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Duality relations for the Gaussian core model
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On account of self-similarity of the Gaussian function under Fourier transformation, the lat-

tice energy of the Gaussian core model at absolute-zero temperature exhibits duality relations,
In the cases of one and two dimensions the duality involves high- and low-density pairs for the
single stable lattice structure. In three dimensions lattice energies for the two stable crystal
forms (fcc at low density, bcc at high density) are paired. The results demonstrate that lattice

energy loses its dependence on structure in the high-density limit, and they suggest (but do not
prove) an asymptotic scaling for melting and freezing temperatures in the same limit ~

I. INTRODUCTION II. ONE DIMENSION

The "Gaussian core model" consists of a set of
point particles which interact in pairs by repelling
Gaussian potentials. The total potential energy 4 for
a collection of Ã such particles thus has the form

N

C(r, , . . . , r~) = $ exp( —rJ),
. I'(J

upon selecting natural units for energy and length.
Within the regime of classical statistical mechanics

this model may be a useful tool for the study of
fluid-solid phase transitions. Both analytical stu-
dies" and computer simulation' have been employed
to establish the behavior of the Gaussian core model.
The present paper broadens the scope of the subject
by deriving a set of duality relations for the model,
one for each value of the space dimension D =1, 2,
and 3.

The duality relations are basically elementary, and
stem in an obvious way from self-similarity of the
Gaussian function under Fourier transformation.
However, some conclusions that can be drawn from
them are not quite obvious.

It is the values of 4 in the zero-temperature limit
that the duality relations involve. In particular they
link high density to low density.

The present situation is analogous to that of the
two-dimensional Ising model for which Kramers and
Wannier also derived a duality relation. 4 But in that
much earlier work the density is fixed (half-filled lat-
tice) and a pair of temperatures, one high and one
low, were shown to be related. To the extent that
the Kramers-Wannier work may have stimulated
Onsager's exact solution to the Ising model, ' it may
be important to display the present results in the
hope that the future will reveal an analogous advance
for the Gaussian core model.

By focusing attention on the potential energy per
particle, we can eliminate boundary effects by passing
to the infinite system limit (with density p held
fixed). In this limit the one-dimensional system will
achieve its lowest potential energy when the repelling
particles are equally spaced along the line. Although
no phase transition is involved in cooling from high
temperature, this one-dimensional "crystal" neverthe-
less is the configuration adopted by the system at ab-
solute zero of temperature.

Let

a =1/p, (2.1)

be the nearest-neighbor spacing in the regular one-
dimensional array. Then defining

lt(a) = I + lim (24//ti'),
N ~oo

(2.2)

we obviously have

+oo

I, (a) = $ exp( —j'a') . (2.3)

p(s) = $ 5(s —ja) . (2.5)

Owing to the fact that p(s) is periodic over length a
it is natural to represent this function as a Fourier
series

p(s) = Xf(k) exp(iks), (2.6)

It will be convenient to re~rite this sum in the trivial-
ly equivalent way

p +oo

lt(a) = J ds p(s) exp( —s'), (2.4)

where p(s) is the discrete density function for the
linear array
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III. TWO DIMENSIONS

k =2rrn/a (n =0, +1, +2, . . . , ) . (2.7)

g(s —so) = (u/vr)'i exp[ —u(s —so) ], (2.8)

with the understanding that o. ~ at an appropriate
stage in the calculation. With this provision one has

f(k) = exp( —k2/4u) /a . (2.9)

In order to assure proper convergence of the expres-
sions encountered it is prudent to replace each 5
function in Eq. (2.5) temporarily by a narrow normal-
ized Gaussian

2/ (3 1/2 a 2) (3.1)

As was the case for D =1, we shall be concerned
with twice the limiting interaction energy per particle
plus unity, now to be denoted by I2,

When its particles are confined to the plane, the
Gaussian core model achieves its minimum potential
energy in the regular triangular lattice. This structure
surrounds each particle with six others at a common
nearest neighbor distance a. The relationship of this
distance to the density p is given by

Substitute Eq. (2.6) into Eq. . (2.4) to obtain

1t(a) = g f(k) J» ds exp( —s2+ iks)
k

= m'i2 Xf(k) exp( —k'/4) .
k

(2.10)

I2(a) =1+ lim (24/N)

= JI d s p(s) exp( —s') .

p(s) is the discrete density function for the two-
dimensional crystal under consideration

(3.2)

Next utilize expression (2.9) in the u ~ limit

-k'( +1)I, (a) = — lim Xexp
Q @~OO 4n

/ —/c

Xexp
a I, 4

(2.11)

The remaining sum over k has the same form as that
appearing in Eq. (2.3), the definition of 1~. Howev-
er, a in that previous equation has now been replaced
by n/a. We conclude

p(s) = lim p(s, u),
+~OO

p(s, n) = (u/rr) /exp[ —n(s —s,)'] .
J

Here j indexes particles in the crystal, and the s&

denote their respective positions.
The doubly periodic function p(s, u) may be

represented as a Fourier sum

p(s, n) = g f(k) exp(ik s)

(3.3)

{3.4)

I,(a) = (rr'i'/a)1)(n/a) . (2.12)

Equation (2.12) is the one-dimensional duality rela-
tion. It links the lattice energies at two different den-
sities (provided a & m'i'). At high density (small a)
the sum in Eq. (2.3) converges slowly, but Eq. (2.12)
immediately offers an alternative evaluation in terms
of the rapidly converging sum for-low density. In
this way we use Eq. (2.12) to derive the following
high-density asymptotic expression for I~.'

1~(a)—(m' /a)[1+2exp( —vr2/a~) + ]. (2.13)

1&(a) = (m'' /a)~ exp [F,[ln(a/n' )]] (2.14)

where I', is an arbitrary even function.

The leading term here is the estimate that would be
made on the basis of uniform relative distribution of
'particles, i.e., p(s) replaced by p. We see that
correction terms to this estimate go to zero exponen-
tially as a 0.

It is elementary to show that the most general farn-
ily of functions satisfying Eq. (2.12) for real positive
a is given by the formula

where the k 's are 2~ times the vectors from the re-
ciprocal lattice. By employing the standard construc-
tion for the reciprocal lattice, one finds that the k's
also form a regular triangular lattice (although rotated
by 6 m radians). The nearest-neighbor distance in

this k lattice is 4n/(3' 'a).
Upon multiplying both sides of Eq. (3.4) by

exp( —i k s) and integrating over a unit cell, one
finds

f(k) = pexp( —k'/4u)

Therefore one has, from Eqs. (3.4) and (3.5),

12(a) = lim d s p(s, u) exp( —s )

(3.5)

1

2 1T 2S'
]i2 23 0 3 0

t

Just as was the case with I~, this two-dimensional du-
ality relation links lattice energies at high and at low

(3.7)

= n p Xexp( —k2/4) (3.6)
k

The last summation is just the type which defines I2
itself, but with lattice spacing 2m/(3'i'a). This leads to
the two-dimensional duality relation
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0 & p~ 1/m (3.8)

densities. Evidently it is necessary only to compute
I2 directly in the density range

rather than values for the same crystal structure at
different densities.

We shall start with the body-centered-cubic direct
lattice for which

since Eq. (3.7) provides values for the remaining
densities. As a 0(p ~), Eq. (3.7) leads to the
following asymptotic behavior:

1

l~(a) — —1 +6 exp +, (3.9)2' -4m. 2

3 1/2a 2 a

lb (a) = lim Jtd s pb (s, n) exp( —s')
~~oo

' 3/2

pb (s, u) = — Xexpl —u(s —sj)']
VT J

(4.3)

where once again the leading term represents. the uni-
form density estimate of the interaction

The s& are the particle positions in this lattice. The
Fourier series for the periodic function pb (s, n) is
analogous to the previous case in Eq. (3.4)

J p exp( —s2) d s = 2m/(3' ~a2) (3.10)
pb (s, n) = g fb (k) exp(i k s)

The general family of functions which satisfies duali-

ty relation (3.7) for real positive a is fb„(k) = pexp( —k2/4n)
(4.4)

2ml2(a) =
3 a

' 1/2
1/2 2

exp F, ln

where as before F, is an arbitrary even function.

where the set of k's forms a face-centered-cubic lat-
tice with nearest-neighbor spacing 6'/2n/a

By substituting Eqs. (4.4) into the first of Eq. (4.3)
we find

IV. THREE DIMENSIONS

lb (a) =n'/'p Xexp( —k'/4) (4.5)

Numerical evaluation of lattice sums for D =3
shows that at zero temperature the Gaussian core
model exhibits two different crystal forms. ' When
the density p is low the stable structure is face-
centered cubic, while at high density the body-
centered structure prevails. The transformation
between these forms is thermodynamically first ord-
er, with discontinuities in volume and in energy. In
the zero-temperature limit, the density region of
phase coexistence was previously found to be'

0.17941 «p «0.17977 (4.1)

by use of the Maxwell double-tangent construction
on plots of 4/N vs 1/p. The density at which homo-
geneous face-centered-cubic and body-centered-cubic
crystals have the same lattice energy was found to oc-
cur near the middle of the coexistence range.

'

The relation between p and the nearest-neighbor
distance a is not the same for the two lattices.
Specifically one has

(fcc) p=2' /a

(bcc) p=3 / /(4a )
(4.2)

In the one- and two-dimensional cases, the direct lat-
tice and the reciprocal lattice were the same species
(though with different spacings). However, this is
not so in three dimensions. The face-centered-cubic-
direct lattice has a reciprocal lattice that is body-
centered cubic, and vice versa. As a consequence the
duality relation for D =3 will link values of lattice
energy for one crystal structure to those of the other,

3 I /2 rr 1/2/2 2/3 (4.7)

The fcc lattice distance serving as the argument of If~
in Eq. (4.6), implied by Eq. (4.7), is

31/2~/(21/2a ) 21/6~1/2 (4.8)

Reference to expressions (4.2) establishes that both
of these lattice spacings correspond to the same den-
sity

p = m' =0.179 587 122 1.. . , (4.9)

which thus must be the density of equal lattice ener-
gies, and which indeed falls in the middle of the pre-
viously identified coexistence range (4.1).

V. DISCUSSION

The three-dimensional duality relation (4.6) can be
used to establish separate high-density asymptotes for

Upon identifying the sum in terms of If~ we finally
have

lb (a) = [(3m) / /4a3) lr~(3'/2m/2'/ a) . (4.6)

This is the only duality relation that can be obtained
for D =3; by starting alternatively with the face-
centered-cubic direct lattice and following the analo-
gous procedure the same result (4.6) emerges.

Equation (4.6) can be used to locate precisely the
density at which the two crystal structures have ident-
ical lattice energies. Note that the factor in square
brackets in Eq. (4.6) reduces to unity when the bcc
lattice distance has the value
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Ib and If . The results are the following
(a 0 p ~):

1

(3 )'n 1+12,„p
-3 '

+
4a' 2a~

using the same method as before one easily estab-
lishes .that

l~(a) = (m' /a )1~(rr/a) (5.4)

From this the high-density limiting behavior readily
follows:

—= rr~ ~
p [1 + 12 exp ( 2'/~~~P xi~) +. . . ] (5 1) l„(~)—~3/2 —n21+6exp +

a Q

21/2~3/2
Ir„(a)—

—3'2

1+8exp + ~ ~ ~

20 p[1 +6 exp( —rr p
& ) + ~ ~ ~ ] (5 5)

—3m' '/'
=- '/'p I+Sexp ' +

24/~
(5.2)

As was the case with the analogous results (2.13) and
(3.9) for D =1 and D =2, only exponentially vanish-

ing corrections appear to the uniform density esti-
mate for lattice energy

JI p exp( —s') d s = m'~'p . (5.3)

These results strongly support the contention' that in
the high-density limit 4 becomes insensitive to de-
tails of particle arrangement.

This last concept can be supported by considering
the simple-cubic arrangement of particles in the
Gaussian core model. Although this is not a stable
crystal structure it does have the advantage of being
self-dual, i.e. , the dual lattice is also simple cubic. By

T, TI ~exp( —Kp ) (5.6)

The corresponding result in two dimensions would be

T, Tf ~ exp( —K' p) (5.7)

Evaluation of this simplistic hypothesis must await
more powerful analysis.

exhibiting once more an exponential approach to the
random distribution form.

This common behavior is suggestive of how the
melting and freezing temperatures for the Gaussian
core model may behave in the high-density limit. If
indeed all relevant configurations for both crystal and
fluid phases differed in energy only by an amount
proportional to exp( —K p'~~) in the high-density re-
gime, where K is an appropriate constant, then we
would expect this to control the behavior of the melt-
ing and freezing temperatures as p
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