally, brief mention should be made of the possible
appearance of singularities in the integrand of Eq. (88),
as T decreases, at points neither at the center nor
boundary of v.. By virtue of the arbitrary nature of v,

it seems easily possible to ensure such behavior, since
it is necessary only to select a form of the discrete
Fourier transform (89) with maxima at these inter-
mediate points, then invert the transform to yield the
corresponding suitable v. The long-range order of the
low-temperature phase produced by such an interaction,
if the maxima of Eq. (89) were fairly close to k=0,
would have predominantly similar spins on nearest-
neighbor sites, but at large distances, opposite spin
pairs would be most probable. The over-all appearance
of such a phase would be that of a "crystal" of alter-
nating regions of + and —spins, the period of which
is not necessarily commensurate with that of the
lattice sites.


