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Melting and freezing transitions are examples of cooperative phenomena. 
They are dramatic changes on account of their suddenness of occurrence, and because 
of the discontinuities that they cause in various intensive quantities (volume, heat capa
city, viscosity, self-diffusion rate, etc.). These sharp changes come into existence only 
because of the presence of an enormous number of interacting molecular degrees of 
freedom. Normally melting and freezing are observed for matter in bulk, comprising 
roughly Avogadro's number (6.022xl023) of molecules, and for all intents and pur
poses this can be reckoned as infinitely large. 

However there are exceptional circumstances wherein melting and freezing 
are observed for much smaller aggregates of molecules. In the case of water it is possi
ble to induce melting and freezing in sufficiently small systems that the phase transi
tions ought to exhibit modifications due to finite size effects. This might be expected 
to occur for fine droplets in aerosols, for some emulsions of water in oils, and for very 
small water clusters that can be made to form in polymeric solids (1,2). The phase 
transition modifications arise not only from the reduced number of molecular degrees 
of freedom per se, but also from the fact that a substantial portion of the material will 
be present in a boundary, or interfacial, region. One expects modifications in both 
equilibrium (transition "rounding") and kinetic (supercooling) behavior. 

Droplets or clusters in the size range from microns downward are those 
expected to show measurable deviations from bulk equilibrium behavior. For the sake 
of quantitative orientation, Table I shows representative numbers of molecules con
tained in spherical droplets of water in this size range band it also shows the fraction of 
those molecules within a typical molecular distance (5A) of the surface. 

The objective of this paper is to provide a theoretical framework for under
standing the melting, freezing, and supercooling behavior of water in small dusters and 
droplets. Although attention will be focussed on spherical geometry, the basic ideas 
involved can be generalized to other shapes. 

HYDROGEN BOND PATTERNS IN WATER 
Both ice and liquid water consist of space-filling networks of hydrogen 

bonds. That of the former is regular and static; that of the latter is irregular and 
mobile. The hydrogen bonds in ice are arranged so that each molecule participates in 
exactly four bonds, and the bonds are spatially disposed so as to form polygons with 
only even numbers of sides (hexagons, octagons decagons, ...) (3). The random net
work in the liquid evidently contains polygons of both even and odd numbers of sides 
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12 WATER IN POLYMERS 

a 

TABLE I. Contents of spherical water droplets/ 

Cluster Diameter 3.00 1.00 0.30 
(microns) 

Number of Water 4 . 7 3 x l 0 n 1 .75xl0 1 0 4 . 7 3 x l 0 8 

Molecules in Cluster 

Number of Molecules 4 . 7 2 x l 0 8 5 .25xl0 7 4 . 71x l0 6 

Within 5 Â of Surface 

Fraction of Molecules 0.0010 0.0030 0.0100 
ο 

Within 5A of Surface 

Cluster Diameter 0.10 0.03 0.01 
(microns) 

Number of Water 1.75xl0 7 4 .73x l0 5 1.75xl0 4 

Molecules in Cluster 

Number of Molecules 5 .20x l0 5 4 .57x l0 4 4 . 7 4 x l 0 3 

Within 5A of Surface 

Fraction of Molecules 0.0297 0.0966 0.2710 
Within 5 Â of Surface 

The droplets are at 0 *C, and are presumed to possess the macroscopic liquid density 
up to the geometric surface. 

intermixed (4); a variety of defect structures is present as well, including broken bonds 
and bifurcated hydrogen bonds. Thus the invariant fourfold coordination in ice is 
replaced upon melting by indefinite coordination that varies from one to five, and aver
ages about 2.5 near the melting point (4). Needless to say, the hydrogen bonds that 
are present in liquid water are much more strained on the average than those in ice. 

The famous density maximum in liquid water at 4*C represents a balance 
point between two opposing tendencies. On the one hand there is the continuation of 
the process initiated at the melting point, namely conversion of bulky hydrogen bond 
structures to more compact forms (the negative volume of melting signifies this 
change). On the other hand there is present the natural thermal expansion of all 
liquids, which tends to accelerate in magnitude with increasing temperature. It is plau
sible to suppose that the first of these is associated with gradual disappearance in the 
liquid of unstrained polygonal and polyhedral bonding patterns, as they are replaced by 
highly strained and bond-broken arrangements that permit more efficient packing of 
molecules. 
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1. STILLINGER Water in Restrictive Geometries 13 

The volumetric properties of small water droplets or clusters can be measur
ably influenced by the significant fraction of material in the surface region (see Table 
I). The structural character of the hydrogen bond network in the bulk phase is certain 
to be modified in the interfacial region if the droplet has either a free surface or is in 
contact with hydrophobic material. Obviously more broken bonds (Le), unsatisfied 
bond positions) must be present. But additionally the organization of those bonds 
which are present, for example into polygons, will differ statistically from the situation 
deep beneath the surface. It is generally believed, on the basis of experimental obser
vations, that the surface of ice roughly in the range - 1 0 ' C to 0 V is covered by a 
mobile "liquid-like" layer (3), which ought then to contain odd-sided polygons and 
bifurcated hydrogen bonds. In a crude sense, surfaces act to disrupt the natural order 
present in the bulk phase. 

This last point leads to an interesting prediction concerning the volumetric 
behavior of liquid water droplets or clusters. Since their surface regions ought to be 
more disordered at any given temperature than their interiors, the temperature of 
minimum volume (maximum mean density) should be displaced below 4 V. The mag
nitude of this effect presumably would depend on the chemical characterer of the 
region outside the droplet or cluster, and is difficult to estimate with precision. How
ever a crude estimate is possible by supposing the outer 5A behaves as a "normal" 
nonaqueous liquid with thermal expansion 10~ 3 /°C, and the remainder as bulk water. 
Table II shows the resulting predictions for the temperatures of maximum mean den
sity for the droplet sizes considered in Table I. The depressions are substantial for the 
smaller sizes. 

TABLE II. Temperature of maximum mean density 
for spherical droplets of water. 

Diameter, Microns τ V, 

oo 3.98 

3.00 3.92 

1.00 3.80 

0.30 3.36 

0.10 2.13 

0.03 -2.06 

0.01 -12.88 

STATISTICAL MECHANICAL THEORY 
It is mandatory to consider the underlying statistical mechanical formalism 

in order to systematize the preceding ideas. For this purpose we will examine the parti
tion function for an N-molecule water cluster. The isothermal-isobaric ensemble is 
appropriate (5) since constant normal stress (denoted below by "pressure" p) seems 
relevant to most cases of interest. The partition function for this ensemble, ΔΝ(β,ρ), 
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14 WATER IN POLYMERS 

depends upon the inverse temperature parameter β=(/ϊΒΤ)~~ι and the external pressure 
p. We will presume that the droplet is constrained to spherical shape, though with vari
able radius. The connection to thermodynamics is established by the fact that 

1 η Δ Λ = - / 3 α C l ) 

where G is the Gibbs free energy. 
A n expression for Δ Λ· in terms of molecular quantities is the following: 

ΔΛ·(0,ρ) = Δ # » <βχρ(-βθ)>\ (2) 

here ΔΛ 0 ) is a normalizing factor that has no further importance in subsequent analysis, 
and Θ is the sum of the potential energy Φ for the water molecules and the pressure-
volume product ρ V, 

Θ = Φ + /?Κ (3) 

The Boltzmann factor average in Eq. (2) is an a priori average over all Ν molecule 
orientations and positions within the spherical cluster volume K, and over Κ with a suit
able upper limit. 

The evaluation of Δ Λ in Eq. (2) would be a formidable task even if Φ were 
known in all detail (unfortunately it is not). The reason is that the required average 
entails a multiple integral of order 6 N , since there are three translational and three rota
tional degrees of freedom per molecule. Table I shows that Ν is still huge even for 
very small clusters. 

In spite of this difficulty we can understand the behavior of ΔΝ to some 
extent by classifying molecular configurations according to a small number of indepen
dent parameters. We choose two such parameters, the quantity Θ already introduced 
and a structural order parameter Ψ. The latter is intended as a measure of the ice-like 
order present. Conceivably we could take Ψ to equal the number of hydrogen-bond 
hexagons present, however this would not distinguish ice Ih from the cubic 
modification Ic that is presumably unstable under conditions of interest here (6). 
Alternatively and more appropriately Ψ could represent the number of bonded bicyclic 
octamers (see Figure 1), that are present in ice Ih but not in ice Ic. For the remainder 
of this analysis we will use this second choice. By accounting for all the distinct (and 
overlapping) ways that octamers can be traced out on the perfect ice lattice, we find that 
the maximum value of Ψ is N/2, to within terms of order i V 2 / 3 . 

Once the decision has been made to classify configurations according to their 
Θ and Ψ values, we can write the average in Eq. (2) in a formally simple manner: 

<εχρ(-βθ)> = K~l ff exp{w(<è,y)-fi®)d<èdV, 

Κ = ff exp[w(®,V)]d<èdV. (4) 
In this expression exp(w) stands for the configuration space weight to be assigned to 
the given Θ , Ψ pair. A' is a temperature-independent normalization factor. 

The discontinuous liquid-solid transition automatically emerges from the 
first of Eqs. (4) in the large-Ν limit. This can be demonstrated by using "peak integra
tion" to evaluate that first integral. This approximation, which becomes increasingly 
accurate as Ν increases, exploits the fact that dominant contributions to that integral 
arise from regions at which the quantity 

Γ = Η > ( Θ , Ψ ) - 0 Θ (5) 

is at a maximum in the two-dimensional Θ , Ψ space. By making a local Gaussian 
approximation for each such maximum we conclude that 
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1. STILLINGER Water in Restrictive Geometries 15 

< β χ ρ ( - 0 θ ) > = 2Κ~ιΣ (YjiiYjii)'112 exp(Yj). (6) 
j 

Here j indexes the maxima, and Yj stands for the value of Fat maximum j. The quan
tities Yjw and Yj22 are the second partial derivatives of Fat j along the two principal 
directions of curvature there. 

On physical grounds we expect only two relevant maxima to contribute sub
stantially to Eq. (6), at least when the temperature is around 0 *C and pressure around 1 
bar. These two correspond respectively to hexagonal ice and to liquid water. In this 
temperature range one should keep in mind that θ is dominated strongly by the poten
tial energy part Θ; ρ Κ is far smaller in magnitude. For the "ice" maximum Θ is low 
(many well-formed hydrogen bonds) while Ψ is high (many characteristic ice-like struc
tures). By contrast the "liquid" maximum will display higher Θ (fewer and more 
strained hydrogen bonds) and lower Ψ (most bonding patterns not ice-like). 

The suddenness of the first-order melting or freezing arises from the fact 
that the Yj are of order N. It is clear that after exponentiation one of the terms in Eq. 
(6) will dominate the other almost totally, except in a narrow switch-over temperature 
range around the transition point. This switch-over range is expected to be proportional 
in asymptotic width to N~\ and represents the extent of smearing of the transition due 
to finite system size. Latent heat is absorbed or discharged over this finite temperature 
interval if in fact nucleation can occur. 

It will be profitable to examine a schematic diagram of the level curves of F, 
for β chosen to make the two maxima equal in magnitude (in the inf in i te -Ν limit this 
will be precisely the thermodynamic transition point). Such a diagram appears in Fig
ure 2. This Figure shows that between the two equal-altitude maxima there will be a 
saddle point along a ridge line. When Ν is reasonably large this ridge line will 
correspond to side-by-side coexistence of liquid-like and ice-like regions within the dro
plet, the relative proportions of which determine position along the ridge line. Since an 
interface must exist between the regions the ridge line will lie below the maxima by an 
amount of order i V 2 / 3 . 

A t the temperature for which Figure 2 is shown the two maxima are the 
positions of the Y} that are to be inserted in Eq. (6). These may generically be 
designated by YL and Yc, for "liquid" and "crystal", respectively. They are the positions 
of simultaneous contact for a horizontal plane resting atop the Υ(Θ,Ψ) surface. 

As temperature varies, YL and Yc will shift from the locations of the max
ima shown in Figure 2. The shifts can be identified with points of rolling contact for 
the initially horizontal plane as it is tipped so as to remain parallel to the Ψ axis. This 
rolling constraint arises from the fact that β multiplies only Θ in F in the first integral 
of Eq. (4). The Θ-direction slope of the rolling plane is just Δ/3, the change in β from 
its initial value at the horizontal orientation. 

Under the supposition that Υ(Θ,Ψ) is continuous and at least twice 
differentiable in its two variables, the loci of rolling contact (one through each max
imum in Figure 2) will be at least piecewise continuous curves. These curves trace out 
the dominant Θ , Ψ "structure" for the liquid and solid phases, and they are indicated in 
Figure 2 as full curves in the respective ranges of thermodynamic stability. 

The relative positions of the two maxima on the Y surface will change with 
N , even after accounting for the fact that Ψ and Θ are extensive quantities in the 
large-N limit. The presence of the structure-disrupting surface has a greater influence 
on an ice phase than on a liquid phase. As Ν declines, Ψ / Ν decreases and Θ/Ν 
increases for both maxima, but the changes are larger for ice than for liquid. Further-
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16 WATER IN POLYMERS 

Figure 1. Bicyclic octamer structure, a 
pattern of hydrogen bonding that appears 
exclusively ice Ih. Several isomers are 
possible, depending on the disposition of 
hydrogens along the given linear hydrogen 

bonds. 

S . — Η 

) 

Figure 2. Level curves for Y at the melting temperature (maxima at equal alti
tudes). Curves C and L are loci of rolling contact for a plane parallel to the Ψ axis. 
The dotted portion of the L curve corresponds to supercooled liquid, and it ends at a 

point with vertical tangent. 
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1. STILLINGER Water in Restrictive Geometries 17 

more these shifts, if viewed at constant β, will be associated with a change of relative 
altitude of those maxima. This latter effect causes the previously mentioned broaden
ing of the reversible thermodynamic transition with decreasing Ν to be accompanied by 
a shift to lower temperature. 

SUPERCOOLING 
Nucleating the crystal phase from liquid cooled just below the thermo

dynamic freezing point can kinetically be especially difficult in small clusters. This 
stems partly from the fact that impurity "seeds" are less likely to be present in any given 
cluster, and partly from the proportionality of homogeneous nucleation rates to the 
volume of the system. Consequently supercooling becomes the rule rather than the 
exception, and this fact has been useful in laboratory studies of supercooled water (7). 
It should be stressed that a range of Ν values evidently exists which on the one hand is 
small enough to prevent nucleation, while on the other hand it is large enough so that 
the intensive properties observed for the supercooled water are essentially independent 
of system size. 

Considering this situation it is thus useful in Figure 2 to continue the rolling 
loci through the respective maxima to map out metastable phase extensions. In princi
ple this is just as possible for Yc as for YL though melting of a crystal usually is 
immediately initiated at its already amorphous surface. [A water inclusion in the inte
rior of an A g i crystal, or some other epitaxial structure-promoter, might provide an 
exception.] The metastable extension for the liquid is indicated in Figure 2 as a dashed 
curve. 

The differential geometry of our constrained rolling contact demands that 
the contact loci cross the level curves only at points where the latter have tangents 
parallel to the Ψ axis. It is important to recognize that this requirement can lead to 
sudden disappearance of a locus. In mathematical terms the locus can suffer a "catas
trophe", with an endpoint that itself has a vertical tangent. Such a catastrophic endpoint 
hence would manifest a diverging rate of change with temperature of the concentration 
of ice-like structural elements measured by Ψ. 

The possible existence of an endpoint for the supercooled liquid locus is par
ticularly interesting in view of the experiments of Angell and coworkers (7,8,9,10). 
They find that pure water at ordinary pressures (even very finely dispersed) cannot 
apparently be supercooled below about - 4 0 <€, and that virtually all physical properties 
manifest an impending "lambda anomaly" at T5 = -45 V. The most striking features of 
this anomaly are the apparent divergences to infinity of isothermal compressibility, 
constant-pressure heat capacity, thermal expansion, and viscosity. We now seem to 
have in hand a qualitative basis for explaining these observations. 

The supercooled liquid catastrophe, if it exists, would necessarily be associ
ated with diverging fluctuations in the structural order parameter Ψ. This stems from 
the fact that the F surface develops a vanishing curvature in the Ψ direction as this 
endpoint is approached. Because the bicyclic octamer elements are bulky, fluctuations 
in their concentration amount to density fluctuations. Diverging density fluctuations 
then imply diverging isothermal compressibility. Furthermore the infinite slope of the 
metastable liquid locus at its endpoint implies the divergence of thermal expansion. 
Potential energy fluctuations remain essentially normal, so constant-volume heat capa
city remains small. But the volumetric divergence creates an unbounded constant-
pressure heat capacity. 

Thus far we have seen that differential geometry of the Κ(Θ,Ψ) surface can 
produce a metastable liquid catastrophe, not that it must. Demonstration of the latter 
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18 WATER IN POLYMERS 

will have to invoke the special character of the interactions in water, specifically the 
strong directionality of hydrogen bonding which produces tetrahedral coordination. 

The key observation seems to be that the structure-measuring octamer units 
ought to experience a mean attraction for one another in the liquid medium. They are 
in fact geometrically suited to link up through directed hydrogen bonds, and indeed it is 
so that the extended lattice of ice Ih can be entirely broken into bicyclic octamer units 
(11). In addition an isolated octamer unit embedded in a locale of strained and broken 
bonds would be in great jeopardy, for those neighboring defects would exert torques 
and forces that would distort it severely and often past the point where it would con
tinue to qualify for inclusion in Ψ. The net result is a statistical tendency of the surviv
ing octameric units to aggregate, and the lower the temperature the greater the degree 
of aggregation. 

This thermally-sensitive sorting out process will not segregate bicyclic octa
mers alone but will also include a few other types of well-bonded (and bulky!) species. 
Figure 3 shows two which qualify, each fused to an octamer without mutual distortion. 
The first includes pentagons; the second is a structure which appears in cubic ice. 
Because bonding arrangements such as these exist one must keep in mind that the 
strongly bonded aggregates are not automatically ice Ih fragments. 

The aggregation or clumping of bulky and well-bonded structures is clearly 
going to be a cooperative process, and as such it will produce long-range coarsening of 
the texture of the fluid medium. This process is entirely analogous to that which 
creates long-range fluctuations at the critical point of a condensing gas. In the present 
case it will produce divergent Ψ fluctuations as already discussed above. On structural 
grounds it appears most natural for the aggregates to grow in a dendritic, rather than 
globular, fashion. 

Just as in that analogous case of conventional critical fluctuations it is useful 
to introduce a correlation length ξ for the scale of inhomogeneity (12). In the present 
context ξ gives an average linear dimension for regions of anomalously high (or low) 
concentration of the structural units defining Ψ. As temperature declines for the super
cooled liquid ξ increases, becoming infinite at Ts. Since these structural fluctuations are 
also density fluctuations it should be possible in principle to detect them and to measure 
their size ξ by light scattering or small-angle X-ray scattering experiments on strongly 
supercooled water. In practice these experiments would probably be very difficult. 

The presence of strongly bonded regions, presumably composed of low-
mobility molecules, obviously will inhibit hydrodynamic flow just as polymer dissolved 
in low-molecular-weight solvent does. Furthermore this effect will amplify as tempera
ture declines. Thus it is not surprising that viscosity should experimentally diverge at 

It is in the nature of random mixing statistics for the various strongly-
bonded units in a low-density fluctuation region that several bicyclic octamers would 
occasionally link up to form a larger fragment of ice Ih. Such events become more and 
more likely in a given amount of supercooled liquid as temperature declines toward Ts. 
These multiple octamer structures are the most likely precursors of a nucleation event. 
Thus the supercooled liquid contains literally the seeds of its own destruction. This 
observation rationalizes the inability experimentally to supercool pure water below 
about —40 *€ without spontaneous freezing. The only way to avoid this fate seems to 
be to use much smaller clusters and high cooling rates; perhaps condensing clusters 
within thin film polymeric media might be a suitable preparative technique which would 
permit the required subsequent rapid cooling. 

The droplet size range for convenient observations of supercooling 

D
ow

nl
oa

de
d 

by
 P

R
IN

C
E

T
O

N
 U

N
IV

 o
n 

Fe
br

ua
ry

 3
, 2

01
4 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 A

ug
us

t 1
9,

 1
98

0 
| d

oi
: 1

0.
10

21
/b

k-
19

80
-0

12
7.

ch
00

1

In Water in Polymers; Rowland, S.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1980. 



1. STILLINGER Water in Restrictive Geometries 19 

Figure 3. Bonding of bicycic octamer 
units (heavy lines) to unstrained structures 
that do not occur in ice Ih. Oxygen atoms 
occur at vertices, and hydrogen bonds be
tween water molecules are illustrated only 
schematically by lines. In the lower part 
of the diagram the octamer is fused to a 

structure occurring in ice Ic. D
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20 WATER IN POLYMERS 

anomalies was mentioned earlier. Unfortunately this range shrinks as the temperature 
of measurement declines toward Ts. Firstly, the rapid increase in homogeneous nuclea
tion rate as temperature decreases places ever more stringent upper limits on droplet 
size. Secondly, the correlation length ξ must remain small compared to droplet diame
ter to maintain size-independence of intensive properties; but this causes the minimum 
permissible size to increase as Ts is approached from above. The situation seems inex
orably to draw a veil of unobservability about the lambda anomaly at T s, while still per
mitting the careful experimentalist to infer its properties by extrapolation. 

CONCLUSIONS 
It is appropriate to end this theoretical discourse with a statement about the 

future role of computer simulation studies, which have much to offer this field. Pure 
water has been the object of intense study by this approach and a lot has been learned 
(4,13). More recently molecular dynamics computer simulation has turned to the 
modelling of alkanes and polymers (14,15). It seems natural and inevitable to combine 
the two specialties to illuminate molecular motions and structure for water droplets in 
alkane or polymeric hosts. 

Thus far the Ν values feasible in digital computer simulation has fallen 
below those shown in Table I. The largest number that has been used to date is 1728 
(13). However rapid advances in computer technology, including especially parallel 
processing capabilities, are likely to increase this number by at least an order of magni
tude. That increase would cause overlap with the smallest cluster size considered in 
Table I. 

Specific polyhedral structures such as those in Figures 1 and 3 cannot be 
detected in the liquid phase by any known experimental method. However a digital 
computer can be instructed to identify these patterns in the course of a simulation 
study. The mean concentration of bicyclic octamer units could thus be determined at 
any given temperature, along with their tendency to aggregate in regions whose mean 
size ξ could also be determined. 

Studies of this sort could provide vital quantitative underpinning for the 
qualitative ideas presented here. The resulting expansion of knowledge ought to go far 
toward completing our understanding of melting and freezing in water, of its super
cooled state, and of its behavior in small clusters. 

A B S T R A C T 
When water is finely dispersed as an aerosol, an emulsion, or as small clus

ters in polymeric host media, its thermal behavior can deviate significantly from that 
exhibited by bulk water. The reasons for these deviations are examined, and a 
statistical-mechanical approach for their study is proposed. A rough estimate is 
obtained for the depression of the temperature of maximum mean density for small 
spherical droplets. A n explanation is advanced (in terms of specific structural fluctua
tions) for the singular behavior of strongly supercooled water that has been observed in 
emulsions near -40 °C by Angell and collaborators. 
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