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The statistical mechanical theory of the density distribution through the liquid-vapor interface has been re
examined for single-component monatomic substances. Particles are covered by spheres with radii such that 
uncovered volume is globally connected throughout the vapor but disconnected throughout the liquid. This 
approach in turn allows: (1) identification of an "outermost layer" of particles on the liquid. (2) defmition of 
capillary wave collective coordinates for the surface, and (3) recognition of an "inherent density profile" for 
the interface that for T < T, retains finite width even as the gravitational field strength vanishes. This latter 
profile is free of any arbitary parameters (such as capillary wave cutoffs). is a nonmonotonic function of 
normal distance through the interface. and is expected to reflect the diverging bulk-phase correlation lengths 
as T --Te' 

\. INTRODUCTION 

Over fifteen years have passed since capillary waves 
were proposed as collective coordinates basic to deter
mination of the liquid-vapor interface profile. j Never
theless, their precise role in the statistical mechanical 
theory of phase coexistence has remained controversial. 
To a large extent, the controversy stems from the pre
diction of the capillary wave approach that in the conven
tional large system limit the interfacial width should in
crease as (_lng)1I2 when the gravitational constant g 
goes to zero. This seemingly contradicted the view, 
widely held even today, that an inherent density prOfile 
ought to exist independently of gravity. Such a profile 
is presumed to have a finite width dependent only on tem
perature, with divergence occurring only as the critical 
point is approached. The prototype for this latter point 
of view was supplied long ago by van der Waals, 2 and it 
has subsequently received many elaborations. Several 
review articles are available discussing both of these 
points of view, indicating their apparent merits and 
weaknesses. 3-5 However no fully satisfactory synthesia 
has emerged. 

From the standpoint of fundamental statistical mechan
ics of phase coexistence, the central problem concerns 
precise definition of collective capillary wave coordi
nates, their separation from the remainder of the many
body problem, and examination of the interface struc
ture when those capillary waves are constrained to zero 
amplitude (thus giving the "inherent density profile"). 
No artificial parameters should be introduced in the 
analysis (such as upper wave-vector cutoffs for capillary 
modes) which cannot naturally and uniquely be evaluated 
from molecular properties of the system itself. Even if 
such a theoretical program can be carried to completion, 
it is not a foregone conclusion that the resulting gravity
free inherent density profile will satisfy a functional 
equation of the van der Waals genre. 

The point of this paper is to propose an approach to 
interfacial structure which satisfies the above criteria. 
The inherent density profile that emerges is a nonmono
tonic function of normal distance through the interface, 
and for that reason the present method may be repugnant 
to adherents of the van der Waals tradition. 

Our analySiS begins in Sec. II with an examination of 
a special percolation process defined on the molecular 
distribution for the system in a state of liquid-vapor 
phase coexistence. This leads to identification of an 
outermost layer of molecules for the denser liquid phase. 
Section III introduces capillary waves uSing the coor
dinates of this outermost molecular layer. The areal 
density of the monolayer determines precisely the num
ber of available capillary waves and thereby eliminates 
any ambiguity connected with an upper cutoff for these 
modes. Section IV discusses the inherent density pro
file that emerges from the analysis in the g- 0 limit, 
streSSing the necessity that it be nonmonotonic. Fluc
tuations in capillary wave coordinates and their relation
ship to "bare" and experimental surface tensions for the 
interface form the subject for Sec. V. The final section 
(Sec. VI) offers discussion of several relevant issues, 
including the role that computer simulation might play in 
quantifying the theoretical ideas presented here. 

II. VOID PERCOLATION AND SURFACE PARTICLES 

The grand ensemble provides a convenient representa
tion for the coexisting liquid-vapor system. The corre
sponding grand partition function has the following form: 

ZG= t(yN /N!)jdrj'" JdrN exp(- (39Jt) , (2.1) 
N=O 

where as usual {3 stands for (kBT)-t, and y is the absolute 
activity. The total potential energy <P t includes both in
termolecular interactions <P and external field interac
tions U. 

N 

<pt(rj'" r N ) = <p(rt ••• rN) + L U(r j ) 

j=l 
(2.2) 

The external potential U in turn contains interaction with 
the container wall U w as well as the gravitational inter
action 

U(r) = Uw(r) + mgz . (2.3) 

Here m is the molecular mass, g is the gravitational 
constant, and the coordinate system has been aligned 
with its z axis along the gravitational "vertical. " 

The distribution of matter within the container de-
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scribed by U IIJ is specified by the Singlet density function 
p(1)(r). This function and its higher-order analogs p<2l, 
p(3), • " are given by the formal expression 

p(n)(rl • " rn) =z'(l ~) yN /(N - n)'] 
N=n 

(2.4) 

If Y is properly chosen for the given temperature then 
both liquid and vapor macroscopic phases can coexist 
within the system. The location of those phases is sen
sitive to the form of U. Gravity normally would cause 
the denser liquid to settle on the bottom of the vessel 
with the vapor above. However if gravity is sufficiently 
weak, or indeed absent altogether, then the distribution 
of the phases would be controlled by U"" and would de
pend specifically on whether or not the liquid could wet 
the vessel walls. 

For present purposes we will suppose that gravity 
controls the location of the phases, with liquid macro
scopically confined to the bottom of the container (g> 0). 
A way from the container walls the interface will be 
planar and horizontal and thus the Singlet density p(1) 

should depend only on the coordinate z. If g is small 
enough to allow one to disregard hydrostatic compres
sion within the bulk liquid and vapor, then p(1)(z) for in
creasing z should decline essentially from PI to p" (the 
coexisting liquid and vapor densities) over an interval 
defining the interfacial zone. It has been the contention 
of the capillary wave viewpoint that this zone width in
creases without bound as g- 0, reflecting instability of 
the interface in that limit with respect to long wavelength 
transverse distortions. 

For simpliCity in the following development we will 
assume that the molecules are spherically symmetric 
so that vectors rl ••• rN only specify positions. The 
case of nonspherical polyatomic molecules raises cer
tain technical complications not really germane to the 
basic matter at hand. It should be borne in mind how
ever that the presumption of spherical symmetry does 
not necessarily restrict cp to pairwise additive form. 

For any instantaneous configuration rl ••. rN of the 
molecules in the system surround the center of each 
molecule by a sphere with radius s. If the temperature 
T is well below its critical value Tc then P,» Pv, and a 
rather wide range of s values 

(2.5) 

will exist such that volume n uncovered by 5 spheres in 
the system is (a) globally connected throughout essen
tially all of the upper vapor phase, and (b) sparse and 
disconnected throughout the liquid phase. In the language 
of percolation processes, 6 we would say that n is above 
its percolation threshold in the vapor phase, but below 
that threshold in the liquid phase. Figure 1 provides a 
simple two-dimensional illustration. 

The lower limit SI in Eq. (2.5) is the point at which 
the disconnected voids in the interior of the liquid grow 
and merge to produce a globally connected region. 
Analogously s2 is the point at which s spheres in the 
vapor interior become so large that they disconnect n. 

VAPOR 

G o 

LIQUID 

FIG. 1. Covering of system molecules with s spheres. The 
radius s is chosen so that uncovered volume is globally con
nected over the vapor phase, but disconnected throughout the 
liquid. The outermost layer of particles on the liquid has been 
indicated by crosses. 

For any s satisfying Eq. (2. 5) there exist paths entirely 
in n that go all the way across the macroscopic vapor 
phase, while at the same time no such paths cross the 
macroscopic liquid phase. 

It must be stressed that sl and 52 are strictly speaking 
attributes of the homogeneous liquid and vapor phases, 
each at the respective coexistence density, in the infinite 
system limit (v- 00). These are the unique singular 
points at which the limit functions for the two phases 
(a = 1, v), 

w",(s) = 1im(Ln~(s)\ /V2 
, 

v .. ao i '//~ 
(2.6) 

change from positive at small s to identically zero at 
large s. The averaging indicated in this last equation 
is over all configurations of particles suitably weighted 
for the homogeneous phases, and the n, are the distinct 
connected pieces of uncovered volume in the respective 
phases. 

As T increases toward To the densities P, and Pv re
spectively decrease and increase toward the common 
limit Pc, the critical density. Correspondingly the limits 
sl(T) and 52(T) in Eq. (2.5) would be expected respec-
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tively to increase and to decrease as T rises, approach
ing a common value sc: 

Because we have 

sl(T)<sc<S2(T) , 

(2.7) 

(2.8) 

for all T < T c it is natural to choose Sc as the covering 
9phere radius at all temperatures. We shall utilize this 
unique choice throughout the remainder of this analysis. 

Because 0 becomes disconnected at the liquid surface 
there exists a set Ll of particles whose Sc spheres pro
vide the requisite interface-spanning boundary (at least 
this is true with overwhelming probability in the large 
system limit). This set has been indicated by crosses 
through particle centers in the schematic Fig. 1. The 
particles in Ll constitute an outermost layer on the liquid 
phase whose average number (N1) should be proportional 
to the nominal area of the liquid-vapor interface 

(2.9) 

Although the Ll layer of Sc spheres may contain folds, 
it is pore-free and each of those sa spheres is in contact 
with that macroscopic portion of 0 which pervades the 
vapor phase. 

Should a reason exist to do so it would be possible to 
define successive layer sets L 2, L 3, ••• , thereby resolv
ing the liquid phase into vertically stratified subsets. 
This could be accomplished in principle by peeling away 
a last-identified layer set, and examining the remaining 
particles for that group whose So spheres have thereby 
become freshly exposed. 

III. CAPILLARY WAVES 

Let (z) denote the average value of z for particles in 
set Lt. Although (z) should lie close to Zo, the position 
of the Gibbs dividing surface, 7 these quantities need not 
be equal. It is our intention to use the instantaneous 
vertical deviations from (z> of particles in Ll to define 
capillary wave coordinates. Specifically, the amplitude 
a(k) for the surface mode with wave vector k will be de
fined to be 

Nt 

a(k) == L (Z, - (z» exp(ik' u,) , 
1=1 (3.1) 

u, ;;; (X" y,) . 

Here we implicitly have assumed that the horizontal 
cross section of the system is rectangular and that the 
two-dimensional wave vectors k belong to the corre
sponding reciprocal lattice. 

The number of capillary waves (I k I s ~aJ) applicable 
to any system configuration clearly should be Nt, the 
number of particles in set L 1• This will vary from one 
configuration to another, and in that respect the capillary 
waves are no different from the fluctuating total number 
of particles N in the open system. In the large interface 
limit where k sums pass to integrals we can easily cal
culate the average maximum wave vector to be 

(3.2) 

It is not at aU obvious how nl and thus (k",u) will vary 
with T at fixed g> O. It is certainly true that as T rises 
from the triple point temperature T t the bulk liquid be
comes less dense (at least for normal liquids). That 
fact by itself would suggest that particles in Ll undergo 
lateral thermal expansion which would then reduce n1' 

However as T rises there is also an increasing tendency 
for cracks or fissures to open up in the surface of the 
liquid thereby exposing particles beneath (which then be
long to L 1). This latter effect clearly tends to increase 
nl' It is difficult to predict a priori which of these in
fluences predominates near T t' and the result may be 
sensitive to details of the intermolecular potential <I>. 
As a very tentative guess we speculate that the fissuring 
mechanism dominates near the critical temperature T c 

thus causing the mean number of capillary waves to in
crease there. 

Provided that <I> is bounded for all particle configura
tions not involving coincidence of positions (riJ = 0), then 
nl(T,g) probably could be made to increase without bound 
by increasing g indefinitely. The resulting hydrostatic 
compression of the liquid phase would extend to its 
outermost layer, so that L1 would consist of laterally 
very crowded particles. The reverse limit g- 0 is a 
more delicate matter but we will suppose (and this is 
supported by results below) that for every T < T c the 
areal density limit exists 

(3.3) 

It is worth stressing that the boundary to 0 provided 
by the Sc spheres of set Ll need not be at all simple. 
Overhangs, handles, tunnels, etc. can all be accommo
dated. Equation (3.1) continues in any case to supply a 
valid definition of the capillary wave amplitudes. 

IV. INHERENT DENSITY PROFILE 

We take the inherent density profile Po(z) to be the 
particle distribution subject to the vanishing of all a(k) 

Nl 

O==L(zl-(z»exp(ik.ul) . (4.1) 
1=1 

These conditions provide a set of Nl linear conditions on 
the Nl vertical deviations z, - (z). The determinant of 
coefficients in Eq. (4.1), 

(4.2) 

will only vanish for a special set of lateral positions 
Ul' 0 • uNt that has zero measure. With unit probability 
therefore the restraints of Eq. (4.1) require all members 
of L1 to inhabit precisely the horiZontal plane z == (z). 
This implies that Ll contributes a deltafunction compo
nent to Po(z), specifically 

n~O)5(z - (z» , (4.3) 

where nIO) is the areal density of particles in Ll subject 
to the constraints of Eq. (4.1). Because the surface is 
now free of area-increasing distortions which could per
mit it to accommodate more particles, we expect to have 

(4.4) 

The planar arrangement of particles in Ll amounts to 
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a wall against which the remainder of the liquid abuts. 
In such circumstances the expected distribution of par
ticles below the L j set at z = (z) is oscillatory but damped 
with increasing depth. 5 These successive maxima in 
Po(z) no doubt could be correlated strongly with distribu-
tions of members of the sets L 2, L 3, • " • 

For z> (z), Po(z) relaxes to a value characteristic of 
the vapor phase, but presumably with some local struc
ture near the interface. Far below Tc the predominating 
influence in the dilute vapor ought to be the net attraction 
each solitary particle feels for the semi-infinite bulk 
liquid phase. The corresponding mean potential varies 
as Z·3 (or with retardation effects taken into account, 
Z·4). Figure 2 indicates roughly how our inherent den
sity profile would appear for T not too close to T c' 

Notice that particles not in L j are, by construction, ex
cluded from the vicinity of z = (z). 

When T approaches Te by comparison, the liquid be
comes markedly less dense and would have less tendency 
to manifest oscillatory density fluctuations. Both liquid 
and vapor as bulk phases develop long-range density cor
relations whose characteristic size is measured by the 
correlation length ~ that diverges at Te. In this case, 
for small g, Po(z) is expected to approach respectively 
the bulk vapor or liquid density in an essentially expo
nential manner as z- po, with the same length ~ con
trOlling the approach rate. Figure 3 illustrates the form 
of Po(z) qualitatively expected in this critical regime. 

In neither case, Fig. 2 nor Fig. 3, does Po(z) have a 
monotonic shape associated with density prOfiles of the 
van der Waals type. Such monotonicity could conceivably 
obtain if Po(z) were suitably "smoothed." Weeks8 has 
suggested in effect that van der Waals profiles corre
spond to removal from complete statistical averaging 
only of those capillary waves whose wavelengthS exceed 
the bulk correlation length ~, i. e. , 

(4.5) 

This strategem would place the resulting profile PVdW(Z) 
in an intermediate position between our Po(z) and the 
observable quantity pC!l(z). On the one hand, PVdW(Z) 
would have less obviously oscillatory character at low 
temperature while continuing to exhibit ~ as its "width" 

LIQUID 

(Z) 

PARTICLES 
IN SET L\ 

VAPOR 

Z 

FIG. 2. Qualitative behavior of the inherent density profile 
when the temperature is well below T c' 

Pi r---__ 

Pc 
Pv 

(Z) 

PARTICLES 
IN SET L, 

Z 

FIG. 3. Qualitative behavior of the inherent density profile 
when g is small and the system is close to critical. The bulk
phase correlation length has been denoted by ~. 

near Te. On the other hand, it is free of the unbounded 
widening that pC11(Z) displays as g- O. Whether or not 
PVdwi.Z) satisfies a functional equation of the van der 
Waals type is a question outSide the scope of this article. 

V. SURFACE TENSION 

If we remove only the one constraint in Eq. (4.1) cor
responding to the capillary wave coordinate a(k) this 
mode will begin to execute thermal fluctuations. In the 
g regime relevant to laboratory experiments it then 
makes sense to appeal to the format of the usual capil
lary wave model! to write 

< \ a(k) \2>0 = Hniol)2AkBT I[Yo(k)k2 + mg~p1 , 

~P=PI-Pv . 
(5.1) 

This defines the "bare" surface tension 'Yo(k) for the in
herent density profile. The limiting value 'Yo{O) for long 
wavelengths could be extracted from the stress tensor 
components for the inherent density profile. 

The bare surface tension function 'Yo(k) differs from 
the corresponding quantity 'Y(k) for the fully uncon
strained surface on account of interactions between 
capillary modes, and because of the inequality of Eq. 
(4.4). For this unconstrained situation the analog of Eq. 
(5.1)is 

(5.2) 

The experimentally measureable surface tension is to 
be iqentified as 

(5.3) 

and it can be extracted from the stress tensor compo
nents for the unconstrained interface with density pro
file p(1)(z). 

If Weeks' concept8 is correct that the van der Waals 
picture implicitly involves partial surface mode averag
ing [as indicated in Eq. (4.5»), then the corresponding 
YVdW would be expected to lie between 1'0(0) and y(O). 

It is a fundamental postulate of the capillary wave 
model! that small k modes act independently of one an
other. This implies in particular that 
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(J) \a(kJ) \2) "" IT (\a(kJ) \2) (5.4) 

provided all k J are distinct and IkJ 1- O. Deviations 
from this factored form when one or more of the k/ s is 
not small provides a measure of mode coupling. The 
diverging interface width as g- 0 mentioned in the Intro
duction rests on this postulate as well as on the validity 
of the specific "hydrodynamic" expression in Eq. (5.2). 

VI. DISCUSSION 

The liquid-vapor interface has been examined several 
times previously by means of computer simulation. 9-12 

While at least some of the results have been supportive 
of the capillary wave picture11 ,12 the analyses were not 
of course structured in the manner that the present paper 
would suggest. We believe that in the future it would be 
beneficial to introduce our se-sphere construction into 
such simulations, to identify the Ll surface-layer set, 
and to extract the inherent density profile Po(z). 

With regard to the value of So, it seems clear that 
some numerical experimentation would be necessary. 
In principle this would require an arbitrarily close ap
proach to the critical point, an admittedly difficult task 
for a finite-system simulation study. In practice it 
probably would suffice to work somewhat below Te (say 
O.9Te), at which point sl and S2 could be identified sepa
rately for the homogeneous liquid and vapor phases. In 
the spirit of the law of rectilinear diameters which states 
that near To 

Pc"" Hpl + Pv) (6.1) 

(the term linear in t.T = Te - T is small), it is reasonable 
to take 

(6.2) 

This approximate se should be quite adequate for use in 
the inhomogeneous system near the triple point tempera
ture Tt' 

Although it might require substantial programming 
skill to accomplish, a recognition algorithm would next 
need to be implemented to identify the surface-layer set 
L l • The distribution of Nt would then follow, and that of 
kmax could be inferred. 

The Monte Carlo simulation technique appears to be 
well suited to determination of the inherent density pro
file. As an initial condition some appropriate number 
Nt of particles would be confined to a plane (z = (z», with 
no gaps between their Sc spheres. Subsequent configu
rational moves would then be carried out in the usual 
fashion except that any move would have to be rejected 
which (a) opened a gap in the se -sphere barrier provided 

by set L., or (b) tried to add a particle to L1 off of the 
z =(z) plane. The N1 members of L t naturally would be 
subject only to lateral moves. After an appropriate 
equilibration period, subsequent averaging over the con
figurations generated would yield an inherent density 
profile for the chosen Nt. 

From the standpoint of the underlying theory, the case 
of immiscible liquids offers an interesting conceptual 
challenge. If A and B denote the two species involved, 
then there is ambiguity over which, or whether both, 
should be employed to define capillary wave modes for 
the liquid-liquid interface. By conSidering each species 
separately, two distinct covering sphere radii SeA and 
seB could be defined in terms of the uncovered-volume 
percolation processes at the critical mixing point. Then 
the respective first-layer sets LiA and LtB could be 
identified, with respective mean positions (Z)A and (Z)B' 
How then are capillary wave modes best to be defined in 
generalizing Eq. (4.1) above? Should the Lu and L1B 
particles be treated symmetrically in such a mode defi
nition? Should two surface mode branches be distin
guished with A' s and B's moving normal to the surface 
respectively in phase and out of phase? These fascinat
ing questions will have to await deeper understanding of 
interfacial structure and dynamics before answers can 
confidently be supplied. 
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