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Hidden structure in liquids
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The canonical partition function for classical many-body systems is transformed so that

the temperature-independent packing statistics and the thermal excitations are uniquely

separated. This requires classification of particle configurations according to multidimen-

sional potential-energy minima that can be reached by steepest-descent paths
("quenches"). Such classifications have been constructed for several starting configura-

tions in the solid, fluid, and coexistence phases of the two-dimensional Gaussian core

model. These quenches reveal a remarkable degree of polycrystalline order hidden within

the fluid phase by "vibrational" distortion, and that order appears to have a large correla-

tion length. The results suggest that melting hinges upon defect softening in the

quenched packings, and a crude "theory" of melting for the Gaussian core model is

developed in the Appendix.

I. BACKGROUND

The melting of crystalline solids causes configu-
rational regularity at the molecular level to be re-

placed by substantial disorder. This change is vi-

vidly revealed by x-ray- or neutron-diffraction ex-

periments wherein Bragg reflections characteristic
of the crystal disappear. No less vivid is the huge
increase in the self-diffusion constant upon melt-

ing, which depends upon the diversity of packing
structures available to molecules in the liquid

(compared to the crystal} and the ease of transition
between those structures.

The present paper follows the long tradition of
attempting to bring conceptual order to the disor-

dered liquid state. The key feature introduced in

this approach is a configurational mapping where-

by arbitrary sets of molecular positions are re-

ferred, essentially uniquely, to relative minima on

the potential-energy hypersurface for the many-

body system. ' This mapping is generated by a

quenching operation that follows steepest-descent

paths on the hypersurface; details appear in Sec. II.
The configurational mapping separates the

statistical-mechanical description of the many-body

system fundamentally into two distinct parts. In
loose terminology these are the mechanically stable

packing part (all particles free of net force and

torque), and the vibrational part. Temperature ap-
pears explicitly only in the latter. Section III
shows how this separation causes the canonical
partition function to transform formally from a

multidimensional integral over all configurational
coordinates to a one-dimensional integral over po-
tential energy. This new partition function repre-
sentation is convenient in some respects for under-

standing the melting transition itself, as later re-

marks indicate.
We have carried out portions of this general pro-

gram by specific numerical calculations on the
Gaussian core model ' in two dimensions. Re-
sults are displayed and discussed in Sec. IV. By
undertaking the quenching operation from several

initial thermodynamic states we seem to have es-

tablished that a remarkable polycrystalline order
lies hidden in the fluid phase, heavily obscured
from view in the thermodynamic state by the dis-

tracting influence of vibrations. Not surprisingly,
the quenching out of these vibrations causes the
pair-correlation functions to sharpen and to re-

structure in a manner consistent with that polycry-
stalline order. Barring the possibility of "hexatic"
phases ' as the initial starting point, we believe
that the hidden polycrystalline order is not peculiar
to the Gaussian core model but would be revealed
for any two-dimensional system with central pair
potentials.

The idea of resolving observable order in liquids
into a vibrational part and an inherent structural
part is not new. It certainly underlies the study of
pair-correlation functions evaluated from time-
averaged particle positions in computer simulations
using molecular dynamics. ' It also underlies the
experimenta1 strategy that examines low-
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temperature amorphous ice for clues to hydrogen
bond order in liquid water. From an unremitting-

ly theoretical viewpoint the present quenching pro-
cedure seems to be the most straightforward op-
tion, and it is free of arbitrariness such as coordi-
nate averaging times.

The specific results obtained for the Gaussian
core model suggest a simple view of two-dirnen-

sional melting that is explored in the Appendix.
While the calculation offered there is admittedly
crude, it suggests (we believe correctly) that the
first-order melting process depends fundamentally
on softening of the regular crystal by disorder.

II. CONFIGURATIONAL MAPPING

We consider a set of N rnolecules confined to a
fixed containment region V. For present purposes
it is irrelevant whether containment results from
specific wall forces or by imposition of periodic
boundary conditions. For each molecule 1 &j &N,
the vector rj will give the configurational coordi-
nates; if j contains v nuclei and D is the space di-

mension rz will possess vD components.
Let 4(r &, . . . ,rz) denote the system potential-

energy function. It will, in general, include in-

tramolecular bond potentials, intermolecular in-

teractions, and wall potentials (if any). We will

suppose that 4 is bounded and differentiable for
all configurations r:—r &, . . . ,rz not involving
coincidence of nuclei.

Within the purview of classical mechanics the
time evolution of the system (in mass-reduced time
units) normally follows the Newtonian equations

r= —V4. (2.l)

We shall be concerned instead with the correspond-
ing first order evolution e-quations

r= —V4, (2.2)

which describe steepest-descent paths on the mul-

tidirnensional 4 hypersurface. Excepting certain
unimportant cases with zero measure, Eq. (2.2)
connects any starting point r in the configuration
space uniquely to a local minimum of 4. By this
means we generate a mapping M(r ) from the con-
tinuum r onto the discrete set of minima which
can be indexed by a:

constant. It is appropriate to view the correspond-

ing dissipative motion as a quench since both
kinetic and potential energy are being removed un-

til the system comes to rest. In the large damping
limit [i.e., Eq. (2.2)] the quench is so effective that
the system is never able to surmount a potential-

energy barrier. Instead, the system is forever

trapped in the neighborhood of the same relative
minimum a where it found itself at the beginning

of the quench. Since no annealing (barrier hop-

ping) is possible during the course of steepest des-

cents, the mapping M can informally be regarded

as the operation of an infinitely rapid quench to
absolute zero temperature.

Let R (a) denote the set of system configurations
r which quench to local minimum a; that is, the

region in the vDN-dimensional configuration space
which satisfies mapping (2.3) for given a. Obvi-

ously, each R (a) is connected, for any two points

in its interior are each connected to the minimum

a and, therefore, to one another by a path within

R (a). We cannot say under general circumstances
that the R (a) are convex. Indeed, it may happen
that they are multiply connected, though that can
occur only if a saddle point exists within the interi-

or of R (a) at which the quench paths bifurcate.
Boundaries separating distinct quench regions

are (vDN-I)-dimensional hypersurfaces. Their un-

ion constitutes the zero measure set of system con-

figurations for which mapping M is undefined.

Many pairs of mechanically stable particle pack-
ings will be identical except for particle permuta-
tion. For conceptual simplicity it makes sense to
group packings and their associated quench regions
into equivalence classes. We can write the number

of members in any such equivalence class as N!/cr.
The symmetry number o. will be unity for all pack-
ings that are rigidly confined by wall forces. By
contrast, periodic boundary conditions permit free
translation of packings that for a periodic crystal-
line array allow any one particle to be moved to
the position of any other without changing 4, and

for this case o.=N. Yet other circumstances can
be devised for which 0. would lie between these ex-
treme values 1 and N.

III. TRANSFORMED PARTITION
FUNCTION

M(r)=a . (2.3)

The steepest-descent paths are limiting solutions
for the Newtonian equations (2.1) augmented by a
first-order damping term with very large damping (3.1)

The canonical partition function for N structure-
less particles at inverse temperature P= I lkii T is

Ziv=(A. N!) ' f exp[ —P@(r)]dr .
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Here, A, is the mean thermal de Broglie wavelength.
We shall now transform Zz from this conventional
representation to a less familiar but conceptually
useful alternative, based on the considerations of
Sec. II.

First, we break the configurational integral in
Eq. (3.1) into separate contributions from each of
the quench regions R (a):

Z~ ——(A, N!) 'g f exp[ —P@(r)]dr .

@(r}=4+6 4(r}, (3.4)

where 4~ is the value of the potential-energy func-
tion at local minimum a, and the non-negative
quantity 6 4 measures potential energy from that
minimum. Consequently,

Z~ A—g—',[cr( a)] 'exp( —P4 )

X f exp[ —Pb, 4(r)]dr .

(3.5)

Notice that the evaluation of Z~ here has been
separated into two parts, namely, the identification
of all distinct (temperature-independent) packings,
and the thermal excitation of each of those pack-
ings within their own regions R (a).

The most effective way to describe the large sys-
tem limit utilizes the potential energy per particle

P as the basic variable. Insofar as the mechanical-
ly stable packings are concerned the system will
have its potential per particle confined between fin-
ite limits:

(3.6)

The lower limit corresponds to the ordered crystal
that has absolute stability at zero absolute tempera-
ture. At the other extreme there exists presumably
some "worst" packing that puts particles in a
mechanically stable configuration with P„as the
potential per particle. The vast majority of pack-

(3.2)
As remarked earlier, it is convenient to treat to-
gether members of R (a}equivalence classes. If we
select one quench region from each equivalence
class to sum over (indicated by a primed summa-
tion) then Eq. (3.2) is trivially modified to the fol-
lowing:

Z~=A, g'[o(a}] ' f exp[ P4(r)]d—r .
a

(3.3)

Within any region R (a) we can write

ings lie between these extremes with some distribu-
tion of ((l values which we will denote by G(P), a
density of packing states along the P axis. It
should be kept in mind that this density of states
enumerates only distinct packings, i.e., packing
equivalence classes. Obviously, we have the fol-
lowing formal expression:

G((('i}=g 5(!{i—@ /N} ja(a) . (3.7)

lim g(P) = —~,
4'p

lim g(t())= —~ .
(3.9)

The collection of thermal excitation integrals ap-
pearing in the Zz expression (3.5) can be treated in
the same asymptotic order. We can group togeth-
er, and average, results for packings whose minima
have energies lying within a narrow range about
any preselected value NP. The corresponding

In the event that the total potential energy 4(r )

is composed of short-range particle interactions it
is reasonable to suppose that conversions from one
packing to another could be effected by sequences
of localized particle rearrangements. If a very
large system were imagined subdivided into cells,
each large compared to the particle neighbor spac-
ing, then rearrangements within each cell could
largely be carried out independently of those in the
other cells. The overall number of packings could
then be reckoned as multiplicative over the cells, at
least in leading order. One thus concludes that for
large N the total number of distinguishable pack-
ings (equivalence classes} should be exponential in
N. A more accurate version of this argument
would account for interactions between neighbor-
ing cells, but since the effect of such interactions
loses relative importance as cell size increases, it
seems difficult to avoid the same conclusion that
the total number of distinguishable packings rises
exponentially with increasing N at fixed density.

We take this last result to indicate that the
density-of-states function G (P) likewise is essen-
tially exponential in N. First, understanding that
some suitable coarse graining is applied to smooth
out the Dirac 5 functions appearing in Eq. (3.7),
we write for large N,

InG(((l) -Ng(P) . (3.8)

It seems reasonable to suppose that g (P) is at least
continuous within the interior of the interval (3.6),
and that rarity of possible packings near the end-

points of that interval requires
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free-energy per particle f is defined by

f(P,P) = —lim (NP) 'ln
N~oo

X(f exp[ —pb 4(r)]dr) .

It suffices to employ a maximum-integrand
evaluation in Eq. (3.11) in order to obtain the
system's free-energy correct to order N. In other
words, if P is the solution to

g(P) PP Pf—(P,P—) =max

for given density and temperature, then

InZiv -N[g(P ) I3$ Pf(—P,P )]—.

(3.12)

(3.13)

It is worth stressing at this stage that P is the
average potential per particle that would be ob-
tained by quenching a collection of system configu-
rations randomly selected from the thermodynamic
equilibrium state at P and the fixed density. Es-
tablishing how quenching causes the thermo-
dynamic average potential per particle P(P) to map
onto the corresponding P for the starting tem-

perature is one of the obvious goals of this general
approach. The nature of this latter mapping
through the melting transition clearly has consider-
able importance.

(3.10)

Just as will be the case for the coarse graining used
to define g above, the width of the P integral over
which the average in this last equation is to be car-
ried out can go to zero as N diverges.

In view of these asymptotic considerations the
partition function expression (3.5) may be rewritten

ZN &-' f, ' exp[ &[K((() W' Pf(P 4)1 ]d0
4'p

(3.11)

sional ' '" and two-dimensional versions. We
shall rely on the latter as a starting point for test-
ing the quenching procedure advocated in the
preceding sections. Specifically, N =780 particles
are involved in our two-dimensional calculations,
subject to periodic boundary conditions. The fun-
damental cell containing the 780 particles is rec-
tangular, with a side ratio of 15i/3/26
=0.99926. . . so that an unstrained triangular ar-

ray with 30 rows of 26 particles will just fit. The
reduced density throughout this work has the fixed
value

2
—1/2 (4.2)

The single most important attribute of the D =2
Gaussian core model is that it exhibits a first-order
melting transition. Under the fixed density condi-
tion (4.2) we have previously identified the coex-
istence region as (T'= I/P)

6.6X10 '&T'&7.2X10 '. (4.3)

0 500—

0 499 & CRYSTAL

o HEATING

o COOLING

0.498—

0.497—

0.496—

In the course of our simulation studies we have
found that hysteresis effects (superheated crystal,
supercooled fluid) could be generated by relatively
rapid temperature changes through region (4.3).
However, it is within the capacity of available

computing power to avoid such effects with suffi-

ciently slow temperature variation. Figure 1 shows
some pressure results through the transition region
calculated during one cooling and reheating se-

IV. TWO-DIMENSIONAL GAUSSIAN

CORE SYSTEM

The Gaussian core model is defined by the
potential-energy function

4(r )=+exp( r,j ) . — (4.1)

Using the method of molecular dynamics the clas-
sical statistical mechanics of this system has been
numerically investigated in both three-dimen-

0.495— 0
FLUID

0494 i I i I i I & I i I i I & I

0 2 4 6 8 10 12 14 16

10' T"

FIG. 1. Pressure vs temperature for the two-
dimensional Gaussian core model. Data only from a
single cooling-heating sequence are shown explicitly.
Dashed curves show previous results inferred for the
two pure phases. The reduced density is 3 ' . Pres-
sure drop upon melting is characteristic of the Gaussian
core model in both two and three dimensions if the den-
sity is sufficiently high.
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ht* =1.25 X 10 (4.4)

While it is possible to continue this integration
procedure essentially to the quench end point, ex-
perience shows this to be inefficient. Thus, after
an initial phase which exhibits most of the
potential-energy reduction we convert to an effi-
cient function minimization routine involving the
conjugate gradient technique. '

By monitoring the course of the quenches from
start to finish it becomes clear that complex sys-
tem reorganization can be involved. Figure 2
shows for starting configuration J how the "tem-
perature" [i.e., mean kinetic energy per particle as

quence. While numerical fluctuations obviously
are present it appears that substantially the same
curve has been traced in both directions.

Twelve system configurations were selected and
quenched. They are listed in Table I as A —L,
where the thermodynamic state that supplied each
one is identified. Those thermodynamic states in-
clude both crystalline and fluid cases, as well as
three examples (C, D, and E) chosen from the
coexistence region. We have found in the course
of the molecular-dynamics study that phase coex-
istence is relatively easy to prepare and to maintain
in this two-dimensional system.

Table II shows the potential energies achieved by
quenching each of the 12 configurations. Brief
descriptions are supplied for the final system struc-
tures, some details of which are discussed below
(including definition of disorder parameter n5).

Our numerical procedure for carrying out the
quenching begins by solving Eq. (2.1) directly, us-

ing a fourth-order algorithm due to Gear' and a
time increment +nj 6N, —— (4.5)

where n& is the number of nearest-neighbor po-
lygons with j sides. Thus, any disruption of the
perfect triangular crystal which creates, say, a set
of pentagons must compensate by simultaneously
creating an appropriately weighted set of polygons
having more than six sides.

Figure 3 shows configuration H (see Table I),
which was selected at random from a molecular
dynamics run for the homogeneous fluid phase just
above its melting point. Each of the 780 particles
in the fundamental cell is shown in a way which
indicates how many sides its nearest-neighbor po-
lygon possesses. For simplicity, all "sixes" have
been rendered simply as asterisks. The picture

determined by the solution to Eq. (2.2)] varies as
quenching causes 4 to decline. Instead of a simple
relaxation behavior which would produce a linear
curve in the given 4 vs T* representation, a com-
plicated meander emerges. This kind of behavior
unfortunately makes the numerical contruction of
quenches for the given system a rather demanding
task regardless of the algorithm used, and it has
severely limited the number of quenches we have
been able to construct.

The assignment of nearest-neighbor polygons to
particles is a convenient way to reveal and to
analyze structural disorder in two-dimensional sys-
tems. ' All particles inhabit hexagonal polygons
in the defect-free triangular lattice that obtains at
the low-temperature limit. The presence of
nonhexagonal nearest-neighbor polygons (disclina-
tions) indicates disorder. It is a topological necessi-

ty ' that for any particle configuration in the sys-
tem

Name

TABLE I. Configurations selected for quenching.

p'X 10 Phase

A
B
C
D
E
F
6
H
I
J
K
L

4.9950X 10
1.5579 X 10
6.9402X10 3

6.9584X 10
6.9726 X 10
6.9939X 10-'
7.0010X10 '
7.4083X10 3

8.7026 X 10
1.5429 X 10-'
3.4700 X 10

1.7378

4.989470
4.992 581
4.957 388
4.968 400
4.964 738
4.954 683
4.980 190
4.954 778
4.952 711
4.952 522
4.995 280

14.876 84

323.48044
323.395 12
330.540 26
329.866 29
330.11934
330.750 20
329.17923
331.11366
332.342 44
337.959 16
351.577 43

590.599 30

Rotated crystal, two interstitials
Aligned crystal

Coexistence
Coexistence
Coexistence

Slightly supercooled fluid
Superheated aligned crystal

Fluid
Fluid
Fluid

Hot fluid

Nearly ideal gas
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TABLE II. Quenched configurations.

Name n5 Structure

A
B
C
D
E
F
G
H
I
J
K
L

323.442 65
323.273 43
323.273 43
323.392 98
323.41800
323.442 02
323.273 43
324.093 27
323.509 46
323.514 84
323.709 75
323.947 11

4
0
0
2
2
4
0

21
4
4
9

16

Rotated crystal, two interstitials
Perfect aligned crystal
Perfect aligned crystal

Two nearby dislocations
Two separated dislocations

Rotated crystal, two interstitials
Perfect aligned crystal

Two antiparallel grain boundaries
Four dislocations

Four dislocations, slightly rotated grain
Two antiparallel grain boundaries

Enclosed grain

presented is typical of the fluid in this temperature
range. While the majority of particles have six
neighbors, substantial numbers have five or seven

and, infrequently, cases of four or eight will be en-

countered. While the spatial distribution of these
various coordination species is clearly inhomogene-
ous at any given instant, no simple description of
the topological texture immediately suggests itself.

Figure 4 presents the structure that develops
from configuration H in Fig. 3 as a result of
quenching. The simplification produced is dramat-
ic. The number of nonhexagonal particles drops
sharply, and those that are left show a rather clear
pattern of alternating five's and seven's along paths
across the periodic unit cell. A close 5-7 pair of
disclinations constitutes a dislocation, ' and a
curvilinear sequence of oriented (heat-to-tail) dislo-

324 40—

324 30—

324 20—

324 10—e

~ 32400—
Z

c 32390—
I-
Z
+ 32380—0

323.70

32360~
323.50

0

FIG. 2. Potential energy vs temperature during
quench of the fluid configuration J.

cations constitutes a grain boundary between cry-
stalline domains. ' The angle of rotation between
neighboring domains is related to the mean separa-
tion between dislocations on the boundary. Evi-
dently, the quenching operation has managed to re-
veal a polycrystalline structure that lay hidden in
the starting configuration due to thermal disrup-
tion.

In all of the quenches we have carried out the fi-
nal result has contained only polygons with five,
six, or seven sides. The conservation condition
(4.5) thence requires equal numbers of pentagons
(n5) and heptagons (n7). We have found it con-
venient to classify quench packings by their n5
values as a measure of overall disorder. These
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FIG. 3. Particle arrangement for configuration H.
This was selected at random from the fluid just above
its freezing point. Particles are classified according to
nearest-neighbor polygons; asterisks imply hexagons
while integers specify polygon side counts for nonhexag-
onal cases.
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FIG 4 Quenched stmcture pr~uc~ from ~nfigu
ration H.

values have been entered in Table II.
Figure 9 exhibits the quench packing that em-

erges from configuration L. The starting point in
this case was an extremely hot gas at about 240
times the freezing temperature. At his high tem-
perature, particles interpenetrate deeply upon collitt

sion, and we find for this thermodynamic state
that the pair-correlation function at zero separation
has the value

g"'(r =0)=0.65 . (4.6)

From Fig. 5 one concludes that hidden under the
nearly ideal-gas configuration is once again a po-
lycrystalline structure. In contrast to the anti-
parallel pair of grain boundaries that ran across the
system in the packing shown in Fig. 4, the grain
boundary closes on itself to yield an enclosed crys-
tallite in a surrounding matrix, rather than a
system-spanning strip.

The particle packings produced from fluid states
do not always obviously have polycrystalline char-
acter. Figure 6 shows the result obtained by
quenching configuration I, wherein four disloca-
tions appear. When the slightly supercooled fluid
configuration F is quenched, the result, shown in

Fig. 7, consists of a rotated crystal that in defect-
free form would contain 778 particles; the two ex-

cess particles are present as locally relaxed intersti-
tials whose positions are revealed by compact 7-5-
7-5 tetrads.

While the aligned perfect crystal can emerge
from the positive-temperature equilibrium crystal
(B), the superheated crystal (G), and even the coex-
istence state (C), this is not the only option. First-

ly, a distinguishable (but nearly isoenergetic) cry-
stal rotated by 90' can spontaneously form by
freezing the fluid phase to the solid; subsequent

quenching of the solid will only damp out phonon
modes in such a structurally perfect but still rotat-
ed crystal. Secondly, there is a good chance (we

estimate about —,) that spontaneous freezing will

create a rnisaligned solid, the quenched version of
which has already been shown in Fig. 7. Whether
an aligned or misaligned crystal forms in a
molecular-dynamics sequence which cools the sys-
tem slowly through the transition region is a
rnatter of chance. But once the choice has been
made it is very difficult for the system to convert
to the other option by solid-phase annealing. In-
stead, it is, practically speaking, always necessary
to remelt and refreeze.

Figure 8 shows the quenched structure stemming
from confguration A. The latter was spontaneous-
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FIG. 5. Quenched structure produced from the very
hot fluid configuration L.
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FIG. 6. Structure produced by quenching configura-
tion I. The separated 5 and 7 disclinations at lower-
and upper-right corners are actually neighbors due to
the periodic boundary conditions.
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FIG. 7. Rotated crystal containing two interstitials
that is produced by quenching supercooled fluid config-
uration F.

ly frozen by slow cooling from the homogeneous
fluid, and was then cooled in stages to its thermo-
dynamic temperature listed in Table I. The struc-
ture shown in Fig. 8 has the same misaligned
N =778 crystal character as thai shown earlier in

Fig. 7. However, now the two interstitials have
come to rest in a slightly different position with
slightly higher energy. Evidently, there is a band
of energies corresponding to various stable arrange-
ments of the interstitials, for each one of which
there is a distinct configuration-space region R (a}.

It is obvious that hidden structure uncovered by
quenching should produce sharpening of the
molecular distribution function. Figure 9 shows
the pair-correlation functions g' '(r} before and
after the quench of configuration H. The lower
curve is simply the smooth function appropriate to
the equilibrium fluid at a reduced temperature T'
of approximately 7.41)& 10 . In principle, the
upper curve should consist of a discontinuous sum

1 I I I I I I I ' I ' I

I i I i I & I i I 1 I

1 2 3 4 5 6
r

FIG. 9. Pair-correlation functions for fluid at
T =7.41)& 10 and the corresponding quench (from
configuration H).

where

4p ——323.273 43

of closely spaced Dirac 5 functions since all 780
particles are strictly at rest. However, data were

collected in bins of radial width hr* equal to 0.08,
and we show only the corresponding smoothed
curve. Even so, the sharpening of peaks upon
quenching is very clear. Successive peaks in the
quench function correlate strongly with those that
have been calculated before for the low-tempera-
ture crystal, but increasing peak width with in-
creasing r' arises now from built-in strain due to
dislocations, not to phonon motion. The sharpness
of the quench g' 's correlates inversely with the
parameter n5 listed for each case in Table II.

The quench energies are plotted against the
corresponding n5 values in Fig. 10. The smooth
curve shown represents the function

H(n5}=Cto+Ans+B (B +C—ns)'7

(4.7)
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FIG. 8. Quenched configuration produced from con-
figuration A in Table I.

FIG. 10. Potential energy of the quenched configura-
tion vs ns I The smooth curve is specified in Eq. (4.7).
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is the potential energy of the perfect crystal, and
where constants A, B, and C were obtained by a
least-squares fit:

A =0.0623,

B =0.2145,

C =0.0314 .

(4 9)

The rms deviation is 2.723)(10 for the points
with n» 0. One sees from Fig. 10 that on the
average the potential energy of the quenched pack-
ings rises with n5. But the downward curvature il-
lustrated with the smooth-fit function H implies
that dislocations soften the crystal and tend to
make it easier to insert yet further dislocations. It
may be noted that H'(0) is over twice as large as
the limiting slope of this function for large n5.

Although the small number of quenches actually
carried out makes such inferences risky, we believe

that P increases only by about 2)& 10 " across the
melting transition. This is a rather small fraction
of the latent heat change per particle 2.1X10
The remainder must be attributed to increasing
anharmonicity.

V. DISCUSSION

Even though we have been able to investigate

only a modest number of quenched configurations,
several conclusions can be drawn. Most important,
perhaps, is that the correlation length in the ran-

dom packings generated (i.e., the mean diameter of
crystalline grain regions and/or the mean separa-
tion of isolated dislocations} is comparable to the

size of the system used. This causes the quench
energies to scatter rather widely, making it diffi-
cult to extract ((i accurately from our results. In
order to avoid such scatter it may be necessary to

employ two-dimensional systems of at least 10
particles and/or to perform many more quenches.

The large correlation length present in the
quench structures probably reflects a general
sparseness of stable packings in two dimensions,
compared to three dimensions. In the one-
dimensional case there is only one packing, the reg-
ular periodic array; two dimensions permits a lim-

ited diversity of packings with, at most, a rather
low concentration of disorder elements (disclina-
tions). It is reasonable to suppose that for fixed N
the number of distinct packings continues to in-
crease with dimension beyond two.

The structure presented earlier in Fig. 5 shows

that large correlation lengths arise even when one
starts the quench with the very high-temperature
fluid. It seems obvious that the correlation lengths
in all thermodynamic fluid states are bounded

from above by the corresponding quench correla-
tion lengths.

The presence of the boundaries for the multidi-
mensional regions R (a) makes it unlikely that a
system confined to any one such region could un-

dergo a melting transition. ' Rather, it should be
the shift from low-disorder R (a}'s to higher-

disorder R (a)'s that characterizes melting. A
corollary statement is that for fixed P the free-

energy function f(P,P) [Eq. (3.10)] will be analytic
in P throughout the transition region of this vari-
able. The nonanalytic character of the phase tran-
sition then resides in the quantity P as a function
of P. The Appendix supports this viewpoint with

a simple (and crude) estimation of the partition
function that predicts the existence of the first-
order melting transition.

Clearly, it is desirable to apply the quench pro-
cedure to three-dimensional systems to see what

type of hidden order emerges. If our presumption
is correct that three dimensions permit many more
random packings and that they have shorter corre-
lation lengths, then useful and reproducible results
should be attainable with reasonable system sizes
(N & 10'). For the case of monatomic substances
in three dimensions, one potentially valuable way
to classify random packings (in addition to using
nearest-neighbor polyhedra} would be to follow
Rivier's procedure for identifying disclination
lines. '

Great interest also surrounds the study of polya-
tornic substances in three dimensions. The case of
water is particularly important in regards to the
hydrogen bond topology of its quenches from the
stable liquid state. ' Specifically, one would seek
to identify local regions similar in structure to the
known ices' or clathrate hydrate crystals. In ad-

dition it might be useful to examine quenches of
strongly supercooled liquid water, since emergence
of hidder order could help to explain the super-
cooling anomalies that appear to exist at approxi-
mately —45 C. '

We express thanks to Dr. Linda Kaufman of
Bell Telephone Laboratories for suggesting the
"conjugate gradient method" which leads to drastic
improvement in convergence rate for the quench
procedure, and for providing the necessary com-

puter software.
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APPENDIX

NP(xg—) .

Here we have set

(A1)

We now show how the preceding observations on
the Gaussian core model can be assembled into a
"theory" of the first-order melting transition. We
begin by accepting the fitting function shown in
Fig. 10 and Eq. (4.7) as a proper description (in the
large system limit) for packing energies with vari-
ous degrees of disorder. For present purposes it is
most convenient to rewrite 8 in a form which
makes its extensive character explicit:

H(n5)=N[gc+Axq+b (b +—C x~)' ]

x 2

O 0

0 1 2 3 4 5 6 7 8 9 10

10 XS
3

FIG. 11. Graphical determination of the integrand
maximum in Eq. (A7). Below the melting point
(p& 147.65), x, sticks at the origin; above the melting
point (p & 147.65), x5 has discontinuously jumped to the
position of a new maximum.

x5 ——n5/N,

Pc——4c/780=0. 414453,

b =B/780=2. 750K 10

(A2)

(E —Fx, )""', (A3)
The parameters A and C were specified earlier in
Eq. (4.9).

In estimating the number of distinct packings
that can be formed when precisely n5 ——Nx5 pen-
tagonal disclinations exist in the N-particle system,
we must keep in mind that the disclinations typi-
cally must be arranged in linear grain boundaries
with some average separation. In laying down a
grain boundary across an initially defect-free sys-
tem one can reckon that on average some number
E of choices will exist at each stage for lengthen-
ing the boundary by one 5-7 disclination pair. On
this basis E ' would be the appropriate estimate
for the total number of n5 packings. But the fact
is that grain boundaries can interfere with one
another, requiring a reduction in this estimate for
large n5 (i.e., large xq). This is borne out by the
fact that our numerical procedure above fails to
produce packings with high defect concentrations
(x5 approaching —,).

Consequently, we postulate a linear reduction
with x& in the factor E. The modified estimate for
the number of packings at fixed n5 is thus taken to
be

where E and F are suitable positive constants.
Next, we need an expression for the vibrational

free-energy function f [P,P(x5)]. When x5 van-

ishes so the perfect crystal obtains, the free-energy
is indeed attributable to harmonic phonon modes

coj
' at low temperature; hence,

2N

exp[ —NPf(P, No)]= Q(P~,'") '.
j=l

(A4)

[H'(0)/H'(Nx5)]'/ (A5)

If we let a stand for the fraction of modes subject
to this rescaling, then

Normal modes coj. in defective packings will differ
from the crystal coj. ', obviously. We suggest that
the predominant effect stems from the defect
softening of the medium conveyed by downward
curvature of H(n5). The derivative H' provides a
measure of the rigidity of the medium, and it
seems reasonable that at least some of the normal
modes (principally, those of low frequency and of
shear character) ought to be rescaled by a softening
factor

Cx5
exp{ NPf [P,P(xq)] I =—1—

A(b +C x )'

—aN
2N

II (Pe '")-' .j=l j (A6)

These expressions can be used to provide an approximate expression for the partition function ZN along
the lines indicated earlier by Eq. (3.11). In that representation P was treated as the fundamental intensive
variable, but in view of Eq. (Al) we can transform to x& as the more convenient choice. By using expres-
sions (A1), (A3), and (A6) we arrive at the following expression for ZN ..
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Zz-NA, exp{ N—P[gp+f(P, Pp)] )

Cx
X J dx5exp{ NP—[Ax5+b (b—+C x5)'~ ] J(E Fxs—) ' 1—

0 A(b +C x )'

' —aN

(A7}

In the large-N limit the free-energy per particle will be determined by that value of x5 which maximizes the

integrand. Equivalently, we require that xq at each P which satisfies

2

L(x5)=xs ln(E —Fx5)—aln 1—
g ( b 2+ ( 2x 2

)
1 /2

—P[Ax5+b (b —+C x5)' ]=max. (AS)

Three unevaluated parameters appear in the last
equation: E, F, and a. We now see that choices
for each that are probably reasonable lead to a
prediction of a first-order melting transition. In
particular, we select

E=10, F=200, a=0. 10 . (A9)

P= 147.65,

T*=1/P=6.772 XS10
(A10)

at which the integrand-maximizing value of x5
jumps from 0 (low-temperature crystal) to
5.918&10 (fluid at the transition point). For
continued temperature increase the local maximum
continues to predominate, finally approaching the
x5 value 3.065 X 10 at infinite temperature.

The first of these asserts that on the average, ten

choices exist for extending a grain boundary by a
5-7 pair in a pristine medium. The second then

states that random packings become negligibly rare
when the fractional disclination density x5 reaches
0.05. The a value shown subjects only a small

fraction of the normal modes to the full softening
effect.

Figure 11 shows L (x5) curves vs x5 for several

choices of the temperature parameter P. When

P & 147.65 the curves monotonically decline with

increasing x& from their maximum value 0 at the
origin. However, when P & 147.65, L (x q ) achieves

its greatest value at a local maximum displaced to
positive x5. There is thus a discontinuity at the
melting point

That the predicted melting temperature (A10)
agrees well with the one determined by molecular
dynamics for the Gaussian core model [Eq. (4.3)]
primarily results from adroit choice of a. Howev-

er, the mean value predicted for n5 in quenches
from the N =780 fluid at its freezing point,

(ns) =4.612, (A 1 1}

seems roughly correct in comparison with entries

displayed in Table II.
The latent heat predicted for the transition is

0.0461 with the parameter set (A9). This is too
large by a factor of approximately 2, but doubtless

agreement could be improved by varying a, E, and
F.

It is important to stress that the predicted ex-

istence of a first-order transition rests fundamen-

tally on the nonlinearity with x5 of the function H.
That is, the softening phenomenon appears to be a
prerequisite, and paves the way for an avalanche of
defects to enter the system at the transition point.

Of the major deficiencies of the present simple
view of constant-density melting is that it fails to
produce a coexistence interval [see Eq. (4.3) above],
as is required when the densities of the equal-

pressure phases differ. Correcting this would re-

quire accounting for correlation of density fluctua-
tions with disclination concentration fluctuations
in the stable packings. It is worth pointing out in
this connection, however, that at one special densi-

ty for the Gaussian core model the molar densities
are equal and the coexistence interval shrinks to a
point.
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