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A family of "polarization models" has been generated for description of polarizable and deformable 
molecules in condensed phases. Within these models the intermolecular forces are not pairwise additive. 
but have a many-body component that generalizes the polarization interactions present in conventional 
electrostatics. It is shown that the classical dynamical equations have a rather compact form. in spite of 
the many-body interactions. Novel molecular distribution functions are introduced in terms of which the 
usual formulas of statistical thermodynamics can be expressed. Finally, the static dielectric constant is 
discussed for the polarization models, and it is related to fluctuating local moments in the system. 

I. INTRODUCTION 

In the interests of conceptual and computational sim­
plic ity , it has often been advantageous to treat liquids 
composed of polyatomic substances as though the constit­
uent molecules were rigid bodies engaging in pairwise 
interactions. Water provides an important example of 
this strategy.1 It is generally accepted that these s im­
plifications still permit local intermolecular structure 
and thermodynamic properties to be reasonably well de­
scribed for water. Likewise, its kinetic behavior is 
predicted with acceptable accuracy. In addition, the 
phase transitions likely are not grossly affected by the 
rigid molecule and pairwise additivity assumptions. 
Other substances (e. g., HF, CClt , benzene, Br2) can 
probably be Similarly treated with similar success. 

Nevertheless, there are important phenomena with 
which such Simplified statistical models cannot ade­
quately cope. ObViously, vibrational spectroscopy (in­
frared and Raman) remains essentially unexplained, 
though it certainly probes condensed-phase interactions. 
Furthermore, dielectric behavior of the liquid medium 
cannot properly be described since electronic polariza­
tion (a manifestly many-molecule effect) is absent. The 
distortion of solvent molecules in contact with dissolved 
ions is also an important phenomenon that must be over­
looked. Finally, diSCUSSion of dissociation in polar 
media to produce solvated protons, and of proton trans­
fer kinetics and reactions in those media, is ruled out. 

In order to rectify some of these shortcomings, a 
class of "polarization models" has recently been intro­
duced. Specific applications both to water2 and to hydro­
gen fluoride3 have been examined. The early indications 
are sufficiently favorable that we can look forward to 
further applications as well, at least encompassing solu­
tions of monatomic ions in several polar solvents. 

Presence of many-body polarization interactions in 
the polarization models fundamentally alters the formats 
both of the classiCal equations of motion necessary to 
describe molecular dynamiCS, and of the statistical 
mechanics necessary to characterize ensemble behavior. 
It is the purpose of this paper to provide both. In par­
ticular, we expect that results obtained here will be 
useful for molecular dynamics simulation studies, by 
computer, of gas-phase cluster reactions and of con­
densed-phase phenomena. 

In the following (Sec. II), we define the general polar­
ization model and derive the form of its classical dy­
namical equations. This is 'followed in Sec. III by con­
sideration of the virial theorem. Section IV introduces 
novel particle distribution functions necessary to relate 
thermodynamiC properties to local order, and shows ex­
plicit formulas that should be used for that purpose. Di­
electric properties are discussed in Sec. V. Section 
VI provides concluding remarks. 

II. CLASSICAL DYNAMICS 

The polarization model specifies the ground state po­
tential energy cJ> for a collection of atoms l' .. N at ar­
bitrary positions r 1 •.. r H • These atoms may be of 
several species; each species exhibits a characteristic 
charge (oxidation state) qJ and a scalar polarizability ClJ • 

The function cJ>(rl " . rN ) consists of two parts: 

cJ>=cJ>I+cJ>II' (2.1) 

The first part is a sum of radial atom-pair potentials 

N 

cJ>I = L c/>1J(rlJ) ' (2.2) 
1< i=l 

where each species pair possesses its own character­
istic c/> that includes the Coulombic charge-charge in­
teraction. The second part is a many-body "polariza­
tion" interaction 

(2.3) 

that depends upon the dipole moments Il' which have 
been induced in atoms indexed by 1. The factor 1 - L, 
accounts for the spatial extension of the electron cloud 
surrounding atom 1; were it not for this factor, cJ>II 
would be a standard electrostatic interaction for point 
charges and induced point dipoles. 

The induced atomic moments III are determined by 
the charges and moments on the other atoms through 
linear relations of the form 

(2.4) 

where 
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'"" T,m' Ilm [1 K ( )] + O! I L.J 3 - I r'm , 
m(~I) r,m 

(2.5) 

The factors 1 -K, once again are included to account 
for the spatial extension of the electron cloud surround­
ing atom 1, and in their absence Eq. (2.5) would have 
exactly the form specified by classical electrostatics. 

On general grounds, we expect each of the modifica­
tion factors 1-K, and 1- L, to vanish at least cubically 
with distance at the origin.2 By convention, q; and each 
of its components will vanish when all atoms recede 
from one another to infinity. 

Equations (2. 4) demand that each of the linear func­
tions R, of the moments Ill" • IlN vanishes when those 
moments have their proper "physical" values. Conse­
quently, .the potential energy q; will be unchanged if we 
add to it an arbitrary linear combination of the compo­
nents of the R ,• Therefore, we introduce a set of vec­
tors v, (l = 1 ... N) and consider the quantity 

N 

\}t =q; +~ L O!jl V, • R, . 
1.1 

(2.6) 

From what has just been said, \}t reduces to q; when the 
physical values of Ill'" IlN are inserted into Eq. (2.6). 

It is now possible to require that the first variations 
of \}t with respect to the III vanish for the physical set 
Ill' •• IlN: 

(2.7) 

This requirement leads to the following set of vector 
equations: 

(2.8) 

where 

'"" T,m' Vm [1 K ( )] + O!, L.J 3 - m r'm . 
"(*') r'm 

(2.9) 

The comparison between these last two equations for the 
v" and prior Eqs. (2.4) and (2.5) for the Il" reveals 
an obvious similarity. Indeed, they are distinguishable 
only by virtue of the way that they incorporate the elec­
tron cloud factors. 

We can now proceed to calculate the force F j acting 
on particle i for use in the Newtonian dynamical equa­
tions 

F j = m j (d 2rJdt 2
) • 

We have 

F j =-'i7j q;=-.'i7j \}t , 

so that 

F j =- a\}t -L~' ~ ar
j 

_ all_ ar j 

(2. 10) 

(2.11) 

(2.12) 

The variational constraints ensure that the second set 
of terms in this last expression will vaniSh, so we sim­
ply have 

fl\}t 
F j =--. flr i 

(2.13) 

Fortunately, then, no need exists to compute variations 
of the moments Ilk with respect to spatial displacements 
of the particles, which would have been a severely com­
plicating feature. 

Upon carrying out the derivative indicated in Eq. 
(2.13), one finds that the force Fi has the following 
character: 

Fi = L (Fl~) + F:~Q) + FljQ) + F/j"») • (2.14) 
J( ~j) 

The first of these contributions is the direct central 
force, ariSing from q; i' that particle j exerts on particle 
i: 

(2.15) 

The remaining contributions arise from the polarization 
interaction q;w and have the following forms: 

F\".)=_.!:._fl_{(llt' rfj)qj [l-L (r )] 
.J 2 flr. r 3

J
. J Jj • • 

+ (Ilj . rj t)qt [1 _ L (r. )]} 
r3 I.J, 

jJ 
(2.16) 

F(Vq) = _.!:.~{(VJ' rfj)qj [l-K (r .)] 
if 2 flr r3 J " I Jj 

(Vi' rlf) [1 K (r )]} + r3 - j IJ , 
iJ 

(2.17) 

F(V,,)=_.!:._fl_{Vt'T~'lli[l_K(r )] 
if 2 flr l r Jl J JI 

+ (v;' Tjt' Ilt) [1 K (r )]} 
r 3 - I iJ • 

iJ 
(2.18) 

Recall that the spatial derivatives are carried out with 
fixed Il'S and v's. 

It is noteworthy that the entire set of forces acting on 
particle i [shown in Eq. (2.14)] may formally be asso­
ciated with specific pairs ij. However, the occurrences 
of the Il'S and v's in the polarization forces Fljq" Fl?), 
and Flj") renders these three types nonsimple in the 
sense that they cannot be strictly resolved into pairwise 
additive contributions. 

ExpreSSions (2. 14)-(2.18) suffice to construct numer­
ical solutions for Newton's equations (2.10), thereby 
permitting molecular dynamics simulation of the polar­
ization model by digital computer. 

III. VI RIAL THEOREM 

We now examine the implication of the preceding force 
calculation for the virial theorem of Clausius.4 In the 
present context, this theorem may be written as follows 5

: 

1 N 
PV=NkB T+-

3 
L(r j • F I ). (3.1) 
101 

Here, P is the pressure in the system, V is its volume, 
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kB is Boltzmann's constant, and T is the absolute tem­
perature. The averaging denoted in Eq. (3.1) by ( ... ) 
stands for an average over long-time behavior of an 
isolated quasiergodic single system (microcanonical 
ensemble), or equally well over a thermostatted collec­
tion of equivalently prepared systems (canonical ensem­
ble). 

The leading term in the right member of Eq. (3.1) is 
obviously the ideal gas pressure attributable to N inde­
pendent particles in volume V. In the case of HF or 
H20, forces are present in the polarization model that 
will cause spontaneous self-assembly of intact mole­
cules. This will be the case even at large system vol­
umes where the resulting molecular aggregates would 
form a dilute gas. In this circumstance, the system 
may well behave as an ideal gas composed not of N par­
ticles, but of ~N (for HF) or tN (for H20). The vi rial 
of intramolecular forces evidently induces this shift. 6 

In view of the result (2.14) for Flo we can write 

1 N 
PV=NkB T--

3 
1: (rlJ' F ij ) , 
I<j.l 

where 

rlJ =rj -rl , 

Flj=FW+Fljq)+FI~q)+FI?) , 

and where we have recognized that 

FiJ = - Fjl . 

(3.2) 

(3.3) 

(3.4) 

It will be convenient to combine all equivalent terms 
in the sum in Eq. (3. 2). For this purpose, we can let 
(J and T stand for species indices. The total number N 
of particles is thus composed of species numbers 

(3.5) 

The virial equation of state (3.2) thereupon reduces to 

P V = NkB T - ~ 1: N,,(NT - 6aT)(r12 · F 12)t1T • 
a.T 

(3.6) 

The subscripted brackets ( ..• )t1T serve as a reminder 
that particles named for convenience 1 and 2 are pre­
sumed to have species (J and T, respectively. 

Although Eq. (3.6) has the same outward appearance 
as it would for a conventional mixture with pairwise 
additive central forces, we must continue to keep in 
mind that now F12 includes the effect of many-body po­
larization interactions. 

IV. DISTRIBUTION FUNCTIONS 

The form derived for the virial theorem within the 
polarization model context [Eq. (3.6)] suggests that it 
would be helpful and instructive to introduce a new set 
of particle distribution functions. These distribution 
functions describe the local geometric and polarization 
structure in the system. 

Within the regime of classical canonical ensemble 
theory, the configurational probability for the N-particle 
system is given by 

Z-l exp( - <J>lkB T) , (4.1) 

where Z is the configurational integral 

Z= f dr1 ···j drNexp(-<J>lkBT)· (4.2) 

By integration, this configurational probability can be 
contracted to a set of distribution functions pt.:.) . .., that 
give the jOint probabilities for simultaneous occurrence 
of particles with specified species ((J ••• w) at specified 
pOSitions (rl ... f n ), with specified moments (fJ.l ..• J.Ln) 
and quasimoments (Ill' •. lin). In particular, we have 

Pa~! . ..,(rl,J.Lhlll··· rn,fJ.n,lIrr)=(Ca ••• "';Z)j drn+1 ···j drN 

n 

xexp[ -<J>(rl '" rN)/kB T] II 6(fJ.; - fJ.1)6(1I; -III), 
1.1 (4.3) 

in this expression, fJ./ and V; are vectors determined by 
Eqs. (2.4) and (2.8) for particle positions r l ••• r N , and 
Ca ••• .., is the number of distinct ways that the N available 
particles can be distributed over positions fl" • r" in a 
manner consistent with the respective species (J ••• w. 
This combinatorial factor will have the form 

Ca ••• .., = II (Nt! In l !), 
l 

n= 1: nl , 
l 

(4.4) 

where among the n species labels (J' •• w, we suppose 
that species ~ occurs precisely nt times. 

Conventional distribution functions p~~! • .., for particle 
positions 7 can be obtained from the p~~! . .., by integrating 
the latter over the vector variables fJ.l ••• lin: 

p~~! • ..,(rl ••• fn) = j dfJ.l ••• j dllnP~?! • ..,(rl··· II,,). (4.5) 

USing the newly introduced distribution functions for 
n = 2, the virial equation of state (3. 6) may be put into 
an alternative form; 

xj dfJ.2f dl'2 r lZ' FlZP~~)(rl'" liZ)' (4.6) 

Evidently, the pressure is affected by many-body inter­
actions in the system insofar as they affect the particle 
pair distribution functions, as well as F 12 • 

The same situation surrounds the thermodynamic en­
ergy E. Starting from expressions (2.1)-(2.3) for <J>, 
one easily derives the following: 

Since the "effective" pair interaction lfit1T does not depend 
on quasimoments 111 and liz, these variables may imme­
diately be integrated in Eq. (4.7). 
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We note in passing that in the conventional infinite sys­
tem limit the particle distribution functions also yield 
expressions for the isothermal compressibility. 7 It has 
been pointed out before8 that the distribution functions 
contain information sufficient to determine the degree of 
molecular dissociation. 

V. DIELECTRIC PROPERTIES 

Because the polarization model permits dissociation 
of molecules into ionic fragments, the system in princi­
ple will be electrically conducting at any nonzero tem­
perature. The response of the system to an externally 
supplied electric field perturbation then would have to 
be described by a complex dielectric function even in 
the zero frequency limit. However, in many cases, it 
is appropriate to inquire about the purely real dielec­
tric response of an undissociated collection of polar 
molecules. In fact, that will be our viewpoint now. 
Either the temperature and density conditions will be 
such that dissociation is negligible from the outset, or 
else we can mathematically restrict attention just to that 
region of configuration space which exhibits fully intact 
molecules. 

The external electric field applied to the molecular 
system will be created by a set of suitably arranged 
point charges. The precise nature of these charges is 
irrelevant; since they lie well outside the system, the 
1 -K, and 1 - L, factors that occur in the polarization 
model for their interaction with the system particles 
will all have reduced to unity, to yield standard electro­
static behavior. 

One of the major advances in understanding polar di­
electrics was due to Kirkwood,9 who first elucidated the 
role of local molecular orientational correlations. How­
ever, Kirkwood's treatment of molecular polarizability 
was improper, as Harris and Alder have pointed out.10 

In fact, the simultaneous incorporation of static mo­
ments, electronic polarization, and nuclear deformation 
is a tricky matter which the polarization model may help 
to clarify. 

In order to examine the static dielectric behavior of 
the polarization model, we shall assume for simplicity 
that only one type of molecule is present. Generaliza­
tion to mixtures is conceptually straightforward. We 
suppose that the system constitutes a macroscopic 
sphere located in a vacuum region which, when it was 
empty, possessed a constant electric field Eo. With the 
dielectric sphere in place, the macroscopic electric 
field within that sphere is related to Eo and the static 
dielectric constant E by 

E= C!2)Eo . (5.1) 

This field and E are also related to the polarization den­
sity P by the familiar formula 

(5.2) 

Connection between these macroscopic relations and 
the microscopic structure in the molecular system is 
established through the fluctuating system total moment 

M. On the one hand, 

P =(M)/V, (5.3) 

where V is the volume of the spherical sample, while on 
the other hand, (M) can in principle be calculated from 
the general prinCiples of statistical mechanics. If e is 
a unit vector in the direction of Eo, we can write 

(
E -1) 411 
E+ 2 Eo = 3 V (M . e) . (5.4) 

The moment M depends both on aU nuclear coordi­
nates (to be denoted collectively by x) and on Eo. We 
can write 

(5.5) 

where Ml is the extra moment induced by Eo with x held 
fixed. Since the polarization model contains only linear 
response, Ml will strictly be linear in the components 
of Eo. It is appropriate to identify Ml as a manifesta­
tion of limiting high-frequency dielectric response, 
which can be described in terms of the high-frequency 
dielectric constant E~. Thus, we write 

M1(x, Eo) = ~~(::: ~)Eo , (5.6) 

and we note in passing that Ml and E~ should be straight­
forward to evaluate in a computer simulation of the sys­
tem, USing the concepts presented in Sec. II above. 

In accepting Eq. (5.6), it has been necessary to sup­
pose that, for the great majority of nuclear configura­
tions x, the polarization response fluctuates only negli­
gibly from its most probable value (which is along Eo); 
this assumption is surely valid since the system is 
macroscopic. 

Combining Eqs. (5.5) and (5.6) above yields 

(E-1) (E~-1) 411 
E + 2 Eo = E~ + 2 Eo + 3 V (M(x, 0)· e) • (5.7) 

The remaining average in Eq. (5.7) can be carried 
out with the aid of the canonical distribution. This dis­
tribution has the same form as that shown earlier in 
Eq. (4.1) except that potential energy <J> must be aug­
mented by the interaction of the molecular system with 
the external field. The total potential energy now has 
the form 

U(x, Eo) = <J>(x) - M(x, 0) . Eo + O(Eo) . 

Thus, 

(M(x, 0), e) =~ f dx(M(x, 0), e] exp( - U/kB T) 

=([M(x, 0), e)2)o(Eo/kB T)+ O(E~) 

(5.8) 

= ([M(x, 0)]2)0(Eo/3kB T) + O(E~). (5.9) 

The notation ( ... >0 implies an average for Eo = 0, in 
other words with canonical distribution (4.1). The last 
form in Eq. (5.9) relies upon isotropy of the dielectric. 
We are only interested in linear response, so that terms 
denoted by O(E~) in Eq. (5.9) may be disregarded. 
Consequently, we have 

E - 1 E~ - 1 411 If ]2 
--2 =--2 + 9Vk T \LM(x, 0) )0' 
E + E~ + B 

(5.10) 
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The mean squared system moment appearing in the 
last equation may be transformed into several different 
but equivalent versions. Since only intact molecules 
are present, M can be resolved into the separate molec­
ular moments m.: 

M=t m., (5.11) 

where No stands for the number of molecules in the sys­
tem. Each m. consists of a vector sum of permanent 
charge and induced moment contributions (the latter due 
to intramolecular and intermolecular interactions). 
Since all of the No molecules are equivalent, Eq. (5.10) 
can be rewritten as 

~_€ .. -1 41TNo .) 
2 - 2 + 9 Tn.. T (ml Mo· €+ € .. + Vf<B 

(5.12) 

As the next step, Kirkwood's procedure9 would re­
place M in the last equation by a strictly local moment mr. This latter quantity comprises ml as well as the 
additional moment, present in the immediate surround­
ings of molecule 1, that is attributable to Short-range 
intermolecular correlations. Both Kirkwood, and later 
Harris and Alder/o agree that 

(rol • M)o = (2€ + :)~ € + 2) (ml . mi>o • (5.13) 

Buckinghamll has expressed reservations about the 
validity of relation (5.13) when molecular polarizability 
is present. His concern is that, upon fixing mt to per­
form the average required by Eq. (5.13), one auto­
matically constrains the field near molecule 1 arising 
from molecules outside of the region defining mt. How­
ever, it is our present position that this field averages 
to zero (to within terms of order V-I) for fixed mt; 
since we deal at present only with linear polarization 
response, the apparent constraint should have no signifi· 
cant effect. If nonlinear polarizability were present, it 
is possible that Buckingham's effect could exert a Sig­
nificant influence. Once again, it might be stressed that 
computer simulation could be used to test directly the 
validity of Eq. (5.13) for the polarization model if doubts 
persist. 

If Eq. (5.13) is accepted, our dielectric constant ex­
pression then becomes 

~_€ .. -1 41TNo[ € ](. *) (14) 
€+2- €o.+2+ VkBT (2€+1)(€+2) ml ml O• 5. 

Under the influence of normal molecular motions, ml 
will fluctuate. These fluctuations arise both from nu­
clear motions within molecule 1 itself, as well as from 
the fluctuating fields of neighbors to which molecule 1 
is subject. The polarization model provides a definite 
prescription for evaluating these phenomena. The col­
lective local moment mt likewise will fluctuate, in a 
manner correlated strongly with mI. A proper descrip­
tion of these correlated variations would be based upon 
the generalized distribution functions P ~~~. OJ introduced 
in Sec. IV. Computer Simulations of polar substances 
USing the respective polarization models should have 

great benefit in quantitative study of the statistical be­
havior of these moments over a wide range of temperature 
and density conditions. 

The Kirkwood orientational correlation factor gK may 
now formally be introduced by the identity 

(ml • mi>=gK(mf)o • (5.15) 

Therefore, we have 

€ - 1 €o. - 1 41TNo [ € ] ( 2 
€ +2 = €o. +2 + VkBT (2€ + 1)(€ +2) gK ml)O • 

(5.16) 

There is no elementary and reliable way to relate 
(mf>o in a condensed phase to its value for isolated 
molecules. Once again, the use of the polarization 
models in extensive computer studies may be the most 
informative technique available for investigation of this 
molecular quantity, and of the historically important 
Kirkwood factor gK. 

VI. CONCLUSION 

Although the many-body interaction 4>n makes the 
polarization modelS more complicated than the models 
usually studied in the statistical mechanics of condensed 
phases, we have shown in this paper that the complica­
tion is still manageable. Furthermore, the inclusion of 
interactions of the type 4>u is a phYSical necessity in 
order to produce an adequate description of dielectric 
behavior. We have stressed that the statistical mechan­
ics entails a new set of distribution functions p~~!.", 
which involve pOSitions, moments, and quasimoments. 
We suggest that these distribution functions be studied 
both by computer simulation for polarization models, and 
by derivation, closure, and numerical solution of hier­
archy equations analogous to those that have been cen­
tral to the study of simple liquids.12 Finally, it has been 
emphasized that the polarization model offers a means to 
achieve greater understanding of dielectric behavior in 
condensed polar media. 
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