
Solution of a quantum mechanical eigenvalue problem with long range 
potentials 

Frank H. Stillinger 
Bell Telephone Laboratories. Murray Hill. New Jersey, 07974 

(Received 13 February 1979; accepted for publication 27 April 1979) 

Wavefunctions and eigenvalues for the Schrodinger equation on the half-line x ~ ° are examined 
in the presence of a potential VoX - 2 + VjX - j + V2x - '12. With a special choice for the constant Va the 
wave equation can be solved in terms of parabolic cylinder functions. In this case the spectrum is 
determined by an implicit equation that arises from the boundary condition that must be imposed 
at x = 0. Depending on V, and V2, the spectrum can contain and infinite number of discrete values, 
a finite number, or none. It is pointed out that continuous variations in V, or V2 can convert 
negative energy bound states into positive energy responances, or vice versa, and the threshold 
behavior has been investigated. 

I. INTRODUCTION 

It is often enlightening to achieve exact solutions to 
model problems in quantum mechanics, even though the 
models may not directly represent physically realizable sys­
tems. The example treated in this paper largely fits that de­
scription. It entails the exact determination of wavefunc­
tions and energy levels for a single particle subject to a 
central potential of the form 

V (r) = Vo r - 2 + VI r - j + V2 r - 112. (1.1) 

The method of solution requires that Vo have a definite value; 
however VI and V2 are arbitrary, and the resulting flexibility 
in V generates an interesting richness of behavior. 

The following Sec. II provides some preliminary trans­
formations which facilitate the solution of selected quan­
tum-mechanical problems in terms of parabolic cylinder 
functions. Section III shows how the spectrum specifically 
for potential (1.1) must be determined in principle, while 
Sec. IV carries that determination to essential completion. 
Continuum solutions are examined in Sec. V. 

One of the primary reasons for interest in the model 
potential (1.1) is that it can produce sharp resonance behav­
ior. If VI < ° and v2 > 0, V (r) will display a wide barrier 
around an attractive core region. Presuming that VI is suffi­
ciently negative to produce bound states, variation in V2 can 
move their energies up or down, and in particular can move a 
bound state to zero energy (the continuum edge). This spe­
cial circumstance which separates bound-state character 
from resonance character is studied to some extent here with 
emphasis on threshold behavior (Secs. IV and V). However, 
we intend the present work to serve as the foundation for a 
later, more complete analysis of these continuum edge 
encounters. 

II. PRELIMINARY TRANSFORMATIONS 

Our objective is construction of a class of solutions over 
x;:;.o for the one-dimensional Schrodinger equation 

l/J "(x) + B (x)l/J (x) = ° (2.1) 

subject to suitable boundary conditions. Upon introduction 
of appropriate reduced units one has 

B(x) = 2E - 2V(x), (2.2) 

where E is the total energy and V(x) is the potential energy 
function. Equation (2.1) is also relevant to the radial motion 
with a central potential V (r) in a space of D dimensions. I For 
that case the radial wavefunction R (r) may be written 

R (r) = r(1 - D )12l/J (r), (2.3) 

where l/J is a solution to Eq. (2.1) with 

B(x) = 2E - 2 V (x) - C(D, A )x- 2, (2.4) 

and 

C(D,A)=A(A +D-2)+HD-1)(D-3). (2.5) 

In this last expression A = 0,1,2,· .. is the quantum number 
for angular momentum. 

If <P can be expressed in the form 

l/J (x) = f(x)rp fg(x)], (2.6) 

then direct substitution shows that the differential equation 
(2.1) will be satisfied provided rp is a solution to 

[ 
2f' "] [f" B] 

rp" + fg' + (~')2 <p' + f(g')2 + (gy rp = 0. 

(2.7) 

It will be advantageous to eliminate the rp , term. This will 
occur by requiringfto be determined by g in the manner: 

(2.8) 

where Co is any nonzero constant. Thereupon the differen­
tial equation for rp adopts the following form: 

rp "( g) + [---.!!...... _ ~ + 3( g")2 ]rp (g) = O. (2.9) 
( g')2 2( g')3 4( g')4 

We will now demand that the coefficient of rp in Eq. 
(2.9) be quadratic in g, 

rp "(g) + (ag2 + bg + c)rp (g) = 0, (2.10) 

where a, b, and c are constants. In other words, we demand 
that rp obey the general differential equation for parabolic 
cylinder functions. 2 Therefore, we will have 

g'" 3( ")2 
B (x) = - - -g- + (g')2(a g2 + b g + c). 

2g' 4(g')2 
(2.11 ) 
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Next it is necessary to identify functions g(x) which 
upon substitution in Eq. (2.11) will confer upon B (x) the 
requisite form (2.4) or (2.2). In doing so we must ensure that 
the x independent term in B (x) can sweep through all possi­
ble values for 2E to avoid missing any eigenvalues. Several 
simple examples can be listed. 

(1) By choosing 

g(x)=x, (2.12) 

one obtains 

B (x) = ax2 + bx + e. (2.13) 

This is the form appropriate for the one-dimensional har­
monic oscillator with 

Vex) = _ ~ (x + ~)2 
2 2a' 

e b 2 
E=---

(2.14) 

2 Sa 

provided a < O. After selecting a and b to represent appropri­
ately the curvature and position of the quadratic potential, 
independent variation of e will yield any E value, including 
the well-known spectrum of equally spaced eigenvalues. 

(2) With the choice 

g(x) = x 2l
·\ 

Eq. (2.11) yields 

(2.1S) 

B (x) = (S/36x2) + (4/9)(ax2/3 + b + ex - 2/3). (2.16) 

It is known on general grounds] that an x - 2 term in B (x) 
would prevent occurrence of any eigenstates provided its co­
efficient exceeded 1/4. However, that does not happen here. 
One could therefore proceed to determine energies and ei­
genfunctions for the case (a <,0): 

V(x)=- S 
72x2 

E=~. 
9 

9 

2e 

9X2/3 ' 
(2.17) 

(3) The case of primary interest in this paper corre­
sponds to 

g(x) = X
I
/

2
, 

for which 

(2.1S) 

B (x) = (3/16x 2
) + (l/4)(a + b /x l12 + e/x). (2.19) 

Once again an inverse square term arises with a magnitude 
consistent with the existence of eigenstates. The natural sep­
aration of B is obviously the following: 

Vex) = -
3 b e 

32x2 SXI12 Sx 
(2.20) 

E= ~. 
S 

We shall see in detail how the signs and magnitudes of band 
e determine whether the number of eigenstates is infinite, 
finite and positive, or zero. 

III. SPECTRUM DETERMINATION 

Case 3 above leads to the following generic wave-
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function: 

<P(x) = 21I2CoXII4(,h(XI/2), (3.1) 

where (,h is a solution to Eq. (2.10) over the positive real axis. 
In this section we shall be concerned with bound states, i.e., 
a < O. Setting 

(3.2) 
(,h (g) = w(z), 

Eq. (2.10) transforms to one of the standard forms for para­
bolic cylinder functions 2 

w"(z) - (!Z2 + A )w(z) = 0, 

where 

A= 
e 

21a 1112 

(3.3) 

(3.4) 

The independent solutions to differential Eq. (3.3) are 
conventionally denoted by U (A,z) and V(A,z). The latter di­
verges as z approaches infinity; only the former is an accept­
able solution. Thus, 

<P(x) = 2112CoXl/4U(A,2112IaI1l4xl/2 _ b ) 
2112la 13/4 

(3.S) 

encompasses all eignefunctions. 
It is unacceptable on general grounds for <P (x) to be­

have as XI/4 at the origin; instead the leading order must be 
X 3/

4 at this point.] Consequently x = 0 must be a zero of U in 
Eq. (3.S): 

U ( _ b 2 _ e _ b ) _ 0 (3.6) 
Slal3!2 2I a l l / 2 ' 21/2IaI 3/ 4 - . 

This condition will only be satisfied for a discrete set of nega­
tive a values which, through the second ofEqs. (2.20), deter­
mines the energy spectrum. 

N 0 

-2 
:n: 

-4 

-5 -4 -3 -2 -1 o 2 

A 

FIG. 1. Graphical determination of eigenvalues according 10 implicit Ey. 
(3.6). The curves labeled In = 0.1.2.··· are loci of zeros for U(A,z). The four 
curves emanating from the origin represent special cases of Ey. (4.1); I: 
b= -I,c= -I; II:b= I,c= -I; III:b= l,c=4; IV:h= -I, 
c = 4. 
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IV. EIGENVALUE RESULTS 

The task of deducing eigenvalues and their behavior is 
simplified considerably by using a graphical analysis in the 
real A, z plane. The roots of U (A,z) correspond to curves in 
that plane, and their intersections with another curve deter­
mined by the form ofEq. (3.6) yield the energy spectrum. 
This last curve can be constructed by eliminating [a [ be­
tween the specific forms shown in Eq. (3.6) for the variables 
A and z, with the result 

Z2 e 1 z [2/3 • 

4 22/3 1b 1
213

' 

A= (4.1) 

since 

b 
(4.2) Z= 

21/2 1a 13/4 

along this curve the sign of z is opposite to that of b. 
Figure 1 shows the A, z plane with loci of zeros for 

U(A,z), and selected examples of the curve (4.1) for each of 
the four sign assignments for band e. 

The following properties should be noted for the zeros 
of U(A,z). 

(l) The zeros occur along an infinite set of curves con­
fined to the left half plane. 

(2) Each curve intersects the negative A axis once and 
only once at a point of the form - (2m + 3/2),m = 0,1,2, .. ·. 
The integer m is a convenient index for the curves. 

(3) All of the curves lie below the upper branch of the 
parabolaA = -z2/4. 

(4) For each curve A (z) is a single-valued function with 
unique inverse and the property 

lim A (z) = - (m + 112). (4.3) 
z-_ - <Xl 

We now discuss each of the four sign assignments separately. 
(i) b < 0, c < 0. By referring to Eq. (2.20) we see that this 

case makes both the x - 1/2 and the x - I parts of the interac­
tion repUlsive. Since the attractive x - 2 term alone is incapa­
ble of producing bound states) it is obvious that addition of 
these extra repulsions will not change that situation. The 
graphical manifestation is clear in Fig. 1, for curve (4.1) lies 
above the upper branch of the parabola A = - z2/4 and 
hence cannot intersect any zeros of U. 

(ii)b>O,c<O. Thex- l12 termin V(x) is now negative, 
but the x- I term remains positive. Since the former will 
dominate Vat large x and since it has such extreme range, it 
is clear that an infinite number of bound states should exist. 
This is also clear from Fig. 1, since the corresponding posi­
tion of the curve for Eq. (4.1) lies below the lower branch of 
A = - z2/4 and intersects each U-zero branch in turn. If the 
magnitude of the negative quantity c is very large, Eq. (4.3) 
may be used to derive the following limiting distribution of 
eigenvalues: 

E:::: _ ~ + b 3(m + 112) . 
32 [e[ 321c[ 512 

(4.4) 

Such equally spaced levels are characteristic of harmonic 
oscillators, and indeed that is what this limit has generated. 
The interplay between attractive x - 1/2 and strongly repul-
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sive x - I potential terms gives Vex) a negative broad mini­
mum at 

(4.5) 

in the neighborhood of which quadratic behavior obtains. 
The low-lying states in this case are sufficiently localized 
around x min to resemble harmonic oscillator states, and Eq. 
(4.4) reflects that fact. 

(iii) b> 0, e> 0. The potential is negative everywhere 
and of course long-ranged. The bound states are infinite in 
number, since curve (4.1) must cross each U-zero curve (see 
Fig. 1). As b shrinks to zero, the curve for Eq. (4.1) ap­
proaches the negative A axis. In this limit V (x) contains no 
x - 112 part. Remark 2 above is relevant for locating intersec­
tions, and one obtains the Rydberg series 

c2 

E(b=O)= - -----
128(m + 3/4)2 

(4.6) 

For small b it should be a relatively straightforward matter 
to calculate successive orders of perturbation to this last 
result. 

(iv) b < 0, c> 0. This is the most interesting of the four 
cases in that the number of bound states depends crucially 
upon the magnitudes of band c. It is also the case which 
permits resonances to exist since Vex) will have a positive 
barrier. 

As b changes continuously from positive to negative, 
the preceding case (iii) transforms to the present case with 
Rydberg series (4.6) marking the boundary between the two. 
Any given eigenvalue increases continuously as b decreases, 
since Vis being made less attractive. As we shall now see, it is 
possible to decrease b to a point at which any given eigenva­
lue increases to zero and ceases to belong to the bound-state 
spectrum. This last phenomenon is associated with intersec­
tions in the second quadrant of Fig. 1 that recede to infinity. 
In order to identify conditions that produce such behavior, it 
suffices to have an asymptotic expansion, valid for large [A [, 
for the U-zero curve with index m in Fig. 14: 

zm~2[A [112_ (-am+J 
[A [1/6 

(-a m + 1)2 +O([A [-312), 
20lA [5/6 

m=0,1,2, .. ·, (4.7) 

where an is the nth (negative) zero of the Airy function Ai(l). 
The first few an have the following values': 

a\ = - 2.3381 0741, 

a2 = - 4.0879 4944, 

- 5.5205 5983, 
(4.8) 

a 1 = 
a4 = - 6.7867 0809. 

Equation (4.1) can be used for the intersections of interest to 
eliminate A from Eq. (4.7), and then z can be expressed in 
terms of a and b according to Eq. (3.6). Taking into account 
the second of Eqs. (2.20) we find (for Am > 0), 

Em = - [15 [b [4/3/64( - am + If]Am + O(.J ~), 
(4.9) 

where 

(4.10) 
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This shows that the mth eigenvalue vanishes when..1 m van­
ishes, i.e., when 

(4.11 ) 

For slightly larger values of c/ [b [2/3, Em varies linearly 
with ..1 m' A more detailed analysis shows that higher order 
corrections in Eq. (4.9) involve only positive integer powers 
of the quantity ..1 m' It is easy to show that at threshold each 
bound state exhibits the following asymptotic exponential 
order: 

<P (x) = exp [ - (2/3) [b [112X3/4 + O(X3/4) J. (4.12) 

Consequently the bound-state property of square integrabi­
lity is retained at threshold. 

V. CONTINUUM SOLUTIONS 

All positive energy states are unbound, and they form a 
dense continuum. The second ofEqs. (2.20) establishes that 
a> 0 for these unbound states. In place ofEq. (3.2) for bound 
states, we now set 

z b 
g=---

21/2al/4 2;;" 
(5.1) 

¢ (g) = w(z). 

Consequently w must satisfy 

wI' (z) + (!Z2 - A )w(z) = 0, (5.2) 

b 2 C 
A= -- - --. 

8a3!2 2a l12 (5.3) 

The real solutions to parabolic cylinder Eq. (5.2) conven­
tionalli are denoted by W(A,z) and W(A, - z). Consequent­
ly, aside from a normalization factor the general solution has 
the form 

w(z) = coseW(A,z) + sineW(A, - z), (5.4) 

where e must be chosen to satisfy boundary conditions. 
Just as was the case with bound states, continuum 

wavefunctions <P (x) must behave as X3!4 near the origin.' 
This in turn requires that w(z) vanish when x = 0, that is 
when 

b 
z=---

21/2a3/4 
(5.5) 

In order for this to occur e must obey the following relation: 

tane (a) 

W«b 2/8a.ll2) _ (c/2aI/2),(b/21!2a3/4» 

W «b 2 /8a 3/2) _ (c/2a l12), - (b /21/2a3/4» 
(5.6) 

This completes the determination of positive energy states, 
at least in principle. 

These continuum solutions are useful in locating reson­
ances, i.e., complex energy states with pure diverging cur­
rent boundary conditions at x = + 00: 

(5.7) 

Here E will have a negative imaginary part whose magnitude 
determines the resonance width in the usual way. Along 
with such a resonance there will also exist a time-reversed 
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"anti resonance" state with pure converging-current bound­
ary conditions: 

In<P a r~ - i(2E *)1/2X. (5.8) 

By using the large z asymptotic forms2 for W (A ,z) and 
W(A, - z) one can show that the resonance condition (5.7) 
leads to the following implicit equation: 

U [i( ~ __ c_), b exp( - m'l4) ] = O. (5.9) 
8a3/2 2a 1/2 21/2a3/4 

The complex resonance energies are again given by the sec­
ond of Eqs. (2.20) now in terms of complex a values which 
satisfy Eq. (5.9). The analog of the last equation for the time­
reversed states is 

u[ -i(~ __ c_), beXP(1Ti/4)] =0. (5.10) 
8a3/2 2a 112 2112a3/4 

For any solution a of Eq. (5.9), a* solves (5.10). 
Analytic connections can be established between bound 

states just below threshold and the corresponding resonance 
and antiresonance energy pair above threshold. This is ac­
complished by giving the originally real parameter b an in­
finitesimal imaginary part as it passes a threshold value. If 
the imaginary part is negative, Eq. (3.6) for bound states 
converts automatically to Eq. (5.9) for resonances. If the 
imaginary part is positive, Eq. (3.6) converts to Eq. (5.10) for 
anti resonances. Therefore, the bound state energy in the 
complex b plane displays a cut at threshold, with the reso­
nance and antiresonance pair at corresponding positions 
along the cut. 

It is significant that Eqs. (5.9) and (5.10) lead to identi­
cally the same small..1 m series that was indicated in Eq. (4.9) 
for bound states at threshold, but now with negative ..1 m • 

This series, which is evidently asymptotic rather than con­
vergent, yields a real result above threshold whereas we 
know that the resonance state has an imaginary part. Clearly 
this imaginary part has a zero asymptotic series in positive 
powers of..1 m • 

VI. DISCUSSION 

Although it is proper to regard the potential V (r) in Eq. 
(1.1) as artificial, it is worth noting that an electrostatic 
charge density per) exists which would cause a unit charge to 
experience just that potential. By employing Poisson's equa­
tion, one finds the appropriate density in three dimensions to 
be 

per) = Vo limf(E,r) + VID(r) + v2/161TrS/2, 
.--0 

where 

f(E,r) = 3/21TE4, (Oq < E), 

= - 1I21Tr4, (E<r). 

(6.1) 

(6.2) 

Similar results can easily be obtained for other values of D, 
the space dimension. 

There may be some interest eventually in comparing 
exact eigenvalues for the present model with those approxi­
mate semiclassical eigenvalues that follow from quantiza­
tion of the classical action. 6

-
8 In this regard, we mention in 

passing that the general radial potential containing terms of 
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arbitrary strength proportional to r - 2, r - 3/2, r - 1, and 
r- 112 is a case for which the classical equations of motion 
can be integrated in closed form using Legendre elliptic inte­
grals of the first and third kinds. 9 The present model is just a 
special case of this more general potential. 

The available theory of the asymptotic properties of 
parabolic cylinder functions2

,4 is not sufficient to provide the 
imaginary part of our resonance energies near threshold, as 
discussed in Sec. V above. In principle the necessary infor­
mation could be achieved through direct numerical study of 
Eq. (5.9), though this is likely to be a cumbersome proce­
dure. On this account it is useful to turn to the quasiclassical 
WKB method. That approximation indicates that the in­
verse lifetime just above threshold will be dominated by a 
factor of the type (K> 0), 

exp( - K / 1 Li m 1

3/2
). (6.3) 

The imaginary part of the resonance energy is proportional 
to the inverse lifetime, and thus exhibits the same factor. 
Since (6.3) has a zero asymptotic series in positive powers of 
Li m we see that the WKB approximation is consistent with 
the failure of imaginary terms to appear in Eq. (4.9) for Lim 
<0. 

The present model may provide a convenient testing 
ground for the method of complex coordinate rotation!O,!! 
that seems to be computationally useful for locating reson­
ances.!2,!3 In particular, the one-dimensional nature of our 
model should permit extensive studies to be carried out on 
the effect of various basis set choices in complex-coordinate-
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rotation calculations. The extent of agreement between the 
computed thresholds and the behavior of the real part of the 
energy there, in comparison with the exact result in Eq. 
(4.9), provides a natural measure of numerical accuracy. At 
the same time it would be instructive to see how resonance 
lifetimes predicted by such calculations compare with the 
WKB result. 

The WKB approximation predicts that the energy in 
the complex b plane possesses an essential singularity at 
threshold. A natural sequel to the present study would there­
fore involve generating the first few terms in an exact b pow­
er series for eigenvalues. Standard methods of power series 
analysis could then be employed to test for a singularity of 
the WKB type at the known thresholds. 
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