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In order to study the behavior of surfactant solutions near their critical micelle concentrations (CMC's). the 
osmotic pressure and monomer concentration functions have been examined in the complex plane of total 
surfactant concentration y. By considering some simple models in detail it has been established that a locus of 
branch-point singularities for both functions intersects the positive real y axis at the CMC's. The proximity of 
the closest branch-point pair straddling the real axis is related on the one hand to mean micelle size. and on 
the other hand to the sharpness of the critical micelle phenomenon. A perturbation procedure has been 
constructed which can help to locate the physically important branch points near the positive real axis for the 
general ideal solution case. 

I. INTRODUCTION 

Aqueous solutions of micelle-forming surfactants 
(amphiphiles) exhibit an intriguing richness of behavior. 
Therefore it is hardly surprising that frequent and in
tense research effort has been expended to understand 
these systems. Furthermore that effort is justified by 
the importance of surfactants for topics as diverse as 
chemical catalysis, crude oil recovery, and membrane 
structure in biology. 1-3 

Considerable theoretical attention has already been 
devoted to developing a microscopic theory of micelle 
formation. 4

-
8 However progress has been hampered by 

general ignorance of the way that amphiphiles interact 
with one another and with the solvent, and of the distri
bution of micelle shapes. It has been our goal in the 
present work to develop a procedure which could help 
to infer the missing information from carefully executed 
experiments. 

To be specific, the micelles of interest here are those 
that form in dilute solution, and have finite size. We 
exclude from consideration aggregates that are infinite 
in one or more dimensions. Both ionic and non ionic 
surfactants are considered, however. 

The size range for finite micelles is rather variable. 
The number of molecules incorporated in the aggregates 
apparently can range from a few tens to several thou
sand. 9 The sudden appearance of micelles in the solu
tion at the critical micelle concentration (CMC) can be 
viewed as an arrested form of phase separation. Be
cause only finite numbers of surfactant molecules -clus
ter together (rather than the essentially infinite number 
in a true phase separation) properties only exhibit rapid 
continuous variations through the CMC range instead of 
mathematically Singular changes at an infinitely sharp 
transition point. Roughly, the larger the micelles being 
formed at the CMC the sharper will be the" transition." 
In any case the CMC is not precisely and uniquely de
fined, and its determination by different experimental 
methods can be expected to yield somewhat discrepant 
results. 

The present work was inspired by the Yang and Lee 
analysis of phase transitions in classical statistical 

a)Permanent address: Department of Physical Chemistry, The 
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mechanics, with emphasis on Ising modelS. 10 They 
established for their context the relevance of grand 
partition function zeros in the complex fugacity plane. 
We develop here an analogous connection for the com
plex concentration plane. We believe that a primary 
value of such an approach for the micelle problem is 
that it systematically relates measurable colligative 
properties (such as osmotic pressure) to the size dis
tribution for aggregates. A secondary value is that a 
precise set of points in the complex concentration plane 
is now associated with onset of micelle formation, to 
supplement the somewhat ill-defined "CMC." This lat
ter feature produces an interesting parallelism with 
quantum theory wherein finite-width resonance states 
are described in terms of complex energies. 11 

In order to retain maximum simpliCity and clarity we 
have restricted attention in this paper to surfactant 
solutions that are ideal with respect to the various spe
cies of aggregates. The corresponding 'starting equa
tions appear in Sec. II. We will return to the more gen
eral case of interacting species in a later paper. How
ever most of the important concepts and phenomena al
ready arise in the ideal case. 

Section III develops our formal theory in the Simple 
case of monodisperse micelles. Section IV then works 
out an extension of the monodisperse case to a special 
form of polydispersity. This is followed in Sec. V with 
a perturbation method for the general case, based on 
the extended example of Sec. IV. Section VI provides 
a numerical application of that perturbation method. 
The final Sec. VII discusses procedures for processing 
experimental data on osmotic pressures to yield mo
ments of the aggregate size distribution in the CMC re
gion. In addition Sec. VII also mentions several basic 
issues that must be confronted for future theoretical 
progress. 

II. BASIC RELATIONS 

In the ideal solution approximation we can write ex
pressions for osmotic pressure n and total surfactant 
number density Pt as follows: 

(2.1) 

~ 

Pt = z=jPJ (2.2) 
J=1 
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Here {3 stands for (kB Ttl, and Pj is the concentration of 
.i-molecule aggregates. In the case of nonionic surfac
tants these equations are adequate provided Pt is small 
enough that the volume fraction of surfactant in the solu
tion is much less than unity. A similar restriction also 
applies to ionic surfactants, but in addition it is neces
sary to have excess electrolyte present to limit ioniza
tion as Pt - 0; in this circumstance TI becomes the ex
cess osmotic pressure over that of the supporting elec
trolyte solution. In both of these cases the ideal solu
tion equations should give a valid description of the 
critical micelle concentration (CMC) range for many 
surfactants. 

The Pj for j> 1 can be written in terms of PI by intro
ducing nonnegative association constants K j : 

Pj =Kjp{ _ 

Therefore we have 
~ 

(3TI = L: K j p{ , 
j =1 

Pt = L: iKjp{ 
j=1 

(2.3) 

(2.4) 

(2.5) 

Here we have set KI = 1. Not all sets of K j will produce 
a sharp CMC; the theory should eventually tell which 
sets do. 

For the sake of mathematical Simplicity in the follow
ing analysis we introduce a scaling parameter a, with 
dimensions of concentration, by means of which dimen
sionless quantities can be defined: 

f = (3ll/a , y =pe/a, x=pt!a, fj =Kj aJ-l • (2.6) 

Hence 

f(x) =x+ L: fj xi , (2.7) 
j>1 

y(x) = x + L: ifj xi :; xf' (x) (2.8) 
j>1 

Appropriate choices for a will be specified below. 

Although the last equations have been written as though 
the reduced monomer concentration x were the funda
mental variable, that is not in accord with experiment. 
Instead it is the total concentration of surfactant which 
is under experimental control. Consequently we wish 
ultimately to findf(y) and x(y) from Eqs. (2.7) and 
(2.8). 

III. MONODISPERSE MICELLES 

It will be helpful to begin by examining the hypotheti
cal example of monodisperse micelles. For this case 
only one of the association constants will be nonvanish
ing, namely Kn. By setting 

we obtain 

f=x+x" , 

y=x+nx" • 

(3.1) 

(3.2) 

(3.3) 

This simple example exhibits characteristic CMC be-
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FIG. 1. Reduced osmotic pressure f vs reduced total concen
tration y for the monodisperse micelle model. In the case 
shown the aggregate size n = 100. 

havior even for modest n values. Figure 1 shows f 
plotted versus y for n = 100, with a clear (but continu
ous) transition for y "" O. 9. One finds that increasing n 
causes this transition to sharpen, and in the limit 
n - 00, f develops a discontinuous slope. 

Even though Eq. (3.3) is a relatively simple poly
nomial it is not possible to write down the inverse func
tion x( y) for arbitrary n. Yet it is this inverse function 
that is required in order to express the reduced osmotic 
pressure f in terms of y. Near the origin (x = 0) we can 
iterate (3.3) to find the following power series (conver
gent for sufficiently small y) 

x( y) = y - nyn + n3 y2n-1 - i n4(3n - 1) y3n-2 + • •• • (3.4) 

However this inverse function will fail to exist whenever 
y' (x) vanishes. These singular points lie on a circle in 
the complex x plane: 

y' (x) = 0 = 1 + n2 x"-1 , 

xk =n-2/ 1n - I )exp[27Ti(k+i)/(n-1)] , (3.5) 

where k can take on any n - 1 successive integer values 
such as 

k = 0, 1, 2, ... , n - 2 . (3.6) 

By substitution in Eq. (3.3) one finds that the corre
sponding y values also lie on a circle in the complex 
y plane: 

Yk:; y(xq ) = (n -1) n- In+1 )/ In-I) exp[27Ti(k + i)/(n - 1)]. (3.7) 

In the vicinity of any xk in the complex x plane we can 
write 

(3.8) 

where we know that the coefficient Ak does not vanish. 
Consequently the inverse function in this neighborhood 
must have the following branch-point behavior: 

x(y)=xk+A;I/2(y-Yk)I/2+0(y-Yk) • (3.9) 

By substitution in Eq. (3.2) we find thatf also possesses 
a branch-point with the same leading-order exponent i 
in the complex y plane: 
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FIG. 2. Branch points in the complex y plane for the mono
disperse micelle model, n = 100. The critical micelle region 
occurs where the locus of branch points (a circle for this ex
ample) intersects the real concentration axis. 

For n = 100, the Yk' Eq. (3.7), have the common 
modulus 0.902051. ... It is no accident that this radius 
(of the circle around which the Yk are evenly distrib
uted) is close to the real y value in Fig. 1 at which f . 
is changing its slope most rapidly. As y increases 
from zero along the positive real axis it eventually must 
pass from the interior to the exterior of the circle of 
branch points, slipping between the complex conjugate 
pair of branch points that most closely straddles the 
real axis. Figure 2 shows an enlarged view of this re
gion for n = 100. Evidently the behavior of f( y) within 
the branch-point circle is transformed by the passage 
to a substantially different behavior outside. 

The larger n becomes, the closer will be the nearest 
branch points to the real axis, and the sharper will be 
the transition. It is this "pinching" of the positive real 
axis both by complex zeros xk and by branch points Yk 
that is analogous to the behavior of grand partition func
tion zeros in the complex fugacity plane elucidated by 
Yang and Lee. 10 Indeed our variable x is essentially a 
fugacity. 

For large n it is possible to derive simple expres
sions for the behavior of f (y) in the CMC region. For 
this purpose we introduce a new variable Oi by the equa
tion 

x=r(l+Oi/n) , 

where 

r = n-2 / <n-ll 

(3.11) 

(3. 12) 

is the modulus of the xJ listed in Eq. (3.5). Then we 
have 

y(X) = r(l + Oi/n) + nr'(l + Oi/n)n 

- y(r) + (r/n) [Oi + exp(Oi) -1] . (3. 13) 

Similarly, 

f(x) =r(l + Oi/n) + rn(1 + Oi/n)n- f(r) + (r/n)Oi 

From these expressions it follows that 

df/dy = (r/n)dOi/dy = [1 +€Xp(Oi)Jl , 

and thereupon 

(3.14) 

(3.15) 

(3.16) 

The last four equations for y, f, and the derivatives 
f' (y) and f" (y) are written in parametric implicit form 
to be sure, however they allow us to draw some explicit 
conclusions. 

(1) If" (y) I achieves its maximum value when Oi 
= - In2, at which point 

(3.17) 

(2) At this point of maximum curvature in the f ver
sus y plot we have 

f'(y) =t (3.18) 

and 

y=y(r) _(ln2+i)/n1+2 /(n-ll (3.19) 

(3) By comparison the point y = y(r), the point on the 
real axis marking the radius of the branch-point circle, 
is located by 

f"( y) = - i n1+2 / (n-ll (3.20) 

and 

f'(y)=i (3.21) 

In principle these results Icould be regarded as neces
sary conditions that would have to be met by any real 
surfactant system in order for it to be described accu
rately by the ideal monodisperse micelle model. Since 

ijJE _ di3TI 
dy - dPt ' 

(3.22) 

a plot of i3TI versus Pt should display its maximum down
ward curvature when its slope is 2/3. If this criterion 
is met then the next step is to locate the Pt value at 
which the quantity (3.22) equals 1/2; this corresponds 
to y(r). At this point, 

d2i3TI 
yf"(y)=Pt--:;:rd =-(n+1)/8, (3.23) 

Pt 

which permits the micelle size to be inferred. Finally, 
using this latter PI value and the n just obtained the as
sociation constant may be calculated: 

Kn = [PI n~+;/GI-l)r-l . (3.24) 

It is unrealistic to expect micelles in real surfactant 
solutions to be monodisperse. Consequently it is im
probable that the necessary conditions just outlined 
would be satisfied for any given surfactant solution. 
Nevertheless the simple example just examined is valu
able in suggesting how to develop a more general theory. 

IV. MODEL POL YDISPERSITY 

Before passing on to the most general case it will be 
useful to examine an extension of the simple model con-
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sidered in the preceding section. This extension is de
fined by the following set of association constants (A ~ 0): 

(j = 1) , 

(4.1) 

=0 (n < j) • 

The prior monodisperse model is recovered by setting 
A = 0, in which case 

(4.2) 

The advantage of the extended form (4.1) is that it con
tinues to lead to clear-cut micelle formation with sizes 
comparable to n, while it permits polydispersity whose 
degree is variable and controlled by the parameter A. 
Furthermore this specific form is only moderately more 
difficult to analyze than its predecessor as the equations 
below reveal. 

By setting a=k- l [Eqs. (2.6)J we find 

(4.3) 

and 

n An-i xi 
(1 +n2 A n

-
l
) y(x) =x+nn! L '1 ( ')1 

i=l J. n - J • 

=x+n[(x+At -AnJ , (4.4) 

where we have recognized the binomial coefficients to 
collapse the sum to the latter form. 

Just as in the preceding case x( y) will be singular at 
points determined by the vanishing of y'(x). The result
ing branch points of j( y) will then be associated with the 
CMC region. From Eq. (4.4) we see that the' xk are de
termined by 

0= 1 + n2(x+ A)n-l , 

x k =n-21 In-l) exp[21Ti(k + t)/(n - 1) J - A , (4.5) 

where k is as before [Eq. (3.6) J. Therefore the only 
change involved is a shift of the circle of zeros to a new 
center, at x = - A. The corresponding Yk are 

Yk = Y(xk ) 

= (1 + n2 An-ltl [(n -1) n-l -2I In-l) 

X exp[21Ti(k + t )/(n - 1)]- A - nAn] . (4.6) 

Once again the Yk fall on a circle, and like the xk are 
shifted in the negative direction. This shift causes the 
angular aperture of the closest pair of y/s above and 
below the real axis to increase, and consequently we 
might expect the transition to become less sharp as A 
increases at fixed n. 

It is possible to show that 

n An-i 
(l+n2An- l )j(x)=x+n L~.- [(x+A)i _Ai]; (4.7) 

i-l J 

the identity of this expression to that shown in Eq. (4.3) 
can be demonstrated by expanding the summand and col
lecting terms of a given x order, along with use of the 
identity (for n ~ 1): 

t (j -1)! _ n! 
j=1 (j -Z)! - l(n -Z)! . 

(4.8) 

We are now in a pOSition to carry out the same type 
of parametric analysis as before. Set 

x=r(l+a/n)-A, (4.9) 

where r was defined earlier in Eq. (3.12). By substitu
ting thif;) in Eq. (4.4), we find for large n, 

y(x) = y(r - A) + (1 + n2 An-1t l (r/n) [a + exp(a) -1] . 
(4.10) 

When the same substitution i.s used for 1 in Eq. (4.7) 
the result is 

I(x) = j(r - A) + (1 + n2 An-l t 1(r/n) 

x {a + t (An-i /j) n[2In-nI1n-1»)[exp(ja/n) - 1 J } • 
j=l 

(4.11) 
Since the A = 0 limit corresponds to the case examined 

in the previous section with just one micelle size, it is 
clear that for small positive A only micelles with sizes 
close to n will be significant. For larger A the micelle 
size distribution will broaden and move toward smaller 
mean size. 

The subsequent analysis simplifies considerably by 
confining attention to the small A case, for which it is 
valid to set n2 An-1 to zero, and i/n to unity for the sig
nificant j values in the sum in Eq. (4.11). Hence we 
can write 

j(x) = j(r - A)+ (r/n) {a + rt>(A, n)[exp(a) - In , (4.12) 

where 
n-l 

rt>(A, n) = L Ak n2k11n
-1) /(n - k) (4.13) 

k=O 

From Eqs. (4.10) and (4.12) it is straightforward to 
show 

'!1.. _ 1 + rt> exp(a) . 
dy- l+exp(a) , 

~ n exp(a)(l - rt» 
dy = - r[1 + exp(a)]3 

(4.14) 

(4.15) 

Next one can find the a value that yields the maximum 
downward curvature in a plot of j versus y. From Eq: 
(4. 15) this is found to be 

(4.16) 

The value of the maximum downward curvahlre then is 
computed to be 

I"(y)=- n-nl+2/In-l) [1-rt>+0(rt>2)] 

At this point the slope is 

j'(y)=H1+trt>+0(rt>2)] 

(4.17) 

(4. 18) 

In contrast to these last two results we have the fol
lowing curvahlre and slope when a = 0: 

j"[y(r_A)]=_inl+2/In-1)(1_rt» , (4.19) 

(4.20) 

We are now in a position to see how experimental data 
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on j3IT versus Pt might in principal be analyzed in terms 
of our extended model. First, the Pt corresponding to 
maximum downward curvature in j3IT(Pt) must be identi
fied. At this point 

dj3IT/dPt"'i(1+iCP) , (4.21) 

from which I/> can be evaluated. For consistency, of 
course, this cp must be nonnegative. Next locate the 
Pt for which 

dj3IT = i (1 + CP) 
dPt 

at this concentration 

Pt ~ = - Hn + 1 - n1+2 ! (n-I).:l] (1 - CP) • 
dPt 

(4.22) 

(4.23) 

Given that cp has already been obtained, which constitutes 
one relation between nand.:l, Eq. (4.23) provides a sec
ond relation between nand .:l which thereupon permits 
both to be determined individually. Once again consis
tency requires the resulting .:l to be nonnegative. The 
last step is to use the latter Pt value to give the constant 
k that appears in Eq. (4.1) for the K i , specifically 

(4.24) 

The procedure just outlined constitutes a method for 
fitting a member of the three-parameter model family 
to experimental data. The net result of such a fit is an 
approximation to the exact branch-point locations in the 
complex concentration plane in terms of a uniform cir
cular distribution. 

V. GENERAL AGGREGATION MODEL 

Finally we return to the general Eqs. (2.7) and (2.8) 
for the ideal solution model. The special examples 
worked out in the two preceding sections indicate what 
features are likely to be most important. In particular 
we shall be interested in the location of branch points 
of I (y) most closely flanking the positive real axis, 
and in the way those branch pOints are related to the 
size distribution of the micellar aggregates. 

If a reasonably sharp CMC exists for which finite 
micelles are formed, then in that CMC range (and 
above) the size distribution for aggregates is most like
ly bimodal. That is, the terms in Eq. (2.7) for I (x) 
and in Eq. (2.8) for y(x) will be significant for the mono
mer and for those sizes j in the neighborhood of the mean 
aggregate size. The dispersion in the latter of course 
depends on the specific set of coefficients Ii under con
sideration. This bimodality is a characteristic of the 
example treated in Sec. IV, which suggests that it could 
serve as the basis for a perturbative analysiS of the gen
eral case. 

The starting point is the equation 

o = y'(x) = 1 + 2: j21i x'-l . 
i>l 

(5.1) 

This will not be a polynomial equation if the Ii beyond 
some order do not identically vanish. But from what 
has just been said about bimodality the very-high-order 
terms in Eq. (5.1) should be negligibly small when the 
variable x corresponds to the CMC range. While an 

infinite number of terms in Eq. (5.1) will produce an 
infinite number of zeros in the complex x plane, all but 
a few will be far removed from the CMC region on the 
positive real axis and thus may be disregarded. 

Define 

1
(Q)(.:l ) _ n2r(n).:ln- i 

i ,n - (1 + n2 .:In-i)j2r( j) r(n - j + 1) 
(5.2) 

By referring to Eq. (4.3) above we see that this is just 
the generic form of the coefficients that appear in the 
polydisperse model of the preceding Sec. IV. The re
placement of factorials by Euler gamma functions af
fords an extension from discrete n to a continuous varia
tion in this quantity. 

In order to assure the success of a perturbative ap
.proach it is necessary that the 1:°) be selected so as to 
be a close approximation to the Ii' There are three 
continuous variables at our disposal for this purpose. 
They are .:l, n, and the scaling parameter a that was 
used in Eq. (2.6) to generate reduced variables I, y, x 
and coefficients Ii for the perturbed problem. We can 
choose these variables so as to satisfy the following 
three moment conditions: 

(5.3) 

(5.4) 

(5.5) 

Notice that the first two of these, respectively, cause y 
and y' at x = r -.:l to be the same in the perturbed and 
in the unperturbed versions. 

Equation (5.1) may formally be written in the follow
ing manner: 

(5.6) 

where A is the perturbation parameter, eventually to be 
set equal to unity. For A = 0 the roots were given above 
in Eq. (4.5) and may now be denoted by x:O

). It is neces
sary to compute how these roots shift as A increases 
from zero to unity. We can write the formal series, 

(5.7) 

For many applications it should suffice to truncate this 
series after its second term. By substituting the last 
equation into Eq. (5.6) and then collecting terms ac
cording to order in A, we find in first order the follow
ing result for x:l): 

x:1) =Rk x~O) , 

Rk = -[2: lUi - 1;0») (x~O»)J-l]/·[l + 2: j3 I jD)(x:O»)J-l]. 
}>1 i>l 

(5.8) 
The factors Rk will generally be complex numbers. 

In the same first order of perturbation it is possible 
to locate in the complex y plane the images Yk of the 
roots xk • One finds 

(5.9) 
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where 

y~o) = y(x~o» , 

(5.10) 

The quantities yJO) were given above in Eq. (4.6). In 
the general case we can expect the perturbation will dis
tort the locus of y/s into a noncircular shape. 

Let U) be the following weighted average over aggre
gate sizes when x =r -.0. (which differs from the usual 
size average): 

(5.11) 

Notice that the monomers (j = 1) are excluded from 
these sums. On account of Eqs. (5.4) and (5.5), this 
expression would be unchanged if the 1:0) were all re
placed by the Ii' Using this average value we can then 
rearrange Eq. (5. 10) for y~l) into 

{ ( 
r ) }i-(i)+1 

x 1+ r-.o. [exp(illk)-l] , 

where 

Bk = 27r(k + ~)/(n - 1) 

It is reasonable to suppose that the quantities 

(fi - I JO»)(r - .o.)i 

(5.12) 

(5. 13) 

(5.14) 

appearing in Eq. (5.12) are negligibly small unless j is 
in the vicinity of U). This, coupled with the fact that 
most interest centers around small Bk , justifies use of 
the following truncated expansion: 

{ ( 
r ) }i-(J}+1 () 

1+ r-t:.. [exp(iBk)-l] "'l+(j-U)+l) r:.o. 

x [exp(iBk ) -1l+~ (j -U) + 1) (j _<j»(_r_)2 
r-.o. 

(5.15) 

Consequently Eq. (5.12) reduces to 

(1):::: .! (_r_)3 [ (.B ) -1]3 [r exp(iB.) - .o.J (J}-1 
Yk 6 r _ .0. exp t k r _ .0. 

(5.16) 

In obtaining this result the moment conditions (5.3)-
(5. 5) have been used to effect simplifications. Thus we 
see that displacements of branch point positions in the 
complex y plane depend upon the fourth moment of the 
size distribution difference at x = r - t:... 

Starting from Eq. (5.6) with ;\ =0, and then using a 
procedure analogous to that which produced Eq. (5.16), 
it is possible to conclude 

[
r exp(ill,.) -.0. J(i )-1 = _ [1 + n2 

.0."-1 ] 0 {[ (·B ) _ 1]2} 
r -.0. 1 _ n2 .0."-1 + exp t - . 

(5. 17) 
Therefore Eq. (5.16) can be further Simplified for those 
physically relevant branch points near the positive real 
axis (IBki small): 

(1) 1( r )3[1+n2.o."-IJ . 3 
Yk :::: -"6 r-.o. 1-n2.o."-1 [exp(tB_) -1] 

X Lj4 (fi - 1:0» (r - .o.)i . (5.18) 
i>1 

The key feature of this last Eq. (5.18) is the cubic 
factor containing Bk • For those most important y_ near 
the positive real axis with small phase angles B_ this 
factor will be proportional essentially to - iB:. While 
this will not change the radius of curvature of the locus 
at the positive real axis it will produce a cubic aberra
tion. Furthermore it will increase or decrease the 
spacing of the Yk along the locus according to whether 
the j sum is, respectively, negative or positive. Along 
the "backward" direction (Bk near ± 7r) the effect qualita
tively is to compress or to elongate the locus again re
spectively for negative and for positive j sum. 

The fact that the locus is perturbed only in cubic or 
higher order in the region where it is physically most 
significant (B_ '" 0) is directly attributable to impOSition 
of the three moment conditions (5.3)-(5.5). 

VI. NUMERICAL ILLUSTRATION 

In order to test the perturbation approach of the pre
ceding section we now examine a specific example. It 
is defined by the following association constants 

(j = 1) 

=kJ-l (465 jS 50) (6.1) 

= 0 (all other j) • 

Here k is a positive constant. After reducing variables 
in the manner of Eqs. (2.6) we have 

50 

I(x) =X+ L (kaY-l Xi , 
i=46 

50 

y(x) =x+ L j(ka)J-l xi • 
i=46 

(6.2) 

From results displayed in Sec. IV it is straightfor
ward to obtain the following expressions for moments in 
the unperturbed problem: 

L jl ?)(r - .0.)1 = [n(r" - .0.") - n2.o."-I(r - .0.)]/(1 + n2.o."-I) , 
i>1 

(6.3) 
L j'iJO)(r-.o.)i =n2(r_.o.)(r"-I_.o."-I)/(1+n2.o."-I) , 
i>1 

(6.4) 
L l I JO)(r - t:..)J = n2(r -.0.) [r"-1 - .0."-1 + (n - l)(r - .o.)r"-2]1 
i>1 

(6.5) 

L II JO)(r - .o.)J =n2(r - t:..) [r"-1 - .0."-1 + 3(n -l)(r - .o.)r"-2 
J>1 

+ (n - l)(n - 2)(r - .o.)2r "-3]/(1 + n2t:.."-I) • (6.6) 
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FIG. 3. Zeros of y'(x) in the complex x plane for the aggrega
tion model defined by Eq. (6.1). 

These have forms that are suitable for use with nonin
teger values of n. 

For any given value of ka it is elementary to evaluate 
the corresponding moments for the perturbed case shown 
in Eq. (6.2). These must then agree, respectively, 
with Eqs. (6.3), (6.4), and (6.5), according to the start
ing point of the perturbation procedure shown earlier 
in Eqs. (5.3), (5.4), and (5.5). Such agreement is pos
sible only for one set of values of ka, n, and A. We 
have found numerically that this set is: 

ka = 1. 002 165 

n=49.647 , 

A = O. 0342979 

(6.7) 

Furthermore the average defined by Eq. (5.11) is found 
to be 

(j) = 47.688 . (6.8) 

Figures 3 and 4 show, respectively, the roots of the 
49th degree polynomial for the perturbed problem 

y'(x) =0 (6.9) 

in the complex x plane, and their images in the complex 
y plane. Although there are four exceptions, most of 
these points fall on a locus that is nearly circular. In 
particular this circular shape obtains in the neighbor
hood of the crossing of the locus with the positive real 
axis in both planes, which emphasizes the relevance of 
the perturbative approach. 

Using Eq. (6.6) above we next obtain 

L j4{fJ - f JO»)(r - A)J = 0.045547 . 
J>l 

(6. 10) 

It is then possible to go on to calculate the branch point 
shifts according to formula (5.18). Table I shows some 
representative results. The first column lists the first 
few roots y~ of Eq. (6.9) just above the positive real y 
axis. The second column displays the corresponding 
y~O) for the unperturbed problem. Finally, column three 
gives the first-order perturbed positions y!O) + y!1) • 

TABLE 1. Branch point positions in the complex y plane for 
the association model defined by Eq. (G. 1). 

k Yk (exact) y~lI) Yk ll ) + y~1) 

0 0.7985 + O. 0539i O. 79tl5 + O. 0539i O. 79tl5 + O. 05:l9i 
1 0.7846 + O.1G07i 0.7846+ 0.1607i O. 7H4(j + O. 1607i 
2 0.7571 + O. 2651i 0.7571 + O. 264Hi 0.7570 + O. 2651i 
3 0.7163 + O. 3654i 0.7164 + O. 3645i 0.7159 + O. 3651i 

4 0.6628 + O. 4600i 0.6632 + O. 4582i 0.6620 + O. 4592i 

5 0.5974 + O. 5478i 0.5984 + O. 5442i O. 595b + O. 5456i 

The message conveyed by Table I is that for the given 
example the unperturbed positions y~O) provide an excel
lent approximation to the exact y~, at least in the physi
cally important forward direction. The perturbative 
corrections for these branch points are negligibly small. 
In the case of branch points with greater arguments the 
first order corrections become significant, but appar
ently ought to be supplemented by higher-order correc
tions as well. 

VII. DISCUSSION 

If it is granted that connections exist between (a) criti
cal micelle behavior of the osmotic pressure, (b) branch 
points in the complex concentration plane, and (c) the 
aggregate size distribution, the natural question arises 
about how experimental data for (a) should be processed 
to yield predictions about (b) and (c). The conclusion 
suggested by the foregoing is that the polydisperse mod
el developed in Sec. IV above may alone offer the most 
efficient procedure. It seems to us unlikely that experi
mental data will be precise enough to warrant a signifi
cantly more elaborate treatment. 

Section IV has already stated how the three basic pa
rameters (n, A., k) are to be inferred. These serve to 
locate branch-point singularities, and those closely 
spanning the positive real concentration axis should 

,,;.-

1 

12 

0.8 

• 
0.4 

0 

-0.4 

• 
-0.8-

-12 

1 1 1 

• • • • • • • 

••••••• • • • • • • • • • • • • • • • • • • • • • • 
••••••••• 

• 
-1.6 -1.2 -0.8 -0.4 o 0.4 0.8 

-

12 1.6 

FIG. 4. Branch point locations in the complex y plane for the 
aggregation model defined by Eq. (6. 1). 
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thereby have been reliably placed. Equations (6.3)
(6.6) subsequently yield four moments of the aggregate 
size distribution in closed form at the CMC. Other mo
ments could of course also be obtained from the model. 
In any case the naturally occurring conditions (5.3)
(5.5) in the perturbation theory can be interpreted to 
mean that the first three moments (6.3) -(6.5) will be 
particularly robust predictions that are largely im
mune to the special characteristics of the polydisperse 
model. 

Following the development presented above the pri
mary future demand on the theory is that it be extended 
to include solution nonideality. This requires accounting 
specifically for the interactions between aggregates. In 
principle those interactions can be handled in the statis
tical mechanical formalism by means of the Ursell
Mayer cluster expansion. 12 Our examination of this 
problem (to be reported in a later paper) indicates that 
complex-y-plane branch points are still fundamental to 
the locating and characterizing of CMC's though in cer
tain special cases their positions can be significantly 
affected by inter-aggregate interactions. The cluster 
expansion also appears to be useful for describing the 
behavior of ionic surfactants in the absence of excess 
supporting electrolyte. 

An important area of future concern must also be 
derivation of procedures to predict aggregate sizes, 
structures, and stabilities directly from knowledge of 
specific surfactant molecular structures and intermo
lecular forces. While this is no doubt an extremely dif
ficult task to carry out in a purely analytical fashion, 
computer simulation may have a powerful input to pro-

vide. In any case the formalism introduced in this pa
per should help to connect logically those molecular at
tributes to the macroscopic regime of measurable solu
tion properties. 

Finally, we mention our hope that the present work 
will stimulate experimentalists to generate precise 
osmotic pressure data, at closely spaced intervals 
thoughout the concentration range from zero to well be
yond the CMC, to permit a nontrivial test and applica
tion of our concepts. 
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