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I. INTRODUCTION 

One of the primary reasons that water is important to us is its ability to serve as a 

solvent. That ability stems in large part from its high dielectric constant. This chapter 

is devoted to clarifying the logical connections between the molecular structure of 

water, the manner in which intermolecular forces cause water molecules to aggregate 

in condensed phases, and the response of those phases to external electrical fields. 

The last of these defines the dielectric properties. 

This survey will be restricted to pure water in liquid and solid forms. With respect 

to the latter, only those polymorphs of ice which can be prepared under ordinary pres-

sures, namely hexagonal ice Ih and the cubic modification Ic, will be considered. 

Furthermore only linear dielectric response will be studied. But even with these res-

trictions the subject is a rich one containing several theoretical subtleties and many 

important phenomena. 

We begin this review in Section II with a brief outline of the relevant measure-

ments. A comprehensive understanding of these measurements for liquid and solid 

water is an indispensable prerequisite to motivate and to guide development of the 

subsequent theory. 

Section III initiates the molecular theory with a discussion of several general issues 

that are applicable to all phases of water. One of these issues is the identification of a 

formal procedure for assigning multipole moments to molecules, a nontrivial matter 
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when electron distributions from neighboring molecules overlap. Another matter of 

general importance covered in Section III is the definition of molecular distribution 

functions and an exposition of their basic properties. 

After having explored these few generally applicable ideas it has seemed advisable 

to treat liquid water, and the ices, as separate topics. These two cases present rather 

distinct statistical problems, and the dielectric behaviors at the molecular level respec-

tively are clearly different. Consequently the discussion of bulk liquid water is con-

tained in Section IV, while Section V then considers the interesting and complex prob-

!ems presented by ices lh and !c. 

Although most of the conceptual aspects of the theory now seem well in hand 

there still remain several important quantitative problems to be resolved. These are 

highlighted in the following development. It is the author's hope that the present sur-

vey will stimulate activity that soon closes these gaps in our understanding. 

For those readers interested in a broader treatment of the subject of aqueous 

dielectrics, the recent book by Hasted ( 1973) is recommended as a suitable guide. 

II. DIELECTRIC MEASUREMENTS 

A. Background and Definitions 

The macroscopic electrical behavior of isotropic dielectric substances is character-

ized by the scalar dielectric constant L This quantity serves as the proportionality con-

stant in the linear relation between the electric field E and the dielectric displacement 

D. 

D = t E. (2.1) 

It is often useful to consider as well the polarization vector P which is related to t and 

E by the following expression: 

·~ 

;,!'}'( 

L} 
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P = (t-l)E/471" (2.2) 

Liquid water and cubic ice as bulk phases are both dielectrically isotropic, so for 

them the scalar t description is appropriate. The same is probably true for the am or-

phous solid deposits that have been formed by slow condensation of water vapor on 

very cold surfaces (Narten et al. 1976). However ordinary hexagonal ice Ih has lower 

symmetry, so that its dielectric response demands use of a dyadic tensor quantity E; 

Eq. (2.1) then becomes 

D = E·E (2.3) 

and Eq. (2.2) must be modified accordingly: 

P = (E-l)·E/471". (2.4) 

Hexagonal ice requires two independently specified tensor components of E describing 

respectively the response to electrical fields oriented parallel to the hexagonal c axis, 

and perpendicular to that axis (i.e. in the basal plane). In a Cartesian coordinate sys-

tern x,y,z with the z axis coincident with the hexagonal c axis, the dielectric tensor is 

diagonal and has the form 

Eb 0 0 

E = I 0 fb 0 

0 0 fc 

(2.5) 

Similar remarks apply to the case of water at interfaces. Liquid water at a planar 

interface, such as the liquid-vapor surface or the region near a planar electrode, can be 

expected to manifest tensor dielectric behavior with separate normal ( tN) and tang en-

tial ( tT) components. Boundaries with two distinct curvatures generally will produce 

three independent tensor components. In any case the dielectric tensor is symmetrical 

and can be diagonalized by a suitable choice of local coordinates. 

Dielectric constants have values that depend on the angular frequency w of the per-
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turbing field, and it has long been realized that these w variations contain important and fo is the standard static dielectric constant. However water does not fit this ideal 

information about dynamics of molecular processes occurring in the materials of description. Even in pure form it is electrically conducting owi~to formation of ions 

interest. Generally dielectric response will lag the excitation, giving rise to energy dis- by the reversible dissociation reaction 

sipation. Within the linear response regime it is conventional to separate f(w) into 

real ( €') and imaginary ( €") parts as follows: 
H20 : H+ + OH- . (2.9) 

f(w) = <'(w)-if"(w). (2.6) 
In liquid water at 20°C the concentration of these ions is only 8.3XI0-8 molesfl, but 

[Similar representations are appropriate for each component of a tensor d 
they have exceptionally high mobilities and thus might tend to interfere with high pre-

cision measurement of the static dielectric constant (Stillinger 1978). 

The principle of causality demands that electrical response never precede the exci-

tation. This obvious requirement translates into a mathematical connection between <' 
If <J represents the low-frequency conductivity then in the neighborhood of w=O 

the imaginary part of f(w) diverges thus: 
and €", the Kramers-Kronig equations (Kittel 1958). 

<"(w) = (47r<J/w) + O(w) (2.10) 

<'(w)-,'(c:o) = _1_ Jm ~ d 
7r o u2-w2 u, (2.7) 

In order for this form to emerge from the second of the Kramers-Kronig relations 

<"(w) =- k f f'(u)-f'{c:o) du. 
7r o u2-w2 

(2.7) it is necessary for <'to possess a delta-function divergence at zero frequency: 

E'{w) = 47r 2<Ji5(w) + fo + O(w 2). (2.11) 

Cauchy principal values are to be taken in these integrals at the poles of the integrands 

along the positive real axis. Notice the "infinite frequency" subtraction for <'; for most 
The physical meaning of this leading term is simply that a conductor can completely 

cases of practical importance "infinite frequency" can be construed to lie above the 
shield its interior from external electric fields. For practical reasons f' is always meas-

characteristic frequency range of molecular vibrations but below the frequency range 
ured at nonzero frequency so that in principle the delta function is not encountered; in 

of molecular electronic transitions. The two Kramers-Kronig relations arc inverse 
practice of course the nonzero conductivity can create troublesome space-charge 

integral transforms to one another (specifically, modified Hilbert transforms) and so 
buildup within a measurement apparatus and thus lead to spurious results unless suit-

constitute only a single independent functional connection between the two quantities 
able precautions are observed. 

involved. 
B. Observed Static Dielectric Constants 

As announced in the Introduction, this review will be concerned with the low fre-
Malmberg and Maryott (1956) have made one of the most precise measurements 

quency limit. In the case of perfectly insulating dielectrics we can simply observe that 
of the static dielectric constant for liquid water over its normal temperature range 0°-

lim f'(w) = fo > I , 
w~o 

(2.8) 100°C. To within a claimed maximum uncertainty of ±0.05 their results could be 

lim €"(w) = 0 , 
w-0 

fitted to the following cubic polynomial: 
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Eo= 87.740-4.008XI0-1t+9.398XI0-4tL1.410XI0-6t3 , (2.12) 

where t is the Celsius temperature. This function is monotonically decreasing from 

()"C to 100"C, reaching a value 55.648 at the upper limit, the normal boiling point of 

water. Although some of the reduction in Eo with rising temperature may be attri­

buted to decreasing density, that is only part of the explanation, for in the neighbor­

hood of 4 ·c where the thermal expansion of the liquid vanishes Eo is decreasing with 

temperature. 

In order to follow liquid water along the saturation line to the critical point 

(374.1YC) it is of course necessary to go to elevated pressure. Akerlof and Oshrey 

(1950) find that between I OO"C and 370"C along this saturation line 

Eo= 5321/T+233.76+9.297XI0-1T+l.417XI0-3T2-8.292XI0-7T3 (2.13) 

where T is the absolute temperature in "K. This expression shows a continuation of 

the downward trend of Eo for liquid water with rising temperature. 

The Akerlof-Oshrey formula cannot be expected to represent Eo faithfully right up 

to the critical point. Nor can any analogous expression involving rational functions of 

T be expected to do so. Owing to the peculiar "nonclassical" nature of the critical point 

in fluids (Stanley, 1971) we must expect Eo along the saturation line to have an 

expression of the form 

Eo= Ec+Al(Tc-T)p'+A2(Tc-T)p2 + ... (2.14) 

where Tc is the critical temperature, the Ai are suitable constants, and the Pi are frac­

tional exponents. At present no critical region measurements on any polar fluid are 

available with the precision necessary to determine even the leading correction term 

parameters A 1 and p 1, and this remains an important open area for future 

investigation. The critical dielectric constant Ec is the common limit for coexisting 

liquid and vapor dielectric constants, 'and from measurements quoted by Franck 

Low Frequency Dielectric Properties of Liquid and Solid Water 347 

(I 970) it is possible to infer that 

Ec ~ 6.0 (2.15) 

In this critical state the mass density of water is only 0.32gfcm3• 

Owen et a/. (1961) determined the 'pressure coefficient of Eo for water within its 

normal liquid range. Their results show that isothermal compression increases Eo. 

Specifically they found 

(alnEofaph = 4.51XI0-5/bar (O"C) 

= 5.24X10-5/bar (70"C) 

(2.16) 

with smooth and monotonic behavior between these extreme temperatures of obser­

vation. 

The static dielectric constant of liquid 0 20 has been measured by Malmberg 

(1958). Over the temperature range 4"C to IOO"C his result~ could be represented by 

the following cubic polynomial: 

E0(D 20) = 87 .482-4.0509X10-1t+9.638Xl0-4t 2-1.333XI0-6t3 , (2.17) 

where again t is in ·c. At any given temperature for which both formulas apply, Eq. 

(2.12) for Eo(H20) gives slightly larger values than Eq. (2.17) for Eo(Dp). 

The properties of strongly supercooled water have offered some interesting 

surprises that could not have been reasonably anticipated by simply extrapolating fitted 

data in the normal liquid range to low temperature. As Angell and his collaborators 

have stressed (Speedy and Angell, 1976) supercooled water behaves as though it pos­

sessed an order-disorder transition, or lambda anomaly, at T,=-45"C. Since the 

homogeneous nucleation temperature for freezing lies at about -40"C, this apparent 

higher-order transition has never actually been reached. Nevertheless its existence is 

revealed by the singular behavior of various measurable properties. Fractional power 

formulas analogous to that quoted above [Eq. (2.14)] appear to be applicable, with 
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some properties (such as the isothermal compressibility) actually diverging at T,. 

Hodge and Angell (1978) have examined Eo for supercooled water (in emulsified 

form) to -35"C. They found it possible to represent their measurements by the simple 

expression 

Eo= A[(T/T,)-J]"Y, (2.18) 

where Tis in "K and 

A= 72.94 , Ts = 228"K, 'Y = -0.1256 . (2.19) 

The negative exponent -y indicates a weak divergence to infinity at the singular point 

T,. Studies of supercooled water at elevated pressure (Kanno and Angell, 1979) sug­

gest that if expression (2.18) remains valid under compression, T5 must decrease with 

increasing pressure. 

As liquid water at O"C freezes to form hexagonal ice it is generally agreed that the 

dielectric constant increases discontinuously. Unfortunately there is disagreement 

about the anisotropy of the dielectric tensor in this crystal. Humbel, Jona, and 

Scherrer {1953) find at -IO"C that 

Eb = 95 , Ec = Ill , (2.20) 

with both components increasing as temperature declines. On the other hand Auty 

and Cole ( 1952) have found for polycrystal/ine ice [for which Eo should be close to 

(2E b+E,)/3] that the apparent dielectric constant is close to Eb alone from the Hum bel, 

Jona, and Scherrer work. More recently Wiirz and Cole (1969) and Johari and Jones 

(1978) report failure to uncover any significant anisotropy. The first pair of this latter 

group of authors find that the following equation represents their measurements: 

Eo-Ero = 20715/(T-T0 ) , (2.21) 

wherein 
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E00 = 3.1 , T0 = 38"K. (2.22) 

The temperature T0 thus plays the role of a formal Curie temperature, suggesting that 

if indeed accurate measurements could be made to below T 0 hexagonal ice would 

become ferroelectric. This latter possibility has been discussed by On sager ( 1967). 

It seems safe to say that hexagonal ice has little, if any, anisotropy. On symmetry 

grounds it is impossible to believe that Eb-Ec precisely vanishes at all temperatures. 

However a convincing measurement of this anisotropy remains for the future. 

No measurements are available for Eo in cubic ice. The difficulty concerns the low 

temperature required by this polymorph for stability (T;:;l50"K), and the resulting 

extreme sluggishness of electrical relaxation processes. 

C. Water Molecule 

Ultimately it must be the electrical properties of individual water molecules that 

cause macroscopic dielectric behavior of the bulk substances. Therefore we list here a 

few pertinent parameters that have been measured for the individual water molecule. 

In its ground electronic state the molecule has C 2v sy.<~metry. The covalent OH 

bonds have length 0.9584A, and are arranged at bond angle 104.45" (Kern and 

Karplus, 1972). 

The most important attribute displayed by the water molecule is its dipole moment 

p.. Dyke and Muenter {1973) have found that 

IP.I = 1.855XI0-13 esu em (2.23) 

Of course the vector moment is directed along the symmetry axis with its negative end 

at the oxygen atom end its positive and pointing between the hydrogen atoms. By 

combining this moment with the above molecular geometry it is possible to assign par­

tial charges to the H and 0 atoms as a rough electrical description of the water 

molecule; one obtains 0.3289e and -0.6578e for H ~nd 0 respectively, where e is the 
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bare proton charge. 

The mean electronic polarizability of the molecule has been extracted from vapor-

phase refractive index measurements, and has the value (Eisenberg and Kauzmann, 

1969) 

a= 1.444XI0-24cm 3 . (2.24) 

In principle the polarizability in anisotropic, with three independent tensor com-

poncnts. No experimental measurements of the separate components exist. However 

Liebmann and Moskowitz (1971) have carried out accurate Hartree-Fock computations 

which give the separate components 

a 11 = 1.452XI0-24cm 3 

azz = 1.651XI0-24cm3 (2.25) 

a33 = 1.226XI0-24cm 3 

whose average, 1.443XI0-24cm 3, is very close to a in Eq. (2.24). Subscripts I, 2, and 

3 in Eq. (2.25) refer to principal directions; the first is along the symmetry axis of. the 

molecule, the second in the molecular plane but perpendicular to the symmetry axis, 

and the third is perpendicular to the molecular plane. 

The electrical quadrupole tensor measures second spatial moments of Pc(r), the 

electrostatic charge density of the molecule. This density comprises contributions both 

from the nuclear point charges as well as from the continuous and extended electron 

cloud. The elements of the traceless quadrupole tensor are defined thus: 

E>ij = Y2 J [3xixj-r2 )Pe(r)dr . (2.26) 

In the case of a molecule such as water which possesses a permanent dipole moment, 

these tensor elements depend upon the choice of origin for the coordinate system. 

Verhoeven and Dymanus (1970) have measured the electrical quadrupole tensor 
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for D 20 by molecular beam Zeeman spectroscopy. Presumably the results (in a com-

mon coordinate system) would be nearly the same for H20. The natural coordinate 

origin in such experiments is the molecular center of mass. From the point of view of 

the present study it is more convenient instead to place the coordinate origin at the 

oxygen nucleus. After applying the required transformation to the results of Verhoe-

ven and Dymanus (Stillinger, 1975) the quadrupole moments are found to be 

E>11 = 0.116XI0-26 esu cm 2 

E>22 = 2.505XI0-26 esu cm 2 
(2.27) 

833 = -2.621XI0-26 esu cm 2 

The principal directions which diagonalize the quadrupole tensor here are just those 

which diagonalize the polarizability tensor, Eq. (2.25) above, so uniform notation has 

been used. 

Dipole derivatives for the water molecule are also relevant to discussion of the 

dielectric response. Clough has determined the three first-order dipole derivatives 

from i.r. spectral intensities with the following results (Stillinger and David, 1978): 

[kl = -0.6830XI0- 18 esu cm/rad ae ,,,,, 

[~] = 0.1568Xl0-10 esu 
arl O,r2 

[ a,u(..L)] = 0.782!XI0-10 esu l arl O,r, 

(2.28) 

In these expressions r 1 and r 2 stand for the OH bond lengths, and 0 stands for the 

bond angle. The dipole moment remains parallel to the molecular symmetry axis 

when only 0 varies from the mechanical equilibrium point. But stretching a single 

bond destroys the C 2v molecular symmetry and causes the dipole to rotate as well as to 

change length. The latter two quantities in Eqs. (2.28) respectively give the variations 
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of the moment parallel to, ami perpendicular to, the initial symmetry axis. 

It is significant that the irJ.tram<liecular charge rearrangement specified by Eqs. is 

substantially less (for both bend arJ.d stretch deformations) than would be expected if 

the elfective atom charges 0.3 289e and -0.6578e mentioned above were to move with 

the respective nuclei. Evidently the electron cloud undergoes a more complex adjust-

ment as the nuclei move. "Tile first of Eqs. (2.28) even has opposite sign to that of the 

naive atom-charge picture. 

Ill. GENERALTHEORY 

A. Molecular In teracti()nS 

The structure and properties <Jf the condensed phases of water derive from the 

molecular interactions presc11t. "The 11ature of these interactions controls the form that 

the general statistical rn ccha11ical th cary must take in order to describe dielectric 

phenomena. Therefore ..ve begin this Section with a brief review of the nature of 

water molecule interactions. 

In any collccti<ln of N water molecules, the nuclear geometry of molecule i 

(l.s;i<N) ca11 be denoted by a nine-compo11ent vector Xi. Each such vector specifies 

not only the ,;patial position and o rie11tation of the molecule, but its vibrational defor-

mation as well. "The general i11teraction for molecules described by X1 • · • XN (always 

assumed here to be in their electronic ground states) will be denoted by a potential 

energy functio11 VN( X 1 · · · X:N ). It is useful to resolve VN into components that are 

uniquely associated Vlith single molecules (V(Il), pairs of molecules (VC2l), triplets of 

molecules (VC 3l), etc. 

N N 
VN(X:I ... X:N) = ~ ~ 

n=I i1 < ... <in=l 

v<nJcxi, ... Xi) . (3.1) 

the y<n) may be obtained frQm the VN by successive reversion of the expressions (3.1) 

:;~~-'~ ,~ 
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for N =I ,2,3 .... The resulting expressions in leading order are the following: 

v 0 l(XI) = VI(XI), 

y(2l(XbX2) = V2(X 1,X2)-V( 1)(X 1)-V( 1)(X 1), 

yC3l(X 1,X 2,X3) = V3(XbX2>X 3)-V0 l(X 1)-V 0 l(X2) 

- y0l(X3)-VC2l(X 1,X2)-VC2l(X 1,X3) 

- yC2Jcx2,X3) . 
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(3.2) 

Succeeding orders follow the same pattern; y(n) is the result of subtracting from V n all 

possible yUl for each proper subset of the n molecules. 

By construction each y(n) for n> I will vanish unless all n molecules are clustered 

together. So far as the single-molecule function is concerned it is convenient to 

choose the energy origin in such a way that yO) vanishes when the three nuclei 

comprised by the molecule are at the mechanical equilibrium point. 

The resolution of the total system potential VN into inherent one, two, three, .... 

molecule contributions is for water an arrangement in descending strength of interac-

tion. The strongest forces present are intramolecular forces, which establish and 

maintain bond lengths and angles. y(l) contains this chemical bonding information, 

along with the specification of molecular deformation force fields which determine the 

three normal modes of vibration for the water molecule. The molecular pair potential 

yC2l by contrast is considerably weaker; nevertheless it is perhaps the most important 

of the interactions since it creates the intermolecular structure of the condensed 

phases. vC 3l acts as a minor (but not entirely negligible) modulation effect on phase 

structure and properties, while v<4l,yC5l, ... are thought to be generally insignificant." 

The single most important feature conveyed by yC 2l is the propensity for two water 

molecules to form a linear hydrogen bond. The geometry of the minimum-energy 

dimer (i.e. the absolute minimum for V 2) is indicated in Figure I, and represents the 
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consensus of both experimental (Dyke, Mack, and Muenter, 1977) and theoretical 

(Stillinger, 1975) studies. The participating monomers are essentially unchanged from 

their free-molecule forms (due to the weakness of yCll compared to the yCil•s). One 

molecule, the "proton donor", points an OH bond toward the oxygen atom of the 

other molecule, the "proton acceptor". The three pendant protons not directly 

involved in the hydrogen bond are located well off the OH···O bond axis. This optimal 

dimer has a plane of symmetry containing the proton donor, and the twofold axis of 

the acceptor molecule. Owing to the possibility of proton permutations, there are 

eight equivalent such dimer structures. The distance between the oxygens in this 

linear hydrogen bonding configuration is 2.98 ± 0.01 A. The strength of the bond is 

thought to be 

yC 2l( optimal) ;::;:; -5.0 kcal/mole . (3.3) 

While maintaining the linear hydrogen bond as shown in Figure I, it costs rela-

tively little energy to rotate the participating monomers through modest angles. This 

is true provided the proton acceptor molecule is not rotated so far as to bring one or 

H1 

01 
2 -- ' H -------------~ O~---- 5~~-
-~;;;,~ 29eA ',,, <• 

H3 

Figure I. Structure of the minimum energy water dimer. 
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both of its pendant protons close to the given hydrogen bond. This angular flexibility 

permits hydrogen-bonded pairs in condensed phases to exist in a variety of relative 

geometries, and in particular permits any molecule to participate simultaneously In 

several hydrogen bonds both as donor and as acceptor. The natural mode of 

hydrogen-bond coordination is illustrated in ice [see Section V below] where each 

water molecule engages in exactly four tetrahedrally disposed hydrogen bonds. 

As the distance between the oxygen atoms increases from the optimal 2.98A, yC2l 

necessarily increases toward zero. At very large separations between the monomers 

y(2l reduces in form to that expected for point dipoles equal in magnitude to those of 

isolated molecules, Eq. (2.23). The minimum of this dipole-dipole interaction form, 

with respect to orientation angles, is achieved not in the hydrogen-bond configuration 

shown in Figure 1 but in a parallel-dipole arrangement which has different symmetry. 

It is known (Stillinger and Lemberg, 1975) that a critical intermediate distance exists 

at which yCll manifests a sudden change between these two symmetries. 

At small separation between the oxygen atoms (less than about 2.5A)VC2l will be 

invariably positive for all relative molecular orientations. This reflects increasing over-

lap of the electron clouds of the two molecules which, on account of the exclusion 

principle, is energetically costly. 

Figure 2 illustrates a water molecule surrounded by its natural complement of four 

hydrogen- bonded nearest neighbors. This is typical of the local geometry in the inte-

rior of ices lh and Ic and in clathrate hydrates (Jeffrey, 1969). With some deforma-

tion of bond lengths and angles permitted it is also a frequently occurring arrangement 

in liquid water. Three distinct types of hydrogen-bonded trimers appear in this five-

molecule complex, and yC3l depends significantly on which of the three is involved. 

The first is the "double donor" trimer, represented by ACE in Figure 2, with the cen-

tral molecule A donating protons simultaneously to the two neighbors C and E. The· 
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second is the "double acceptor" trimer, illustrated by ABD in Figure 2, in which the 

central molecule simultaneously accepts protons from its two neighbors. The third is 

the "sequential" trimer with the central molecule acting both as donor and as acceptor; 

BAC, BAD, DAC, and DAE are all of this last type. 

D 
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Figure 2. Natural fourfold coordination geometry for water molecules in 

condensed phases. 

At present our only source of quantitative knowledge concerning y(J) has been 

quantum mechanical computation. All-electron ab initio calculations have been carried 

out for configurations of the sort illustrated in Figure 2 by Hankins, Moskowitz, and 

Stillinger (1970, 1973), by Del Bene and Pople (1973) and by Lentz and Scheraga 

(1973). These studies show that y(J) depends sensitively upon the pattern of hydro-

gen bonds present, but not very much on the position of pendant (non bonded) hydro-

gens. At distances relevant to ice and to liquid water, the magnitudes are roughly the 

following: 
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y(3) ~ 1.2kcal/mole (double donor), 

~ 0.8kcal/mole (double acceptor) (3.4) 

~ -0.8kcal/mole (sequential) . 

These each appear to be monotonic with respect to mutual hydrogen bond length. 

In any hydrogen bond network which has ubiquitous fourfold coordination as 

shown in Figure 2 there will be precisely six hydrogen-bonded trimers per molecule, 

in the ratios 1:1:4 for double donor, double acceptor, and sequential types (Hankins, 

Moskowitz, and Stillinger, 1970). The appropriate weighted average of y(J)'s there-

fore is negative, and increasing in magnitude with decreasing distance. The net result 

is that three-body forces tend to increase overall binding energy in water molecule net-

works, and to decrease bond lengths. In respect to the latter it is useful to compare 

the isolated dimer bond length (2.98A) with the nearest neighbor distance in ice at 

OOK (2.74A). 

For trimers that are not connected by at least two well-formed hydrogen bonds, 

yO) is probably not very large. If the three participating monomers are mutually well 

separated the resulting small y(3) could be well approximated by classical electrostatics, 

using the molecular permanent moments and polarizability tensors. 

According to the work of Lentz and Scheraga (1973), V(4) tends to be an order of 

magnitude smaller even than yO) By implication a similar decremental factor applies 

in going successively to y(s), y(6l, etc. 

Formation of a hydrogen bond between two water molecules causes rearrangement 

of charge within the pair. Quantum mechanical calculations indicate that the dimer at 

its most stable configuration has a significantly larger dipole moment than the vector 

sum of the monomer moments; Hankins, Moskowitz, and Stillinger (1970) found the 

enhancement to be II percent. The charge redistribution has been cited frequently as 
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an explanation of the differing signs displayed by y(3) for the distinct bonded trimer 

species (Del Bene and Pople, 1970). 

It has already been remarked that water molecules in good approximation remain 

geometrically unperturbed by hydrogen bonding. However this is not exactly so. The 

covalent OH bond of a donated proton increases in length by about 0.005A and the 

HOH angle of the acceptor molecule increases by about OS (Stillinger, 1975) at the 

configuration of the optimal dimer (stationary nuclei). But more important than these 

small shifts is the reduction in stretching force constant for the bonding hydrogen by 

about 25 percent that is revealed by comparing vibrational frequencies for water vapor 

and for ice (Eisenberg and Kauzmann, 1969). This reduction in restoring force is 

probably accompanied by increasing anharmonicity of zero-point stretch motion, that 

would in turn produce an apparent stretch for the mean OH bond length. This effect, 

rather than the shift of the absolute potential minimum, is probably the dominating 

influence in measured stretches of OH covalent bond lengths in hydrogen-bonded 

solids (Olovsson and Jonsson, 1976). 

The integrated intensity of OH stretch absorption in the infrared region experimen­

tally undergoes an increase upon hydrogen bonding by approximately an order of mag­

nitude (van Thiel, Becker, and Pimentel, 1957). Since these intensities are principally 

a .measure of the square of the dipole derivative: 

I a 11./ ar 12 , (3.5) 

it is clear that one or both of the last two quantities in Eq. (2.28) has been strongly 

affected by formation of a linear hydrogen bond. The only reasonable interpretation 

of this phenomenon seems to be that the one-molecule solvation of a bonding hydro­

gen encourages it to act more and more as a bare proton as it departs from its parent 

oxygen. This interpretation is consistent with the fact that gas-phase dissociation pro­

duces uncharged radical fragments (H· and HO·) while condensed-phase dissociation 

;_~. 

\~. 
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produces ions (H+ and OH-). 

B. Formal Multipole Assignment 

When two water molecules are engaged in a near-optimal hydrogen bond their 

electron clouds merge to some extent along the region of the OH···O axis. Hence it is 

not immediately obvious how one should assign multipole moments to the individual 

molecules involved. Obviously some scheme is necessary to partition space (and thus 

electronic charge) between the two. The potential ambiguity is aggravated in a large 

cluster where many hydrogen bonds can exist, and where shorter bonds produce a 

correspondingly greater electron cloud overlap. 

We now construct a procedure which formally resolves all ambiguity. Its end result 

will be a set of nonoverlapping electron densities for each molecule. These densities 

yield precisely neutral molecules, and they can be used to compute multipole moments 

for each of the molecules. 

The total electron charge present is -lONe, where N is the number of molecules. 

For any given configuration of the nuclei there will be an electron charge density Pe(r) 

that is a continuous and (except at the nuclei) differentiable function of position r. 

Let us first divide space into Q N convex non-overlapping regions each containing the 

same small amount of electron charge -JOe/ Q. If Q is a large integer, most of the 

convex regions will be small; however a few at the periphery of the system may be 

large since Pe is small there. Our task then becomes that of assigning Q regions to 

each H20 triad of nuclei in an optimal fashion, and then allowing Q to pass to infinity. 

Let l.::;j< Q N index the regions, and let I <k<N index the nuclear triads. Then 

dik will be the distance between the centroid of the charge in region j, and the nearest 

of the three nuclei of triad k. 

There will be exactly 
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(Nfl)!/(fl!)N (3.6) account of the stiffness of the molecule toward vibrational deformation. For much of 

distinct ways to assign fl regions to each triad. Most of these would be chemically 
the statistical mechanical theory of water it suffices to suppress the vibrational 

absurd, since they would involve distances djk large on the molecular scale. Clearly it 
motions, and to treat the molecules as rigid rotors with C2v symmetry. The original 

is desirable to eliminate these large-distance absurdities. This can be accomplished 
nine coordinates then shrink to six, which could be chosen for example as the oxygen 

simply by minimizing the positive quantity 
nucleus position and three Euler angles for rotation about that position. 

r!N N 
The possibility for such a reduction does not imply in any way that vibrational 

D(A) = ~ ~ djhA) 
j~I k~I 

(3.7) motions are unimportant. Indeed the coupling of vibrations to the other degrees of 

with respect to assignments A. Except for zero-probability coincidence~, we can take 
freedom as water molecules interact has important consequences for mean molecular 

this D-minimizing A to be unique. The minimization has the global effect of cluster-
moments and for binding energy in condensed phases. However it does mean that 

ing regions about triads. averaging properties over vibrational motions as a first step in the statistical mechanical 

theory is a simplifying and therefore useful tactic. 
We are still left with the necessity of passing to the infinite- Q limit. This has the 

effect of shrinking to zero all region sizes (except for peripheral regions that become 
The process of projecting vibrational motions out of the theory causes the full 

less and less important anyway). If this limit is achieved while retaining compact 
nuclear potential VN(X 1 • • • XN), Eq. (3.1), to be replaced by 

region shapes, it is clear that the union of regions for each nuclear triad will be 

bounded in that limit by piecewise smooth surfaces. Consequently each H
2
0 nuclear 

N N 
VN(x 1 • • • XN) = ~ ~ y(n)(xi, · · · xi) (3.8) 

n=l i 1< ···<in=! 

triad is surrounded by an electron distribution, containing precisely charge -JOe, which where now each molecule j is described by a six-vector xj. The exact procedure by 

does not overlap any other corresponding distribution. From these individual molecu- which VN is replaced by VN is described in Stillinger (1975). In most important 

Jar charge distributions it is then a straightforward matter to calculate molecular mul- respects the vibrationally averaged potentials V N and y(n) will be close to the 

tipole moments by the usual procedure. corresponding unaveraged functions evaluated at the nuclear configurations for uncle-

One must keep in mind that the distinct molecular regions (as well as the electronic 
formed molecules (i.e. each molecule at its mechanical equilibrium point). However it 

charge distributions they contain) will have shapes that generally depend on the pres-
is expected that the vibrational averaging will tend to enhance binding energies some-

ence or absence of externally applied fields. 
what (Stillinger, 1975). 

C. Molecular Distribution Functions 
Once the strongly quantized vibrational motions have been removed from explicit 

While it is true in principle that nine coordinates are required to describe the 
consideration, it is reasonable to proceed with a purely classical statistical description. 

The overall configurational probability for N water molecules then can be taken to be 
nuclear configuration of a water molecule, a more compact description is warranted on 

the Boltzmann factor exp[-tl(YN+UN)] where t1 stands for (k
8
T)-1 as usual, and 

':Oi· 

l 



362 F H. Stillinger 

where UN stands for interaction with external fields (including electrical fields). 

The full N-molecule probability is unnecessarily complicated for understanding pro-

perties of normal interest. Instead it usually suffices to consider configurational proba-

bility functions for small sets of particles, and this is certainly true for the present 

study of static dielectric behavior. Therefore we contract the full-system Boltzmann 

factor to a set of molecular distribution functions as follows (n= I ,2,3 ... ): 

p(n)(xl ... Xn) = N(N-1 ) ... (N-n+1) j dxn+l · · · j dxNexp[-13(VN+UN)] 

J dx1 · · · J dxN exp[-13(VN+UN)] 
(3.9) 

the integrals span the system volume V and the molecular rigid-body rotations for the 

indicated particles. The meaning of p(n) is simply the probability density in the space 

of sets of six-vectors x 1 • • • xn for occurrence of the given n-molecule configuration. 

The simplest of the molecular distribution functions is p( 1l(x 1). In the case of an 

isotropic liquid or vapor phase that is not perturbed by external fields (U~O) p(l) is 

independent of x1: 

p( 1l(x 1) _, N/(87r 2V) (isotropic fluid) . (3.1 0) 

Upon crystallization to form ice, long-range order sets in. If boundary conditions 

clamp the resulting crystal in a fixed spatial position p( 1l(x 1) will no longer be equal to 

the above constant value. Instead it will display periodic behavior with respect to 

translation, and it will manifest sets of preferred orientations at lattice sites and at 

interstitial positions respectively. 

Upon subjecting theN-molecule system to an external electric field, p(l) changes to 

reflect the induced polarization P. It is one of our objectives in following Sections to 

calculate those changes. 

The molecular pair distribution function p(2) generally plays a fundamental role in 

the statistical mechanics of condensed matter, and it has particular importance for the 

Low Frequency Dielectric Properties of Liquid and Solid Water 363 

theory of static dielectric behavior. Several of its properties deserve to be mentioned 

at the outset. The first and most elementary of these is the contraction property which 

follows immediately from the definition (3.9), 

J dx2p( 2l(x~ox2 ) = (N-1)p(l)(x 1) (3.11) 

The second applies in the large-system limit for which large separation r 12 between the 

two molecular centers can be achieved: 

p(2l(x 1,x2) _, p( 1)(x 1)p(ll(x2) (large r 12) (3.12) 

"Large r 12" in this context means "many molecular diameters". This asymptotic factori-

zation states that pairs of widely separated molecules within a large system will be 

correlated only by long-range crystalline order (if it is present), or by macroscopic 

polarization. 

On account of Eq. (3.12) it is useful to isolate small-distance deviations from the 

factoring limit in the "pair correlation function" g(2l, defined by 

P(2l(xl,x2) = P(l)(xi)P(I)(x2)g(2)(xl,x2) . (3.13) 

If the separation r 12 between molecular centers is substantially smaller than the normal 

nearest neighbor distance, strong repulsive forces will be present which drive g(2) (and 

with it p(2)) to zero. By contrast we expect the maximum value of g(2l to be achieved 

when x 1 and x2 conform to the geometry of nearly optimal dimer hydrogen bonding, 

i.e., to the minimum in V(2)(xl>x2). Beyond the nearest-neighbor separation g(2) 

reflects a combination of direct interaction between the participating molecules as well 

as indirect medium effects due to the influence of surrounding molecules. 

There are two measures of molecular orientational correlation that traditionally 

have entered discussion of polar dielectrics, which we will denote simply as G and g 

respectively. Both can be expressed in terms of the pair distribution function p(2) for 

the field-free system. Let ui stand for a unit vector embedded in molecule j and point-
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ing along its twofold symmetry axis. The vector sum of all suc:h uj defines 

N 

t= ~ Uj 
j~I 

(3.14} 

The mean square value oft averaged over all molecular positions and orientations in 

the canonical ensemble is easily shown to be the following: 

<t2> = N+N(N-l}<u 1·uz> (3.15) 

= N+ J dx 1J dxz(ui·u2)PC 2>(xi,x2) 

In fact the p(l) integral in this last expression will be proportional to N in the large-

system limit, so we write 

<t2> = NG, (3.16) 

where 

G=l+ lim N-1 fdx 1 fdx2(u 1·u2)p<2>(xi,x:2). 
N,V~oo 'V 'V (3.17) 

The symbol "V" has been appended to this expression as an explicit reminder that the 

molecular positions are allowed to span the entire system volume_ FGr tGtally uncorre-

lated molecular orientations G=l. The extent to which G deviates from 1 m·easures 

orientational correlation in the system, with G> 1 indicating a ten<lency toward align-

ment of molecular symmetry axes. The alternative quantity g is <lefi11ed by an expres-

sion that looks deceptively similar to Eq. (3.17): 

g= 1 +lim lim (V/Nw}jdxiJdx2(ut·Uz)p<2>(xl,x2) 
W->OJ N,V---+c:o w w 

(3.18) 

In this case the positional integrations are restricted to a fixed subv ol urne w within the 

system volume V, the latter is allowed to go to infinity (at constant de11sity N/V), and 

then finally w is itself allowed to become infinite. It is one of t:he intriguing subtleties 

of dielectric theory that G and g are not equivalent, the reasons f<Jr l"'llich should later 

become apparent. 

' 
, 
, 
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The quantity g was originally introduced into dielectric theory by Kirkwood (1939), 

whereas Slater (1941) and Onsager and Dupuis (1960) are usually credited with having 

first emphasized the role of G. 

In the case of isotropic fluids G and g can be simply expressed in terms of the pair 

correlation function gC2>: 

G = 1 + (p/81r 2) lim f dxz(u 1·u2)gC2>(xi,x2); 
N,V-co " 

(3.19) 

g = 1 + (p/81r 2
) lim lim J dxz(u 1·u 2)g<2>(xi,xz) , 

w-oo N,V-oo w 
(3.20) 

where p=N/V is the molecular number density. 

Because any given water molecule possesses a permanent dipole moment, that 

molecule acts as an electric field source to which the other nearby molecules respond. 

The average response of those surrounding molecules will be that of a polarization 

field with dipolar symmetry, at least at reasonably large distances on the molecular 

scale. It has been pointed out before (Stillinger, 1970) that this fact leads for fluids to 

an explicit form for g(2)(x 1,x2) - 1 at large r 12, provided a simplifying assumption is 

valid. This assumption is that the dipole moments of each molecule have negligible 

fluctuations about a mean magnitude Ji, and are aligned along the molecular symmetry 

axes. Thereupon we have (in the infinite system limit): 

9g(€o-1) 
0 

·T
12

·uz, 
g(2)(xl>x2}-l - 4 ... p(2€o+I) 1 (3.21) 

where T 12 is the characteristic tensor for dipole-dipole interactions, 

T = _1_ [1- 3rl2ri2] 12 3 ---
rl2 rf2 · 

(3.22) 

Although the Kirkwood correlation factor g appears in the asymptotic form (3.21}, it is 

interesting to note that this limiting large-r12 dipolar term does not contribute anything 

to the defining integral for gin Eq. (3.20). 
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IV. LIQUID WATER 

A. Local Order 

Figure 2 has illustrated the local four-fold coordination via hydrogen bonding that 

holds the ice crystal together. Excepting the neighborhood of rare defects, this pattern 

obtains at every lattice position within the interior of an ice crystal and creates long­

range order. It also creates the rigidity which ice exhibits. 

Melting of the ice phase to produce liquid water fundamentally disrupts the order 

initially present. Long-range periodic order (measured by variations in p( l)(x:) a bout 

its mean) disappears altogether, while short-range order (manifest in g(2 l(x:
1
, x

2
) over 

the first few molecular diameters is sharply reduced. This sudden introduction of 

disorder at the melting point is quantitatively revealed by the measured entropy of 

fusion, 

~S/Nk8 = 2.646 . ( 4.1) 

For the purpose of qualitatively guiding one's intuition about the melting transition it 

is useful to think in terms of an increase in the configurational freedom per molecule 

attendant upon melting. The appropriate factor is supplied by the exponential of quan­

tity (4.1): 

exp(~S/Nk8) = 14.10 . ( 4.2) 

The most appropriate view of liquid water is that it consists of a random, defective, 

space-filling network (Stillinger, 1977). On the basis of computer simulation studies 

(Rahman and Stillinger, 1973) it is believed that the invariant ice-like pattern of four 

hydrogen bonds to each molecule is replaced by a broad distribution of 0 to 5 bonds, 

with a mean around 2.5 . Furthermore the bonds that are present form polygonal do-

,,I 
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sures with no preference for even versus odd numbers of bonds; by contrast the cry­

stal structures of hexagonal and cubic ice exhibit polygonal closures with only even 

numbers (6,8,10,12, ... ) of sides. It has also been established (Geiger, Stillinger, and 

Rahman, 1979) that with any reasonable definition of "hydrogen bond" liquid water at 

ordinary temperatures is above the critical. percolation threshold, i.e. the liquid essen­

tially consists of a single macroscopic cluster of molecules connected by hydrogen 

bonds. Consequently it is inappropriate to view liquid water as consisting of discon­

nected microscopic clusters of bonded molecules floating about in a medium of 

unbonded molecules, though in fact this picture has enjoyed a considerable historical 

prominence (Kavanau, 1964). 

Evidently the local molecular order surrounding any chosen water molecule in the 

liquid is quite variable. The variations include the number of hydrogen bonds ter­

minating at that molecule, their lengths and directions, and the possible presence of 

close but unbonded neighbors. It was remarked above (Sect. III. A) that hydrogen 

bonding affects the electrical properties of the participating monomers, in particular 

their dipole moments. Consequently any credible molecular theory of the dielectric 

constant in liquid water ought to include an account of the fluctuating local order. 

B. "Kirkwood" Dielectric Formula 

Our next objective is to deduce an expression for the static dielectric constant Eo in 

terms of molecular parameters that characterize the liquid. The resulting formula, Eq. 

(4.27) below, will be a modification and generalization of one originally derived by 

Kirkwood (1939) for polar fluids. Our derivation parallels, those of Harris and Alder 

(1953) and of Buckingham (1956) but with some changes motivated by the present 

more complete understanding of molecular interactions in water. 

For the sake of convenience it will be supposed that suitable boundaries are 

present to confine the liquid sample (N molecules) to a spherical shape (volume V). 
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These boundary conditions serve only to maintain the geometric shape of the macros-

copic sample, and have no further implication for the electrical behavior to be investi-

gated. 

Now let this spherical sample be placed within a region of space which, when origi-

nally empty, possessed a uniform electric field directed along the z axis: 

Eo= Eo Uz · (4.3) 

We shall suppose that this field is sufficiently weak that it creates linear response only. 

Macroscopic electrostatics applied to our spherical homogeneous dielectric states that 

the mean electrical field E within the system is parallel to E0 and has the magnitude 

E = [ 3 l Eo+ 2 Eo . (4.4) 

From this we can infer the polarization P via the fundamental relation Eq. (2.2): 

[
Eo- I l [ 411" l 
Eo + 2 Eo = l-3 p · (4.5) 

Statistical mechanical theory also supplies an expressiorr for P, namely 

P = <M(x1 · · · xN,E0 ) >/V , (4.6) 

where M is the total moment of the system when the N molecules have fixed posi-

tions and orientations x1 · · · xN, and when the external homogeneous field is E0. The 

average indicated in Eq. (4.6) involves a canonical distribution with this external field 

present. Consequently we have 

Eo- I 

Eo+ 2 = 

41r [ dx1 · · · [ dxN (M · uz)exp[ -iJ(VN+UN)] 

3VEo Jdx1 · · · JdxN exp(-~(VN+ UN)) 
(4.7) 
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As i>efore VN stands for the molecular interaction potential within the system, and is 

ind epe nde nt of E0; UN is the interaction of the collection of molecules with E0• 

Since interest is confined to linear response it will suffice to retain only terms 

through li11ear order in E0 in the expansions of UN and of M. The former has the fol-

lowing f<Jrm: 

UN(x 1 • • · xN,Eo) = -M(x1 · · · xN,O) · E0 + O(EJ) , (4.8) 

whic:h to the requisite order involves only the spontaneous moment of the system in 

the give11 configllration. For the latter we can quite generally write: 

M(x1 · · · xN,E0 ) = M(x1 • • · xN,O) + M 1(x1 · · · xN) · E0 + O(EJ) (4.9) 

where again the spontaneous moment appears in leading order, and where the tensor 

M1 is defined: 

[aM] . 
M1 = aE0 E,~o (4.10) 

Altho11gh M1 in principal is a complicated quantity that is difficult to compute in 

general, it should suffice for t:he task in hand to replace it by an average value that is 

suggested by macroscopic considerations. After all M 1 represents the extra moment 

linearl:y induced in the system by E0 when the molecular configurations x 1 · · · xN are 

fixed. For virtually all configurations this extra moment will be nearly parallel to E0. 

It is furthermore determined by electronic polarization and by deformations in vibra-

tiona! degrees of freedom that result as E0 shifts mechanical equilibrium points. 

These considerations suggest that we write M 1 in terms of the high frequency dielec-

tric constant En which refers to a regime in frequency too high for the orientations to 

resporrd at all, but low enough so that vibrational shifts can so respond. Appealing 
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once again to the electrostatic solution for the sphere we thus have 

3V [~]·E01, Ml ----> 4;- Eh + 2 ( 4.11) 

and so Eq. (4.9) becomes 

3V [ Eh- I l 2 M(x1 · · · xN,E0) = M(x1 · · · xN,O) +- -- E0 + O(E0 ) 
47r Eh + 2 

( 4.12) 

After inserting expressions (4.8) and (4.12) into Eq. (4.7), and discarding all but 

the leading-order terms in E0, we obtain 

~ = ~ + ~ <[M(x1 · · · XN,O) · uzF>E,~O 
Eo+ 2 Eh + 2 3V 

(4.13) 

As indicated by the subscript E0=0 the average appearing here refers to the field-free 

ensemble. On account of isotropy of the liquid sample the last equation can equally 

well be written 

~=~ 41r{3 
Eo+ 2 Eh + 2 + 9V <[M(xl · · · xN,O)J2>E0~ (4.14) 

We see from this intermediate result that contribution of orientational motions to Eo is 

contained in the mean-square fluctuations in the system moment. 

The next step is to express the average in Eq. (4.14) in terms of relatively simple 

molecular distribution functions. First recall that the procedure of Sec. III. B above 

permits us to assign moments uniquely to each molecule, so the total system moment 

M is simply the sum of those individual moments: 

N 
M(x1 · · · XN,O) = ~ #lj (x1 · · · XN,O) 

j~l 

( 4.15) 
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The notation here stresses the important fact that on account of interactions each of 

i. 
the molecular moments depends in principle upon the entire set of configurational 

coordinates x1 · · · xN. Inserting Eq. (4.15) into Eq. (4.14) we obtain 

-- = --- 47rp{3 Eo- I Eh- 1 [ l 
Eo+2 Eh+2 + -9~ <1'1·M>, (4.16) 

where p stands for the number density N/V. [Here and in the following we assume 

the averages all refer to E0 = 0, so having that as a subscript is unnecessary.] Of 

course we can also write 

<1'1 · M> = <ll[> + (N-1)<1'1 · 1'2> ( 4.17) 

Kirkwood's perceptive contribution to the theory of polar dielectrics was to identify 

two distinct contributions to the average appearing in Eq. (4.16). The first is concen-

trated in the immediate neighborhood of molecule 1 and arises from a local moment 

m; due to molecule 1 and its immediate neighbors whose rotations are hindered by 

interaction with 1. The second is a more subtle contribution that arises from the elec-

trostatic boundary conditions at the spherical surface of the sample. The local 

moment m; induces in the sample a polarization field containing throughout V a uni-

form component antiparallel to m;. This uniform component is very weak for a large 

system volume V; it is in fact proportional to v-1. But upon integrating this weak 

polarization over V to find the corresponding contribution to the total moment M, it is 

clear that a result independent of V emerges. We refer the reader to Kirkwood (1939) 

for the detailed electrostatic calculation of this effect. The net result is that in Eq. 

(4.16) we can set 

9E 0 • 
M= m1 (2E0+ 1 )( E0+2) 

(4.18) 
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As a consequence, 

E0 -l Eh-1 47rp/3Eo • 
---=---+ <JJ.. m > 
Eo+2 Eh+2 (2E0+1)(E0+2) 1 1 ' (4.19) 

which thus expresses Eo in terms of strictly local fluctuating moments. 

The moment Jl.J fluctuates on account of variations from instant to instant in the 

extent to which molecule I interacts with its neighbors. In particular the number and 

strength of the hydrogen bonds it makes to its immediate neighbors is relevant, with 

each hydrogen bond tending to increase the magnitude of Jl.J above the isolated 

molecule value. The more complicated quantity m; fluctuates not only due to Jl.J vari-

ations, but due as well to changing patterns of partially aligned neighbors arranged 

around molecule 1. If it were the case that the dipole moments of all molecules could 

be treated as independently fluctuating, then it is easy to see that 

• 2 
<JJ.1 · m1> = <JJ.1 > g , (4.20) 

where g is the Kirkwood orientational correlation factor defined earlier in Eq. (3.18). 

The implication would be 

Eo- I Eh- I 47rp{3gEo 2 ---=---+ <JJ.J> . 
Eo+ 2 Eh + 2 (2E0+ I)( E0+2) 

(4.21) 

The fact remains that correlated moment fluctuations are likely to have a significant 

influence on Eo for liquid water. As any given hydrogen bond forms and breaks in the 

liquid two molecules which are neighbors are involved. Consequently we expect a 

positive correlation for the magnitudes of their fluctuating moments (both moments 

enhanced by an intact bond, both diminished when it breaks). Therefore it is neces-

sary to replace the naive Eq. (4.21) by a suitably modified alternative. 

Define the following quantity: 
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s(xfOl, xlO)) = <(JJ.J. Jl.2) o (xi- xfOl) o (x2- xlO))> ' ( 4.22) 

i.e. the mean value of the scalar product of Jl.J and JJ. 2 subject to the respective 

molecules having configurational coordinates xf0l and x1°l. In terms of this function it 

is clear that 

<JJ.1 · m;> = <JJ.f> + lim lim (p/81r 2) 
W--+QO V-+CO 

X fwdx 2 s(x 1, x2) g<2l (x 1, x 2) ( 4.23) 

where w, a fractionally small subregion of V, is centered around molecule 1. It is use-

ful to write 

<JJ.1 · m;> = <JJ.f>[l + (g-1)¢] ( 4.24) 

where <t>=l for independently fluctuating molecular moments, but where more gen-

erally 

J..dx 2 s(x 1, x2) g<2l(x 1, x2) 
4> = lim lim 

2 w~oo v~oo <JJ.?> fwdx2 Jl.i. Jl.2 g< l(xl, x2) 
( 4.25) 

From what has been said repeatedly about molecular interactions in liquid water we 

certainly expect to have 

<I> of. I , ( 4.26) 

though the magnitude of this quantity is not obvious. 

By combining Eqs. (4.19) and (4.24) we obtain 

~ = ~ + 47rp{3e 0 
Eo+ 2 Eh + 2 (2e

0
+I)(Eo+2) [I+ (g-1) <t>l<JJ.f> . ( 4.27) 
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This is the desired modification of Eq. ( 4.19) to account for correlated moment 

fluctuations. It can be viewed as an updated version of the Kirkwood dielectric for-

mula (Kirkwood, 1939). 

C. Numerical Estimates 

At any given temperature and pressure (i.e. density) the fundamental formula 

(4.27) for ~ 0 contains four parameters: ~h• g, cf>, and <,.,f>. The first of these is a 

macroscopic property directly accessible from experiment. The other three are micros-

copic properties for which no direct measurement techniques are available. 

It was remarked above that ~h should be the dielectric constant for a frequency 

range above which vibrational motions occur, but below which rotational degrees of 

freedom are evident. The lower of the two main vibrational bands observed spectros-

copically in water· is centered around 1650 cm-1, while librations (the highest fre-

quency rotational motions) produce a band centered near 700 cm-1 (Eisenberg and 

Kauzmann, 1969). Consequently ~h should refer to the frequency region around 

1200 em -I. Measurements of the real and imaginary refractive indices are available in 

this region (Querry, Curnutte, and Williams, 1969) from which we conclude 

~h = 1.64 (24"C) . (4.28) 

There is no reason to believe this would be strongly temperature-dependent. 

Several estimates of the Kirkwood orientational factor g in water have been pub-

lished. The first was due to Kirkwood himself (Kirkwood, 1939). The point of view 

taken for that estimate was that each molecule was surrounded by a rigorously 

tetrahedral grouping of four nearest neighbors (as in ice, see Fig. 2), but that each of 

these neighbors was free to rotate about the hydrogen bond direction determined by 

lone-pair electron orbitals. No contributions to g from molecules beyond this first 
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coordination shell were considered. In a crude sense this is consistent with the fact 

that only short-range order is present in liquids. Kirkwood's result was 

g ~ 2.64 , ( 4.29) 

and is manifestly temperature and density independent. 

Pople has devised a more satisfactory method of calculating g (Pople, 1951). 

Although his model continues to assume each molecule is hydrogen bonded to exactly 

four nearest neighbors, thermally activated bending of those bonds (as well as rota-

tion) is permitted. Furthermore local order through bendable hydrogen bonds is con-

sidered up through a third coordination shell. Pople obtains the following results: 

g = 2.60 WC) 

2.55 (25"C) 

2.49 (62"C) 

2.46 (83"C) ( 4.30) 

The decline of orientational correlation with increasing temperature seems at least 

intuitively reasonable. The num her shown for g at O"C is composed of the contribu-

tions 1.00, 1.20, 0.33, and 0.07 corresponding to the central molecule itself, the first 

shell of neighbors, the second shell, and the third shell. The calculation thus demon-

strates its own internal consistency in neglect of neighbors beyond the third shell. 

Computer simulation of liquid water offers a way to avoid the assumption of 

invariant fourfold coordination. At the same time a new set of difficulties arise, 

namely that the collections of molecules usually considered are very small (usually N 

is in the range 102 to 103
), and the interactions employed involve simplifications (pair-

wise additivity, most significantly). Nevertheless it is worthwhile noting that g has 

been estimated on the basis of at least one molecular dynamics study (Stillinger and 
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Rahman, 1974). This study employed 216 molecules, periodic boundary conditions, 

and the so-called "ST2" pair potential. g was not computed directly (the system was 

too small), but was inferred from the observed values of G [defined in Eq. (3.17)]. 

The following values were reported for the liquid at 1 g/cm 3: 

g = 3.66 

2.88 

2.68 

2.52 

(-3"C) 

(10oC) 

(41°C) 

(118°C) ( 4.31) 

Since there are some indications that this model for water possesses local structure 

that is a bit too well developed, it may be thai these numbers in Eq. (4.31) are larger 

than the correct values. No doubt future simulations will yield more precise and reli-

able values for g. 

Just as for g these are several calculations in print for the mean dipole moment in 

liquid water. On account of the foregoing general theory culminating in Eq. (3.27), we 

take the "mean moment" to stand for the quantity <iJ. 2> 'h. Using classical electrostat-

ics and Pople's model for local order in water (Pople, 195 I), Eisenberg and Kauzmann 

( 1969) conclude that 

<iJ. 2>y, = 2.45 D 

2.37 D 

(O"C) 

(83 "C) ( 4.32) 

This should be compared with the vapor phase moment 1.855 D mentioned earlier 

[Eq. (2.23)]. 

An independent estimate can be obtained, perhaps reasonably, by interpolating 

between the vapor phase value just mentioned, and the mean moment for ice near its 

melting point. Worz and Cole (1969) have calculated the latter to be 

' 
. 

' 

'·.I 

I 
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<~J. 2>'12 = 2.73 D , ( 4.33) 

a result that has Onsager's subsequent endorsement (Onsager, 1973). Since the dipole 

enhancements in condensed phases are due to interactions it seems sensible to sup-

pose that those enhancements are directly proportional to binding energies of those 

phases. These binding energies are thermodymimically available as energies of eva-

poration. On this basis one readily calculates for the liquid 

<iJ. 2>y' = 2.62 D (QOC) . (4.34) 

This interpolative result presumably includes the specific quantum-mechanical effects 

of hydrogen bonding on electronic structure and on the average nuclear geometry of 

the water molecule embedded in the liquid. By contrast the Eisenberg-Kauzmann 

results shown in Eq. ( 4.32) utilize classical electrostatics with inclusion only of elec-

tronic polarizability. For this reason Eq. ( 4.34) may give the more reliable estimate. 

Unlike the cases of g and of <~J. 2>'12 , no estimates of the dipole fluctuation corre-

lation parameter </> have been published. Indeed even qualitative mention of the 

effects embodied in this quantity seem not to have intruded into previous discussions 

of the theory of polar dielectrics. For present purposes we will be content to arrive at 

a rough value of</> by inverting Eq. (4.27): 

<J>=-1-{(2E0+1)(E0+2) [f 0-1 _ fh-1]-
1
} 

g- 1 47rpf3Eo<iJ. 2> [ E0+2 fh+2 ' 
( 4.35) 

and then inserting appropriate values into the right hand side. In view of the preced-

ing discussion we assume the following values apply for the liquid at OOC: 
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Eo= 87.74 

Eh = 1.64 

p = 3.343 X 1022 cm-3 

g = 2.60 

<tJ. 2> = 6.86 D2 (4.36) 

When these are inserted in Eq. (4.35) the result is 

</> = 0.54 (O"C) (4.37) 

It needs to be stressed that this result is sensitive mostly to the value assumed for the 

mean square liquid-phase dipole moment. As this latter quantity decreases, <fJ 

increases. Holding the other parameters at the values shown in Eq. (4.36), 4> passes 

through 1 when 

<tJ. 2>'h = 2.22 D . (4.38) 

This seems rather smaller than can comfortably be assumed for the liquid at o·c. 

Consequently </> probably is actually less than I. 

The magnitudes of neighboring dipole moments in the liquid are expected to exhibit 

positive correlation as hydrogen bond linkages between the molecules form and break. 

That </> should be less than unity indicates that the defining expression ( 4.25) receives 

substantial contributions from pairs of molecules for which 

ILJ ' IL2 < 0 . (4.39) 

This situation is possible for directly hydrogen-bonded molecules if (see Figure 1) the 

angle made by the acceptor molecule axis is sufficiently large with respect to the 
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hydrogen bond axis. It is also easily possible for a pair of second neighbors along a 

chain of hydrogen bonds as illustrated by Figure 3. This latter arrangement is reason-

able in view of .the apparent existence of many closed hydrogen bond polygons in the 

liquid (Rahman and Stillinger, 1973). 

Figure 3. 

I 
I 
I I ' 

j_ /~ 
-- I ...... __ I 

--~' 

Tendency toward dipole antiparallelism (!L 1 • !L 2 < 0) for 

second neighbors along a chain of hydrogen bonds. 

It is an unfortunate fact that we have only crude estimates for the important quan-

tities <~t 2>Y>, g, and </> in liquid water. Obviously some concentrated theoretical 

attention to more precise determination is warranted, since experiment is incapable of 

determining them separately. One promising approach is the "polarization model" for 

water (Stillinger and David, 1978) which, in a Monte Carlo or molecular dynamics 

simulation application, would permit each of the three basic quantities to be computed. 
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V. ICE 

A. Structural Description 

Two forms of ice will be considered in this Section, hexagonal and cubic. The 

former is the normal result of freezing liquid water, while the latter can be prepared 

by slow vapor deposition on a very cold surface. Apparently these are the only two 

crystalline forms of water that can be prepared at low ambient pressure (Eisen berg and 

Kauzmann, 1969). 

In their defect-free forms both cubic and hexagonal ices display the fourfold coor-

dination shown earlier in Figure 2. At absolute zero the distance between neighboring 

oxygen atoms in these structures is about 2.74 A, and the angles made by two of its 

oxygen neighbors at a central oxygen is the characteristic tetrahedral value 

Ot = arccos(-1/3) 

= 109.47° . ( 5.1) 

The hydrogen bonds that connect neighboring molecules in ices Ih and Ic form 

closed polygons with all possible even numbers of sides, from the minim urn size six. 

However these even polygons are shaped and arranged differently in the two crystals. 

Figure 4 shows and contrasts the hydrogen bond networks of the two ices. The struc-

tural relation between these forms may be viewed as resulting from 30° rotation of 

molecules along vertical hydrogen bonds in Figure 4 from an eclipsed configuration 

(hexagonal) to a staggered configuration (cubic). 

Neutron diffraction studies of hexagonal 0 20 ice (Peterson and Levy, 1957) show 

that along every 0-0 bond there are two possible positions for a hydrogen atom. Each 

is 1.01 A from the nearer end oxygen, which is only slightly stretched compared to the 

free molecule 0-D (or 0-H) bond length 0.96 A. In view of the weakness of hydro-
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HEXAGONAL 

CUBIC 

Figure 4. Hydrogen bond networks in hexagonal and in cubic ices. The 

vertices are residence positions of oxygen atoms. 

gen bonding compared to intramolecular covalent bonds it is reasonable only to inter­

pret these diffraction results as indicating that the ice crystal consists of intact water 

molecules. Although analogous measurements have not been made for cubic 0
2
0 ice, 

it is again only reasonable to assume that the same result would likewise be found in 

this closely related substance. 

The free molecule bond angle 104.45" is slightly smaller than the ideal tetrahedral 

angle 109.47" . However there is some theoretical evidence that hydrogen bonding 
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interactions tend to open up the bond angle slightly (Hankins, Moskowitz, and Stil­

linger, 1970) to provide a better fit to the lattice. For present purposes it will be ade­

quate to suppose that hydrogens are essentially on the 0-0 axes. With two hydrogens 

and four bonding directions, each water molecule has six possible orientations. 

Expanding upon earlier suggestions by Bernal and Fowler (1933), Pauling was the 

first to recognize clearly that the existence of intact water molecules in the hydrogen­

bond network of ice Ih permitted multiple configurational degeneracy that was associ­

ated with proton disorder (Pauling, 1935). He formulated the following set of "ice 

rules" to define and restrict the possible positions of hydrogens within the crystal. 

I. Along each nearest-neighbor 0-0 bond there is one and only one hydrogen. 

2. Each hydrogen has available to it two eq_uivalent but distinct sites, one on either 

side of the 0-0 bond midpoint. 

3. Along the four bonds emanating from each oxygen vertex, precisely two bear 

"nearby" hydrogens, while the other two bear "distant" hydrogens (intact molecule 

condition). 

These "ice rules" simply re-express the above interpretation of neutron diffraction 

observations (while historically preceding them by more than two decades!). Of 

course they are equally applicable to ices Ih and Ic. 

Pauling estimated the number of distinct configurations permitted by the ice rules 

using a simple but surprisingly accurate method. He observed first that in a crystal of 

N molecules there are 2N bonds (neglecting surface effects). Were it not for rule 3 

above, this would lead to 2 choices for each bond, or 22N configurations. However 

rule 3 will eliminate many of these. At each of the N oxygens only 6 of the 24 
= 16 

ways of placing hydrogens along the four bonds satisfy this last restraint. Pauling then 

proposed that an attrition factor 6/16 should be incorporated for each vertex, thus 

leading to the following number of configurations: 
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WN;:;; 22N(3/8)N = (3/2)N . (5.2) 

Pauling furthermore suggested that the vast majority of the WN canonical ice 

configurations lie sufficiently close in energy that ice would display the full proton 

disorder permitted by the ice rules when it is formed by freezing the liquid. This pro­

ton disorder ought then to remain "frozen" into the crystal even as the latter is cooled 

toward absolute zero. The Pauling entropy 

Sp = k 8 ln WN , (5.3) 

using estimate (5.2) for WN, agrees well with the residual ice entropy at o·K meas­

ured calorimetrically by Giaque and Stout (1936). Barring inadvertent contributions 

from other types of crystal disorder (point defects, dislocations, grain boundaries, 

etc.), this result strongly supports the presumption of near-degeneracy for the WN 

configurations. It is from among these canonical configurations that the static dielec­

tric response of ice to homogeneous electric fields must be calculated. 

Subsequent combinatorial studies have produced more accurate values for WN. 

The best are due to Nagle, who finds for both cubic and hexagonal ice (Nagle, 1966): 

WN ;:;; (1.5069)N . (5.4) 

Consequently Pauling's use of independent attrition factors for each oxygen vertex 

leads to an underestimate, though only slightly so on a per-site basis. Details of a 

graphical method on which an accurate calculation of WN can be based are contained 

in the later Sec.V. E. 

While enumeration of the canonical ice configurations constitutes the most impor­

tant structural feature of ice, a complete discussion of electrical behavior requires con­

sideration of two types of point defects. These are the ionic defects, and the "Bjer-
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rum" defects. They correspond respectively to violation of ice rules 3 and 1. 

Ionic defects ·are produced spontaneously by the same process of molecular dissoci-

ation that operates in the liquid phase, namely 

H 0 __, H+ + OH-2 ,_ (.5.5) 

Successful dissociations are those for which the ionic products dilfuse away from one 

another to avoid immediate recombination. In ice this produces a pair of separated 

vertices which violate rule 3 by having a missing hydrogen (OH-), and by having an 

excess hydrogen (H30+). This situation can exist with one hydrogen still along each 

0-0 bond, and can be produced simply by shifting in concert a set of hydrogens along 

a connected bond chain between the final ionic centers. Ions are rare in pure liquid 

water and rarer still in pure ice, though doping .. the latter with HF or NH3 allows the 

experimenter to vary their concentration at will within reasonable limits (Levi, Mil-

man, and Suraski, 1963). Electrical conduction in ice proceeds only by motion of 

these H30+ and OH- defects, with mobility due to hopping of hydrogens from one 

bond position to the other to transfer the excess hydrogen ion or hydrogen ion "hole" 

by one lattice site. 

"Bjerrum" defects are orientational violations of the ice rules, involving no dissocia-

tion, but only intact molecules (Bjerrum, 1952). These violations produce defects in 

pairs, with one member of the pair consisting of two hydrogens along a bond ("d" 

defect) and the other consisting of no hydrogens along a bond ("!"defect). Both kinds 

of Bjerrum defect are mobile, with molecular rotations serving to transfer the defect 

from one bond to another with which it shares an oxygen verteJC. The concentration 

of d and of I defects in pure hexagonal ice at -IO"C is 7 X 10 15 cm-3, and the energy 

of formation of a defect pair is 0.68 eV (Fletcher, 1970). Bjerrum defects constitute 

the crystalline analog of broken hydrogen bonds that are conspicuously and copiously 
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present in the liquid phase. 

Since the rotation of polar molecules (by fixed angles) is involved in the creation 

and movement of Bjerrum defects, it is possible to assign effective charges to them. 

Onsager and Dupuis (1962) derive the following expression for the charge of a d 

defect (equal magnitude but opposite sign is appropriate for an I defect): 

q = 3v' JLib , (5.6) 

where JL is the mean molecular moment in the crystal, and b is the 0-0 bond distance. 

Using the value 2.73 D for JL (Wiirz and Cole, 1969) and 2.76 A for b (the value 

appropriate for hexagonal ice near its melting point), one obtains 

q = 1.71 X 10-1 esu 

= 0.357 e . (5.7) 

On account of this charge the d and 1 defects will drift apart in an externally applied 

electric field, and the water molecules that have oriented to accommodate this drift 

create a polarization field in the crystal. 

We should note in passing that the ice crystal is surely distorted in the immediate 

vicinity of any Bjerrum defect. This distortion arises from the mutual repulsion either 

of electron lone pairs (1 defect) or of hydrogens ( d defect) that point along the ice-

rule-violating bond. The result will be a local dilation for both types of defect; in 

other words they have positive volumes of formation. This requires that increasing 

pressure will reduce the equilibrium concentration of Bjerrum defects. For present 

purposes we can disregard lattice distortion around Bjerrum defects. 

ll. Dielectric Formulas 

The modified Kirkwood formula that was derived earlier for liquid water, Eq. 
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(4.27), is directly applicable to cubic ice Ic. To the e~tent that hexagonal since Ih may 

be regarded as dielectrically isotropic, we can also use the same formula to describe 

this more common form of the solid. There is fortunately one important 

simplification which apparently obtains for the ices, namely 

</>~ 1, (5.8) 

owing to the fact that the hydrogen bond network maintains virtually invariant con-

nectivity. The only exceptions to this invariance will be associated with point defects 

which we have seen above are rare. We will proceed on the assumption that q, can be 

set equal to unity, so that the simpler version of the "Kirkwood" formula, Eq. (4.21), 

can be employed. 

At relatively low frequencies the complex tiiile-dependent dielectric response of ice 

empirically seems closely to fit the single-relaxation-time formula: 

Eo- Eoo 
E(w) = Eoo + 1 + iwTd 

where for ice Ih at OOC (Eisenberg and Kauzmann, 1969) 

7' d ~ 2 X 10-5 sec . 

(5.9) 

(5.10) 

The relaxation process involved is molecular reorientation, mediated by motion of 

Bjerrum defects. By fitting experimental data for E(w) Auty and Cole (1952) find that 

the "infinite frequency" dielectric constant has the value 

Eoo ~ 3.10 . (5.11) 

The frequency range for which E00 gives the dielectric response for ice is broad, 

spanning the interval between roughly 30 Mhz and 1 Thz (10-3 cm-1 to 30 cm-1). 
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Even so, the electric field varies sufficiently slowly at the upper end of this range that 

librational motions of molecules in the lattice are able to respond fully to the external 

perturbation. Hence E00 is not really the ice phase analog of the quantity Eh that was 

introduced in Sec. IV for the liquid; this latter refers to frequencies so high that hin-

dered rotations in the liquid could not respond to an exciting field. Reference to the 

review by Irvine and Pollack ( 1968) suggests that the real part of the ice Ih dielectric 

function at 1200 cm-1 (the frequency for which Eh was previously identified) may be 

as low as 1.40 . 

The structure and bonding in the ices make it natural to discuss water molecule 

orientations just in terms of the six discrete possibilities defined by directions to first-

neighbor oxygens. This simplification relegates all hindered translational, librational, 

and intramolecular vibrational motion to "high frequency" response. Consequently we 

shall use the "Kirkwood" dielectric formula in the form 

Eo- 1 E00 - I 41l'p{3gEo 
2 ---=---+ <J,t > 

Eo+ 2 E00 + 2 (2Eo+ 1 )( Eo+2) ' 
(5.12) 

where E00 has the value shown in Eq. (5.11). By adopting this point of view the 

integral (3.20) which defines the correlation factor g reduces to a weighted sum over 

lattice sites and over orientations at each site: 

w 

g = 1 + lim lim ~ ~ ~ u1 • Uz 
W-+<Xl·N,V-co rl2 Ut u2 

X p(r 12, u 1, u2, N, V) (5.13) 

Here p represents the probability for molecules on sites separated by displacement r 12 

to have discrete orientations specified by unit vectors u1 and u2 (nominally along the 

molecular symmetry axes). Once again we stress the importance of the ordered limits 
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in Eq. (5.13): First the system size passes to infinity, then the size of the region w 

over which the neighbor sum is carried out is allowed to become infinite. 

For later reference it will be useful to invert Eq. (5.12) to provide a value for 

g<~L 2 >. Using 3.10 for E00 , and 91.2 for Eo at O"C (Wiirz and Cole, 1969), we obtain 

the following result for ice Ih: 

g<~L 2> = 10.21 o2 . (5.14) 

In order to achieve a full understanding of the dielectric behavior of ice it is neces-

sary to augment the "Kirkwood" dielectric formula with another due to Slater (1941) 

and Onsager (Onsager and Dupuis, 1960). We now derive the Slater-Onsager formula 

in a manner which should help to clarify its relation to the complementary "Kirkwood" 

result. 

Consider a finite slab of ice, in single crystal form, that has been placed between 

parallel capacitor plates as shown in Fig. 5. By external connection to a potentiostat, 

there will be an electric field E established throughout the ice sample, We will sup-

pose that E is constant and parallel to U 2 , the unit vector normal to the plates. 

The macroscopic polarization P induced by the field E can be split into two parts. 

The first includes the response of the system to E without permitting molecules to 

change their discrete orientations: 

PI= (E 00 - l)E/41!" , (5.15) 

where E
00 

is the same quantity used· above. The remainder of P, 

P2 = P- P 1 =(Eo- E00)E/4'll" , (5.16) 

arises from transitions among the canonical ice structures so as to bias the orientations 

of molecules preferentially along E. 

Figure 5. 
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Parallel-plate capacitor arrangement used to derive the Slater-

Onsager dielectric formula. 
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In order to obtain a useful expression for this second part of P we need to consider 

the statistical problem explicitly. In particular we have (since all molecules are essen-

tially equivalent): 

p2 = P<!l2>'h. ZN"I ~ ul exp(-,J<I>) , 
(u;} 

ZN = ~ exp(-,J<I>) , 
(u;} 

(5.17) 

where the sums span all 6N arrangements of discrete orientations. The appropriate 

potential <I> includes a pre-averaging over hindered translational, librational, and 

intramolecular vibrational motions. Furthermore <I> discourages Bjerrum defects by 

containing large positive contributions for ice rule violations. 

We can write <I> as follows: 
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N 

<I>= <l>o(ul · · · uN)- <JJ. 2>'12 E · ~ ui 
j~l 

(5.18) 

The first term <1> 0 stands for the potential energy of the ice with E = 0 (shorted capaci-

tor plates), while the second term is the interaction of the molecular moments with 

the external field. When expression (5.18) is placed in Eqs. (5.17) and only terms 

linear in E then retained, one finds 

N 
Eo- E00 = 47rp{3<JJ. 2> ~ <(ul · uz)(uj · Uz)> 

j~l 

(5.19) 

The averages here refer to the shorted-plate situation (<I> = <1> 0). If it is legitimate to 

treat the ice crystal as isotropic, the last equation simplifies one step further to the 

Slater-Onsager equation: 

Eo- E00 = (47r/3) p{3G <JJ. 2> , (5.20) 

where 

N N 
G = ~ <u 1 • ui> = N-1 ~ <ui · ui> (5.21) 

j~l ij~l 

We are of course interested in the behavior of a macroscopic dielectric sample, so the 

large system limit is appropriate. Analogously to Eq. (5.13) above for g, we therefore 

write 

G = I + lim ~ ~ ~ u1 • u2 p(rl2• ul> u2, N, V) . 
NV~oo , rl2 u, u2 

(5.22) 

Unlike the case for g, G includes all pair separations r 12 in the system. The last Eq. 

(5.22) is the discrete-orientation version of the previous general Eq. (3.19). 

Using the same data as before for ice Ih at Q"C, we can invert the Slater-Onsager 

equation (5.20) to deduce 
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G<JJ.2> = 25.89 D2 . (5.23) 

Comparing this result with Eq. (5.14) indicates that 

G >g. (5.24) 

Further insight into the underlying statistical problem can be achieved by 

transforming the Sla'ter-Onsager formula somewhat. We can classify configurations of 

the ice crystal according to their values of 

N 

tz = ~ Uj · Uz , 
j~l 

(5.25) 

which is proportional to the z component of the total system moment in the absence 

of the external field. On account of the discrete set of directions available for the ui, 

the possible tz values also form a discrete set, though these values need not be equally 

spaced. For any given tz let 

w(tz) = ~, exp{{3[ <<1> 0>- <1> 0(u 1 · • · uN)]} 
{u;} 

(5.26) 

where the primed sum includes only configurations which have the proper tz value, 

and where 

<<1> 0> = ~ <1> 0 exp(-{3 <1> 0)/ ~ exp(-{3 <1> 0) 
{u;} {u;} 

(5.27) 

is the mean value of <1> 0 in the canonical ensemble over all configurations. Notice that 

if the Bernal-Fowler-Pauling picture is correct that all "ice-rule" configurations have 

equal energy, and none others occur, then w(tz) is precisely the number of canonical 

ice configurations with the given moment component, and so 
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WN = ~ w(tz) (5.28) 
t, 

Returning to the more general circumstance wherein available configurations may 

differ in energy, we can use w(tz) to rewrite P 2 from Eq. (5.17) in the following scalar 

form: 

Pz · Uz = [p<~>Y'] ~ tz w(tz)exp({3E<!L 2>'12 tz) 

~ w(tz)exp({3E<IL 2> y, tz) 
(5.29) 

By paralleling the earlier procedure that led to the Slater-Onsager formula, we now 

obtain 

Eo- €co = r 47rpf:/<!L2> l ~ t; w(tz) 
[ N ~w(tz) 

(5.30) 

Thus the dielectric response has been related to the second moment of w. Com-

parison with the Slater-Onsager expression (5.20) reveals that 

3 ~ t; w(tz) 
G=---::-::-=-~-

N ~ w(tz) 
(5.31) 

For the macroscopic systems of interest we can reasonably expect the central limit 

theorem to apply to w. That is, it should behave essentially as a Gaussian function 

centered about tz = 0. In that circumstance it is valid asymptotically to regard w(tz) as 

a function of the ~ontinuous variable tz and thence to replace the second moment in 

Eq. (5.31) by a second derivative: 

G = -3[Na2 In w/at; 1,,~01- 1 (5.32) 

From Eq. (5.21) the fluctuation character of G is obvious. In the most general 

case 
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G = Tr G , 

G"~ = N-1<t" t~> , 

N 

t = ~ uj 
j~I 
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(5.33) 

It seems unavoidable that this mean-square fluctuation quantity (to be computed in 

the absence of external fields) must depend in a fundamental way on electrostatic 

boundary conditions. Thus far we have supposed that the surfaces of the ice slab were 

held at constant potential, and in particular the fluctuation (5.33) giving G refers to 

constant potential at the entire boundary. This circumstance amounts to surrounding 

the crystal with a metallic conductor. Any surface charges which might occur are 

automatically neutralized by induced image charge in the conductor. But if that sur-

rounding conductor is absent (i.e. a crystal in free space), any surface charge density 

remains unneutralized and produces an electric field within the crystal. The field 

energy that results is positive and will tend to diminish the magnitude of surface-

charge-producing fluctuations. Consequently the tensor components G"~ will depend 

on boundary conditions, and will be dependent on the shape of the sample. 

It is only by invoking conducting boundary conditions that surface charge effects 

are eliminated, and thus shape dependence is eliminated. Clearly these are the boun-

dary conditions of choice for further statistical study of the dielectric behavior of ice, 

at least within the context of the Slater-Onsager formula. The resulting cancellation of 

surface charge apparently permits one to neglect long-range molecular interactions in 

ice, and creates the only situation in which the Pauling ice rules and resulting degen-

eracy may consistently be employed for the study of static dielectric response. 
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C. Square Ice 

In order to aid in understanding the configurational statistics of hydrogen disorder 

in ice, it has been helpful to examine a two-dimensional "square ice" model (Meijer-

ing, 1957; DiMarzio and Stillinger, 1964). This model retains fourfold hydrogen bond 

coordination of the real three dimensional ices, but does so by placing oxygens at the 

vertices of a square planar lattice. The smallest hydrogen bond polygon thus is a 

square, in contrast to hexagons in ices Ic and Ih. In order to maintain the possibility 

of six discrete arrangements for a water molecule at each vertex, the molecules are 

permitted to be either straight or bent. Figure 6 shows a typical configuration of 

square ice obeying the usual ice rules, and conforming to periodic boundary conditions 

in both directions. 

Square ice exhibits proton disorder just as do the three dimensional ices. The ear-

lier Pauling argument applies without modification to the present case and conse-

quently leads to the same estimate [Eq. (5.2)] for the degeneracy WN of an N-

molecule sample. 

Since the pedagogical value of square ice pertains strictly to the combinatorial prob-

!em of proton disorder, these is no sense to attributing high frequency response to the 

model. Instead only molecular moments are postulated to interact with the "external 

field" E to give an energy of the form: 

N 
-E . }:; 11-j 

j~I 

(5.34) 

Straight molecules naturally have vanishing moments. Bent molecules have moments 

pointing along the molecular right-angle bisector with a fixed magnitude denoted ·by 

11-b· 
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H H H I I I 
H-0-H 0-H 0-H 0-H 0 H-0 

I I I 
H H H 

H H H 
I I I 

0 H-0 H-0 H-0-H 0-H 0-H I I I H H H 

H H H 
I I I 

0-H 0-H 0 H-0 H-0-H 0-H I I I H H H 

H H H 
I I I 0-H 0-H 0-H 0-H 0 H-0-H I I I H H H 

H H H I I I H-0 H-0 H-0 H-0 H-0-H 0 I I I H H H 

H H H I I I 
H-0 H-0 H-0-H 0 H-0 H-0 I I I H H H 

Figure 6. Typical defect-free configuration of square ice. Periodic boun-

dary conditions apply; the unit cell shown can bond perfectly 

at the boundaries to periodic replicas of itself. 

If p stands for the areal density of molecules in the square ice, then the mean 

polarization induced by E is: 

N 
P = P }:; 11- 1 exp(!}E · }:; Jl.j)/Z~2)(E) , 

j~I 

N 
z~2) (E) = }:; exp(!}E · 2:: 11) 

j~I 
(5.35) 
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The sums cover all canonical configurations which, in the absence of E, are presumed 

to have identical energies. In the linear response regime P will be parallel to E (iso-

tropic response) with a proportionality that may be taken to define the two-

dimensional dielectric constant: 

p =(Eo- l)E/471" . (5.36) 

By utilizing Eq. (5.35) in first order in E, one subsequently obtains the Slater-Onsager 

formula for square ice: 

Eo- I= 211"{3pG<!l 2> , 

where (passing to the large system limit) 

N 

G = lim ~ <11 1 • !lj>l<!l 2> , 
N-co j~l 

and where the average values refer to vanishing E. 

(5.37) 

(5.38) 

A dielectric formula of the Kirkwood type cannot unambiguously be derived for 

the present two-dimensional case. Nevertheless a quantity g can directly be defined to 

compare with G: 

(w) 

g = I + lim lim ~ <11 1 • P.j>l<!l 2> 
w-oo N-oo j=2 

(5.39) 

As before, the summation (over j) spans a fractionally small subregion w of the entire 

system. Only after the system size becomes infinite is this region w surrounding site I 

permitted to become infinite. 

Suppose that x and y are Cartesian coordinates whose axes are parallel to the prin-

cipal directions of the square ice modeL Because the two directions are equivalent in 

the field-free case, and because all molecules are at equivalent sites when periodic 
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boundary conditions are employed, we can write 

N 

G<11
2
> = lim (2/N) ~ <llix lljx> · 

N~co 
(5.40) 

IJ~l 

If the square lattice consists of an n X n array (N = n 2), it will be convenient to collect 

terms in expression (5.40) by columns of n molecules. Hence set 

Sax=~ llix 
iH:t' 

where a serves as a column index. Then 

(I ::::; a ::S n)) 

G<11
2
> = lim (2/n 2

) ~ <sax S-yx> 
n-co a,-y 

(5.41) 

(5.42) 

The moment llj of any molecule j may be thought of as composed of separate 

"bond moments" pointing along its two covalent OH bonds. Hence llj., the horizontal 

component of Jlj, is associated with horizontal OH bonds in that molecule. since llb is 

the magnitude of the moment of a bent molecule it is easy to see that 

Sax= 2-v, llb(n,- n1) , (5.43) 

where n, and n1 respectively give the numbers of horizontal OH bonds pointing right 

and pointing left. A glance at Fig. 6 reveals a fundamental conservation law generated 

by the ice rules, namely that the quantities n, and n1 are identical for all columns. 

Hence all sax are equal for any configuration of square ice obeying the ice rules. This 

in turn allows us to rewrite Eq. (5.42) in the following way: 

G<11 2> = 2 lim <sJ> , 
n~ 

(5.44) 

where sx represents the common value of all sax· 
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Simultaneous equality of all s,x across the planar array is a manifestation of 

configurational "stiffness" that results from the ice rules. A closely related result may 

also be obtained by studying diagrams such as Fig. 6. Consider any strip of m contigu-

ous horizontal rows of molecules, where O<m <n. Then proceeding from left to 

right, the numbers of horizontal OH bonds pointing right (or pointing left) in vertical 

bond columns within the strip can change only by -I, 0, or +I. This restraint 

severely restricts the ability of the system to "forget" the polarization pattern present in 

any vertical column in passing from one column to the next. In particular an uninter-

rupted vertical run of m = 21 right-pointing OH bonds in one column cannot be 

"smoothed out" in less than I horizontal steps between columns; on the average it 

would be expected that even greater spatial persistence of such a configurational 

fluctuation would obtain. 

Of course everything stated for horizontal bonds in columns and in horizontal 

strips is equally valid for vertical bonds in rows and in vertical strips, owing to funda-

mental equality of the x and y directions. 

The configurational stiffness of the ice rules leads one to suspect that in the infinite 

system limit rather long-range correlations are present in the quantities <iL 1 · ILj>. In 

this respect we can anticipate a basic difference between square ice and the correspond-

ing planar Ising models. For the latter (at least above their critical points) the spin-

spin correlation functions are short-ranged, with exponential damping as distance r 1i 

increases (Stanley, 1971). By contrast, calculations by Sutherland (1968) for general 

two-dimensional hydrogen- bonded ferroelectric models imply that correlations in 

defect-free ice along a given direction should vary as ri? Occasional ice rule viola-

tions, in the form of Bjerrum d and I defects, would however relax the configurational 

stiffness, and ought to shorten the range of configurational correlations in square ice 

by introducing exponential damping. 
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A major theoretical advance occurred when Lieb showed that the configurational 

counting problem for square ice could be solved exactly (Lieb, 1967a,b). Lieb's 

method involves finding a transfer matrix representation for the problem analogous to 

that for the square Ising model (Kramers and Wannier, 1941) and then finding eigen-

values and eigenvectors for the transfer matrix. the details are beyond the scope of 

this article, so the interested reader is referred to the original papers. The final result 

is 

lim (WN)I/N = (4/3)3/2 
N->OO 

= 1.539 600 718 ... (5.45) 

This indicates that square ice actually enjoys slightly greater configurational freedom 

than that suggested by the Pauling estimate ( 1.500 ... ) for the same quantity. It is 

worth noting in passing that Onsager and Dupuis (1960) have demonstrated that the 

Pauling estimate is always a lower bound on the exact result regardless of the dimen-

sion of the model under consideration. 

The square ice model is just one member of an extensive family of related two-

dimensional models for hydrogen-bonded crystals that can be solved exactly by 

transfer matrix diagonalization. An article by Lieb and Wu (I 972) provides a 

comprehensive account of this general area. 

Straight molecules of both orientations represent one-third of the six permitted 

molecular configurations in square ice. On an a priori basis one might have guessed 

that their relative concentration correspondingly ought to be one-third. In fact they 

occur with higher than a priori frequency. Using the exact solution method Lieb and 

Wu ( 1972, p. 450) find the straight-molecule fraction to be 

3 v, fl... - __!_] - l_ = 0.380 080 649 3 ... 
2 1!' 3 (5.46) 
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From this we immediately find that 

2 

[ 
8 y, [ 3 1 ]] 2 <}l > = 3-3 2--;;:- J.lb 

=0.6199193507 ... J.l~. (5.47) 

Nagle (I 974) has pointed out that an exact value for square-ice G an be ex::tracted 

from a generalization of the Lieb solution that has been pu blis :hed by Su th erla nd, 

Yang, and Yang ( 1967). The result is the following: 

G = 6 Jl;lw<}l 2> 

= 3.080 819 005 ... (5.4&) 

The reader must be warned that Nagle (I 974) has employed a different c:ollventio n for 

his definition of G; the relation of his quantity GN to ours is: 

GN = 3<}l 2>G/2}lJ 

= 9/w = 2.864 788 976 · · · . (.5.4()) 

Unfortunately no comparable exact result is available for the square-ice g, Eq. 

(5.39). 

D. Monte Carlo Simulations 

With the advent of rapid digital computers it has become possible to a11grnent 

theory of many body systems with "numerical experiments", which sewe to sirn ulate 

the phenomena of interest. This type of activity has been applied to h:ydrogen-b()nd 

statistics in ice, including both two and three dimensional cases. The results that :have 

emerged provide an important contribution to the present subject. 
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The first ice-model simulations were reported by Rahman and Stillinger (1972). 

These authors (RS) examined local correlations in both cubic and hexagonal ices, sub-

ject to the Bernal-Fowler-Pauling configurational rules. For cubic ice a crystal compris-

ing 4096 molecules was used; for hexagonal ice the corresponding number was 2048. 

In both cases periodic boundary conditions were imposed in order to eliminate specific 

surface effects. The objective of the RS study was to evaluate the Kirkwood factor g 

and to show how this quantity was built up of contributions from successive shells of 

neighbors in the respective crystals. Strictly speaking the definition of g, Eq. (5.13), 

would require consideration of infinitely large crystals. This is obviously impossible in 

any simulation, so implicit in the choice of system size is the presumption that the 

limiting behavior can be extracted from given calculations with satisfactory accuracy. 

Subsequent studies (see below) seem to show that the RS choices for crystal sizes are 

acceptable in this regard. 

The procedure devised by RS to sample canonical ice configurations required first 

that an appropriate starting configuration be constructed which satisfied the ice rules, 

as well as the periodic boundary conditions. Then a random ("Monte Carlo") pro-

cedure for executing transitions between canonical configurations, consistent with the 

boundary conditions, was implemented. The required orientational probabilities were 

subsequently calculated as averages over a long sequence of the crystal configurations 

generated. 

In order to produce transitions closed polygonal paths connecting bonded neighbors 

were found, by a random search procedure, along which all covalent OH bonds had 

the same direction. Having identified such a closed oriented path it is then possible to 

shift all hydrogens simultaneously to their alternate bond positions. This leaves OH 

covalent bonds with the reverse direction everywhere a long the closed path. Ice rules 

are still obeyed after the shift, for each molecule along the path gains back a hydrogen 
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after having lost one. Figure 7 indicates several such a shifts for hydrogens in the pic-

torially convenient two-dimensional square ice analog, starting with the configuration 

of Fig. 6. It is possible to show that this procedure in the long run samples all canoni-

cal ice configurations uniformly. 

H H H 
I I I 

H-0-H 0-H 0-H 0-H 0 
.. I I 

H-0 
I 
H 

~ (J H-L2:-H :_H 
I '1111 01 H H 

H H H 
I I I 
0-H 0 H-0 H-0-H 

I 
H 

H 
I 
0 

0-H 
I 
H 

H-O-H 

H H ~o~ 
I I 

H-0 H-0 H-0 H-0 H-0-H 0 
I I I 
H H H 

H H H 
I I I 

H-0 H-0 H-0- H 0 H-0 H-0 
I I I 
H H H 

Figure 7. Possible hydrogen shifts around polygonal paths to generate a 

new canonical configuration. In addition to simple closed 

paths (three shown) the periodic boundary conditions permit 

paths to exist which connect molecules with their images (one 

shown, running left to right). 
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The computer-implemented search for closed oriented paths tends predominately 

to find short paths. The greater the number of steps involved the less likely it is to be 

identified in a reasonable amount of computing time. Thus hexagonal paths were the 

species most frequently obtained in the RS calculation. For large crystals (as in the RS 

study) the chance of obtaining paths that entirely span the system from one molecule 

to its periodic image (see Fig. 7) is very small. Consequently RS eliminated such 

occurrences from the outset, and utilized only the simple paths (three shown in Fig. 

7) which avoid images of particles already visited. 

In both the hexagonal and cubic ice models examined by RS, the initial 

configurations were selected to have zero net moment. Transitions which are res-

tricted to image-avoiding paths can never change the system moment, so in fact the 

RS calculations only sample the zero moment subspaces of the entire set of Bernal-

Fowler-Pauling configurations. For this reason no information about the global quan-

tity G can be obtained, but useful results for the more localized quantity g can still be 

inferred. 

The basic results obtained are the quantities 

gJ'l = n,<u 1 · ui> (5.50) 

Here molecule j is one of the n, which form the v-th coordination shell surrounding 

molecule 1. As before the u's denote unit vectors along the molecular symmetry 

axes. The subscript "0" in Eq. (5.50) indicates that the average has been calculated 

only over the zero-net-moment subspace. Table I shows the RS results for cubic ice, 

giving the shell radii, the n,, and the gJ'l for 0 :s; v :s; 25. A sequence of approxi-

mately 50,000 configurations was produced for this calculation, of which I in every 

200 was utilized for the purpose of calculating averages. Of course for each 

configuration all pairs of molecules of a given separation were interrogated in produc-

ing the averages. 
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Shells I through 25 surrounding a chosen molecule in cubic ice comprise 524 

neighbors, a not insignificant fraction of the entire 4095 in all shells. The zero-

moment restraint imposed by RS requires that the entire collection of 4095 neighbors 

have a net moment equal in magnitude but antiparallel to that of the central molecule. 

Under the assumption that this moment is on average equally distributed over all 4095 

neighbors, we can see that the gJ"l shown in Table I for v > 0 must have been dimin-

ished accordingly. By the same reasoning the natural mean moment of the first, 

second, ... shells of neighbors must be cancelled by a moment distributed over the 

entire system. From this point of view it is elementary to show that the properly 

corrected shell correlation quantities for v > 0 ought to be given by 

25 
g(v) = gJ"l + nv(N- Nw)-1 ~ gJ"l ' 

v=O 

25 
N = 4096 , Nw = ~ nv = 525 (5.51) 

v=O 

These corrected values are also shown in Table I. They represent the best estimates 

of the g<vl for an infinite unconstrained system. 

Comparison of entries in the last two columns in Table I shows that the correction 

procedure (5.51) seems to have improved the convergence of the shell correlation fac-

tors to zero with increasing shell radius. However the correlations are rather long 

ranged, consistent with our earlier discussion of configurational "stiffness" in defect-

free ice. On account of the oscillatory behavior of the g<"J it seems reasonable to use 

just the first twenty five shells to form a numerical estimate for the cubic ice g: 

25 
g ~I+~ g(v) 

v=l 

= 2.11 . (5.52) 
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TABLE I. Coordination shell correlation parameters for 

cubic ice according to Rahman and Stillinger (1972). 

v r'/;/rr nv gJ"l g<•·) 

0 0 I 1.0000 1.0000 
I I 4 1.2643 1.2664 
2 8/3 12 .0032 .0094 
3 11/3 12 -.4537 -.4475 
4 16/3 6 .0050 .0081 
5 19/3 12 .2881 .2943 
6 8 24 -.0112 .0012 
7 9 16 -.0825 -.0743 
8 32/3 12 -.0039 .0023 
9 35/3 24 -.0861 -.0737 

10 40/3 24 -.0094 .0030 
11 43/3 12 .0601 .0663 
12 16 8 -.0009 .0032 
13 17 24 .0056 .0180 
14 56/3 48 -.0185 .0062 
15 59/3 36 -.0330 -.0145 
16 64/3 6 -.0023 .0008 
17 67/3 12 -.0155 -.0093 
18 24 36 -.0147 .0038 
19 25 28 -.0250 -.0106 
20 80/3 24 -.0129 -.0005 
21 83/3 36 .0209 .0394 
22 88/3 24 -.0149 -.0025 
23 91/3 24 -.0140 -.0016 
24 32 24 .0035 .0159 
25 33 36 -.0140 .0045 

Rahman and Stillinger conservatively estimated this value to be accurate within ±0.10 

of the exact g for cubic ice. 

The corresponding hexagonal ice calculations involved a somewhat longer sequence 

of configurations, roughly 140,000, from which once again every two-hundredth was 

used to evaluate shell averages. Results are shown for 0 :;:: v :;:: 26 in Table II. The 
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TABLE II. Coordination shell correlation parameters for 

hexagonal ice according to Rahman and Stillinger (1972). 

v r;;rf n, gJ'l g(v) 

0 0 I 1.0000 1.0000 
I I 4 1.2573 1.2613 
2 8/3 12 .0546 .0667 
3 25/9 I -.0952 -.0942 
4 11/3 9 -.3403 -.3312 
5 16/3 6 -.0936 -.0875 
6 49/9 6 .0245 .0306 
7 19/3 9 .2138 .2229 
8 64/9 2 -.0025 -.0005 
9 8 18 .0436 .0618 

10 9 9 -.0538 -.0447 
II 88/9 12 -.0135 -.0014 
12 89/9 3 -.0217 -.0187 
13 32/3 6 -.0025 .0036 
14 97/9 6 .0148 .0209 
15 35/3 18 -.0681 -.0499 
16 113/9 3 -.0180 -.0150 
17 40/3 12 -.0455 -.0334 
18 121/9 7 .0149 .0220 
19 43/3 3 .0137 .0167 
20 136/9 12 -.0140 -.0019 
21 137/9 6 .0006 .0067 
22 16 6 .0062 .0123 
23 145/9 6 .0110 .0171 
24 152/9 6 -.0022 .0039 
25 17 12 -.0110 .0011 
26 160/9 12 -.0164 -.0043 

same type of procedure as before was utilized to correct the quantities gd') for the 

influence of the zero-moment constraint on the system as a whole. 1'he final result 

for the Kirkwood orientational correlation factor is 
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- 26 
g =I+ ~ g(v) 

v=l 

= 2.065 ' (5.53) 

for which RS suggest an uncertainty of ± .02. Considering both uncertainties, the RS 

calculations suggest that g's for the two three-dimensional ices are indistinguishably 

close to one another. 

In view of the fact that hexagonal ice is inherently anisotropic it is important to 

resolve contributions to the quantity g along the principal axes of the crystal. For any 

given neighbor correlation we can write 

g(v) = 2gJ'l + g2') (5.54) 

where for example if ub is a unit vector in the basal plane then 

gJ'l = <(u 1 • ub)(uj · ub)> . (5.55) 

An analogous expression obtains for g2"l. The respective sums over shells then 

resolve the full quantity g into components 2gb and gc. Rahman and Stillinger 

obtained the following results from their hexagonal ice Monte Carlo study: 

gb = 0.707 ' 

gc = 0.653 . (5.56) 

1'he difference between these numbers is probably outside statistical uncertainty, but 

seems to contradict the controversial suggestion (Humbel, Jona, and Scherrer, 1953) 

that the basal plane dielectric constant 'b is less than that for the c axis, 'c• as indi-

cated above in Eq. (2.20). 
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More recently Yanagawa and Nagle (YN) have applied the Monte Carlo simulation 

technique to the square ice model (Yanagawa, 1979; Yanagawa and Nagle, I 980). 

This was an important step for two reasons. First, it permits a calibration of the preci­

sion of the Monte Carlo technique against rigorous results that have emerged from 

the exact analytical solution to this problem. Second, it is feasible to carry out compu­

tations both with and without the zero-net-moment constraint that was forced upon 

the three-dimensional RS calculations. This latter feature permits an assessment of 

the RS correction procedure, Eq. (5.51), and also permits evaluation of both g and G. 

Three different system sizes were examined in the YN work, 8 X 8, 12 X 12, and 

16 X 16, with periodic boundary conditions always applicable. Although the numbers 

of particles present in these systems are substantially less than those of the RS study, 

the linear dimensions of the respective systems are more nearly comparable. For 

example, the cube root of the n urn ber of molecules used in the RS simulation of cubic 

ice, (4096)
113

, is just 16. The ability to utilize a relatively smaller number of 

molecules in examining square ice is an obvious computational advantage. 

The YN study generated 100,000 configurations for each of the 8 X 8 and 12 X 12 

systems, whereas 160,000 configurations were generated for the I6 X I6 case. Aver­

ages were computed using every twenty-fifth configuration. 

The first test that must be passed hy a simulation of square ice is that it produces 

the correct fractions of straight and bent molecules. Yanagawa and Nagle find that 

these fractions are slightly dependent on system size. When they extrapolate their 

results to infinite system size their calculations imply 

<J.L 2>1J.Lb = 0.620 ± 0.003 ( 5 .57) 

[Note that owing to different normalization than that employed here, YN's self corre­

lation function "g(Q), is 3/2 times this quantity.] This stands in excellent agreement 
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with the exact result Eq. (5.47) and supports the overall validity of the YN Monte 

Carlo procedure. 

The second test concerns the global correlation quantity G, for which the exact 

value was stated above in Eq. (5.48). For their largest system YN find 

GN = 2.86 ± 0. I I (5.58) 

or equivalently 

0=3.08 ± 0.12. (5.59) 

Again excellent agreement obtains. 

Separate shell correlations were evaluated by YN both with and without the zero­

moment constraint. The respective quantities can be denoted by gJ••l and g~"l. Both 

require corrections to yield accurate estimates of the infinite system quantities g<"l. 

Equation (5.51) above displays the procedure to be used for gJ••l. Following the same 

line of reasoning the corresponding correction procedure to be applied to the g~") is 

the following: 

g(v) = g~v) + nv(N-Nw)-1 [ [ v~O g~v)] - G] . (5.60) 

Yanagawa and Nagle find that essentially identical values for g<v) are obtained from the 

constrained and from the unconstrained calculations, but only if the respective correc­

tions are applied. This consistency gives credence to the general correction procedure. 

Table III provides a few of the g(v) extracted from the YN simulation. By examin­

ing their results for all coordination shells out to large distances they conclude that 

g = I.6 ± .3 . (5.6I) 
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TABLE III. Coordination shell correlation parameters for 

square ice according to Yanagawa and Nagle ( 1980). 

v r?/rr nv g(v) 

0 0 1.000 

4 .826 

2 2 4 -.342 

3 4 4 .138 

4 5 8 -.069 

5 8 4 -.028 

Recalling Eq. (5.48) it is evident for square ice without defects that 

g < G . (5.62) 

E. Graphical Expansion Method 

There is no reason to suppose that the exact Lieb solution for square ice can ever 

be extended to the three-dimensional ices. Consequently a need exists for a sys-

tematic technique to study orientational statistics in the ices that is broad enough to 

cover both two and three dimensional cases with reliability, if not rigor. A family of 

graphical expansions has been developed for this purpose. The initial work in this area 

was published by DiMarzio and Stillinger (1964). Nagle (1966, 1968, 1974) substan-

tially simplified and extended the method. Gobush and Hoeve (1972) apparently first 

applied the graphical approach to the dielectric problem. In the following development 
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we shall follow the specific expansion procedure devised by Stillinger and Cotter 

(1973). 

The six configurations available to a water molecule at site i in a two or three 

dimensional crystal will be denoted by the parameter h Consider then the following 

bond function Bb for a nearest neighbor pair of sites i and j: 

Bb(~i• ~i) =exp(-13w)/D (0 or 2 hydrogens along bond) 

= exp(/3w)/D (1 hydrogen along bond) , 

D = exp(-,Bw) + exp(/3w) . (5.63) 

This associates an energy 2w with those ice-rule-violating configurations specified by ~ 
1 

and b which place 0 or 2 hydrogens along the same bond (in other words with I and d 

Bjerrum defects). 

The product of bond functions for all 2N nearest neighbor bonds in the crystal pro-

vides a suitable generating function for the configurational problem: 

2N 

F(~, · · · ~N) = II Bb(~i(b)• ~j(b)) 
b~I 

(5.64) 

Strict adherence to the ice rules obtains as w --+ +co, for then F is exactly 1 or 0 

according to whether those rules are obeyed or violated. More generally we are able 

to accommodate Bjerrum orientational defects in Eq. (5.64) with finite w, but it must 

be kept in mind that no interaction energy between those defects will be included in 

this treatment in spite of the fact that they bear an electrostatic charge [Eq. (5:6)1. 

Orientational averages may be computed using F as the configurational weight, for 

example: 
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<1L1 · ILj> = WN"1 ~ ILIUI). ILj(~j)F(~I ... ~N) , 
>, ... i;N 

WN= ~ F(~I · · · ~N) (5.65) 
!;, ... !;N 

The objective now is to evaluate these general expressions in terms of a graphical 

expansion that is valid in principle for any w, and then to select w to fit the physical 

fact of very low Bjerrum defect concentration. 

It will be convenient to set 

BbU;, ~j) = 1/2 {I + A ab(~;, ~)} , 

A = tanh ({3 w) , (5.66) 

where ab is +I or -I for orientations that obey or violate ice rules respectively. A is 

the fundamental expansion parameter of this graphical technique which must ulti-

mately be set equal to a value just less than +I. 

Before proceeding to details of the A expansions it will be useful to note some 

symmetry properties. Because the tanh function is odd, changing the sign of A is the 

same as changing the sign of the energy w. This exchanges the roles of bonds which 

ob.ey and which violate ice rules. Because square, cubic, and hexagonal ices each have 

only even closed polygonal bond paths, their configurations can always be paired in 

such a way that any "obeying" bond in one configuration is replaced by a "violating" 

bond in the other and vice versa. This equivalence relation is achieved simply by rev-

ersing configurations of molecules at every other site. Consequently WN(A) must be 

an even function of A, and the special case 

WN(-1) = WN(+I) (5.67) 
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shows that the number of canonical ice configurations everywhere satisfying the ice 

rules is precisely equal to the number of "anti-ice" configurations everywhere violating 

those rules. 

The corresponding statements for the correlation quantities <IL 1 • ILj> depend on. 

whether the sites involved lie on the same or on different sublattices. If they lie on 

the same sublattice (so they are separated by an even number of bonds) the average is 

even in A. If they lie on different sublattices (and thus are separated by an odd 

number of bonds) the average is odd in A. 

Figure 8 shows an anti-ice configuration for the square model, obtained from the 

configuration shown earlier in Figure 6 by the alternating reversal operation. A gen-

era! feature of these anti-ice configurations is obvious, namely that they all have van-

ishing moments. This is due to the antiparallel pairing of 0-H units along doubly 

occupied bonds with resulting cancellation of bond moments. Precisely the same pair-

ing and cancellation occurs in the two three-dimensional ices when A =-I. As a 

result it is clear for all three cases that 

G(-1)=0 (5.68) 

Although it is not immediately obvious that there is a corresponding simple result for 

g(-1), we will argue below that this quantity also vanishes. 

Nagle (1968) has pointed out that the quantity ab can be factored: 

ab(~;, ~j) = -Cij(~;) Cj;(~j) , (5.69) 

where C;j(~;) is +I if~; specifies a hydrogen along the bond, -I if not. Consequently 

FC~1 · · · ~N) = r 2
N rr {I- Accn ccnl , 

bonds IJ 1 Jl J 
(5.70) 

and so 
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Anti-ice configuration. This structure was obtained from that 

of Figure 6 by reversing the configuration of every other 

molecule. 

WN(A) = (3/2)N ~ 6-N IT {1 - ACija;) Cj;(~j)} 
~ 1 ••. ~N bonds 

(5. 71) 

It is significant that the Pauling estimate for WN( ± !), namely (3/2)N, has been iso-

lated as a leading factor in this last expression. Systematic corrections to that estimate 

will be secured in ascending orders in A. In the case of the transformed version of the 

correlation quantities shown earlier in Eq. (5.65) the Pauling factors cancel between 
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numerator and denominator to yield: 

~ 6-N #! · #j IT {I- AC;k(~;) Ck;(h)} 
~ 1 ... ~N bonds <#! . #·>=_:.:__.:c.:_ ____________ _ 

J ~ 6-N n 11 - AC;ka;) ckiak)l 
~ 1 .•• ~N bonds 

(5.72) 

We first examine WN(A), Eq. (5.71). Upon expanding the product of bond factors 

the separate terms generated may be put into correspondence with linear graphs on 

the given lattice. A bond is drawn between vertices i and j if -ACiiCii is present in the 

term considered, otherwise they remain unconnected. The A order of any term obvi-

ously equals the number of bonds in its graph. The admissible graphs connect only 

nearest neighbor vertex pairs since only these have bond functions in Eq. (5.71). The 

correspondence between terms generated by the expansion and graphs with nearest 

neighbor links is one-to-one. 

It is easy to show that graphs containing an odd vertex (one upon which one or 

three bonds impinge) each contribute nothing to WN(A). This arises from the facts 

that 

~ Cii(~;) = 0 , 
~~ 

~ Cii(O C;k(0 Cna;) = 0 
~~ 

(5.73) 

The only surviving terms are those whose graphs have vertices all of even order 

(zero, two, or four bonds impinging). This reduction in number of graphs that must 

be considered substantially simplifies the problem at hand. 

Of those terms in WN that remain, the simplest are those corresponding to single 

closed polygons on an otherwise empty lattice. More complicated terms will have 

graphs with several distinct bond polygons, and possibly intersecting polygons. It can 
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be shown (Nagle, 1966, 1968) that the value to be assigned to any given graph [before 

including the common factor (3/2)N] is equal to ,\ n;3P', where n is the number of 

bonds in the graph, and p2 is the number of vertices of order two. 

As the graph order n increases so does the difficulty of graph enumeration. For 

present purposes we disregard details, while referring the interested reader to the ori­

ginal papers (Nagle, 1966; Stillinger and Cotter, 1973). The final result obtained for 

cubic ice can be put into the following form: 

WN(,\) = {(3/2)[1 + 2(,\/3)6 + 3(,\/3)8 + 24(,\/3) 10 + 167(,\/3) 12 

+ 876(,\/3)14 + 0(,\16)l}N . (5.74) 

The occurrence only of even powers in ,\ is demanded by the above-mentioned fact 

that WN is even in A. Considering just the explicitly shown terms for A = I, the 

implied numerical value is: 

WN(I) ~ {(3/2)[1 + 2.7435 X 10-3 + 4.5725 X 10-4 + 4.0644 X 10-4 

+ 3.1424 X 10-4 + 1.8315 X 10-4]}N 

= {J.506!57)N . (5.75) 

The series involved appears to be convergent, though not rapidly so. It seems fair to 

suppose that higher order terms in Eq. (5.74) would also have positive coefficients so 

as to bring WN(I) up to Nagle's estimate quoted earlier in Eq. (5.4). 

Systematic studies of the corresponding WN(,\) series for square ice and for hexag­

onal ice have not been carried out to the same high order yet. However we do know 

from the first few terms of each that the same general appearance as that for cubic ice 

obtains. The coefficients are small, positive, and give the impression of relatively slow 

convergence. 

Low Frequency Dielectric Properties of Liquid and Solid Water 417 

To evaluate the pair correlation quantities from Eq. (5.72) both the numerator and 

denominator need to be expanded. The denominator is precisely the case just con­

sidered, excepting for the factor (3/2)N. The numerator differs by inclusion of the 

distinguished vertices 1 and j, and consequently modified graph rules apply. For those 

numerator graphs an odd number (I or 3) of bonds must terminate at the special ver­

tices I and j, while even numbers (0,2,4) must terminate as before at the remaining 

N-2 vertices. The value that must be assigned to each numerator graph is (Gobush 

and Hoeve, 1972) 

- (,\ n;3p,+l) ul . Uj , (5.76) 

where u 1 and uj are unit vectors for the distinguished sites with directions determined 

by the vector sum of graph lines leaving those sites. As before n is the number of 

lines in the graph and p2 is the number of order-two vertices. 

Stillinger and Cotter (I 973) evaluated the leading order terms of the series for 

first, second, and third coordination shell neighbors (j=2,3,4) in cubic ice. Their 

results were the following: 

<1L1 · 1L2>I<1L
2
> = (,\/3)- 2(,\/3)5 - 10(,\/3)7 - 12(,\/3)9 - 154(,\/3) 11 

- 1020(,\/3) 13.+ 0(,\ 15) 

<1L1. 1L3>/<1L 2> = (1/3)(,\/3) 2 - 2(,\/3) 4 - 4(,\/3) 6 - 6(,\/3) 8 

- 102(,\/3) 10 - (1190/3)(,\/3) 12 + 0(,\14) 

<1L1 · 1L4>/<1L 2> = -(2/3)(,\/3) 3
- (4/3)(,\/3) 5 - (14/3)(,\/3) 7 

-34(,\/3) 9 +0(,\ 11). (5,77) 
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Corresponding expressions for more widely separated pairs have not been obtained, 

nor have any of the series for hexagonal ice due to more severe counting problems. 

Stillinger and Cotter have compared the partial sums of increasing A orders 

obtained from Eq. (5.77) for A= I with the Monte Carlo estimates of the correlations 

calculated by Rahman and Stillinger (1972). They concluded that the series indeed 

converge to the simulation results. However the rates of convergence indicated by the 

known terms shown in Eq. (5.77) strongly indicated that A= I was at the limit of con-

vergence. When IAI < I the corresponding partial sums appear to converge exponen-

tially fast with increasing order. However when A = I the convergence appears to go 

only algebraically (i.e. an inverse power) with increasing order. This observation is 

consistent with the previously mentioned suspicion that the configurational stiffness of 

the ice rules may be associated with long-range pair correlations (and indeed this was 

shown by Sutherland (1968) to be the case in square ice). For IAI <I the presence 

of Bjerrum orientational defects limits correlation range by eliminating the stiffness, 

and it is a reasonable presumption that correlations are exponentially damped as dis-

tance increases. If this is the case then the exponential decay rate is probably simply 

related to the mean separation between Bjerrum defects, which goes continuously to 

infinity as A approaches I. 

If indeed the pair correlations are exponentially damped when IAI < I then the 

two quantities g and G will be identical: 

g(A) = G(A) <IAI < 1) . (5.78) 

However this equality need not obtain for A = 1, since this appears to be a singular 

point. One or both of the functions could manifest a discontinuity at this singular 

point thus destroying the equality. This evidently is what has been observed for 

square ice in the Yanagawa-Nagle simulation study cited above. On account of the 
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qualitative similarity of all three ices it is reasonable to expect the same to occur in 

models of the cubic and hexagonal ices. 

Separate correlation shell series such as those in Eq. (5.77) can be assembled (with 

due account given to coordination numbers) into series for g(A) = G(A). This latter 

type of result was first obtained for cubic ice by Gobush and Hoeve (1972), and 

extended by Nagle (1974): 

g(A) = G(A) = 1 + 4(A/3) + 4(A/3) 2 + 4(A/3) 3 + 4(A/3) 4 

+ 4(A/3) 5
- 4(A/3) 6

- 12(A/3) 7 + 36(A/3) 8 

+ 84(A/3) 9 + 132(A/3) 10 + 292(A/3) II + 748(A/3) 12 

+ 1124(A/3) 13 + O(A 14) , (IAI <I) . (5.79) 

Once again numerical studies of the coefficients shown here seem to imply that the 

series converges at A = I but that this is the limit of convergence. 

It is instructive to examine the thirteenth-order polynomial G
13

(A) defined by the 

first 14 terms in Eq. (5.79). This function is plotted in Figure 9. It is significant that 

this truncation of the full power series manages to pass through zero very c!ose to 

A= -1, where Eq. (5.68) states that G(-1) should vanish exactly. Gn(A) shows no 

marked sign of instability at this point, especially when compared to its lower-order 

analogs, so it seems safe to conclude that G(A) is continuous at A + -J, with 

lim G(A) = 0 
A~-I (5.80) 

The polynomial G 13 (A) should give an excellent approximation to the exact func-

tion g(A) = G(A) when IAI is not too close to I. In particular the monotonic increase 

with upward curvature displayed in Figure 9 is doubtless correct as A approaches I 

from below. The indicated accelerating increase of overall correlation provides an 
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interesting contrast with the separate coordination shell functions exhibited earlier in 

Eq. (5.77). These latter functions show that beyond their respective leading terms, 

higher order corrections all have negative coefficients indicating negative correlation 

co?tributions as A approaches I. With the given G(A) behavior it is clear that as dis-

tant pairs develop predominately positive correlation they "feed off' the correlations 

already established at shorter range. Thus the developing configurational stiffness 

appears overall to displace positive correlation outward. 

This last concept can be extended to offer an explanation of the difference between 

g and G that discontinuously develops when A = I. In particular we postulate that a 

weak non-decaying correlation inversely proportional to system size N suddenly arises 

at A = I, at the expense of short-range correlations. Specifically, 

<p.1 · P.j>/<p. 2>- KIN (large r 1j; A = I) (5.81) 

where K may be dependent on the direction of r 1j relative to the principal lattice direc-

tions, but not on its magnitude. As Stillinger and Cotter (1973) have argue~, this 

long-range phenomenon is precisely a reflection of the configurational stiffness that for 

A= I locks together the polarizations of successive columns (square ice) or successive 

layers (cubic and hexagonal ice) of water molecules and causes them all to fluctuate 

together. In any case Eq. (5.81) implies 

G(l)- g(l) = K , (5.82) 

where K is the average of K over directions. If the long-range correlation given by 

K/N precisely represents a transfer of correlation from short range to long range, then 

only g will reflect that change and will have a jump discontinuity of negative magni-

tude at A = I. By contrast G would be continuous at A= I. That G should be con-

tinuous and g discontinuous, rather than both discontinuous, was a possibility first 
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advanced by Nagle (1974). It is a presumption furthermore strongly supported by the 

Yanagawa-Nagle Monte Carlo study of square ice discussed above. For the three 

dimensional ices this implies that graph-theoretical results can reliably be employed to 

estimate G(l), and from the above we find for cubic ice specifically 

G(l) ~ G 13(1) = 2.996 55 .... (5.83) 
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The hexagonal ice value of G(l) ought to be closely similar, i.e. about 3.0 . By con-

trast with these G(i) values we have already cited substantially smaller values for g(i) 

from the Rahman-Stillinger Monte Carlo study, Eqs. (5.52) and (5.53). 

Because the ice to anti-ice transformation changes the signs of correlations at every 

other relative lattice position, the weak non-decaying contribution (5.81) alternates 

from site to site when A= -I. Consequently there will be overall cancellation and no 

contribution to G(-1) as there is to G(l). As a result we conclude that G(-1) and 

g(-1) are identical. In view of exact result (5.68) above we must then have 

lim g(A) = g(-1) = 0 
,\~-1 

(5.84) 

F. Discussion 

The nearest-neighbor statistical models for ice thus far surveyed leave us with a 

basic dilemma. On the one hand the existence of Bjerrum defects in real ice requires 

A in those models to be slightly less than I, and that in turn implies g(A) and G(A) are 

equal. On the other hand the results (5.14) and (5.23) obtained from experimental 

data (processed respectively by the Kirkwood and by the Slater-Onsager equations) 

demand that 

G/g ~ 2.54 (5.85) 

for ice at 0°C. This contradiction demands resolution and hence focusses attention on 

features of the ice problem that might be missing from the relatively simple nearest-

neighbor models. 

One obvious omission is the interaction between Bjerrum defects, already men-

tioned in passing. While the defects are charged [see Eq. (5.6)) they do not enjoy the 

complete mobility that would make them constitute an electrolyte. Instead they are 
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subject to statistical forces arising from the fact that their motion leaves a polarization 

field behind. Consequently the force acting between a pair of defects with charges q
1 

and q2 must be taken to be (Onsager and Dupuis, 1962): 

F = - qlq2 [-1 + _!_] \1 [_!_] 
foo f()-foo r 

(5.86) 

Only the first term represents the standard Coulomb interaction. The net result of 

this modification is that test charges are incompletely shielded, as indeed one expects 

to observe in a dielectric medium, in contrast to a conductor. The distance over which 

this partial shielding can be expected to develop would be the cube root of defect con­

centration, or about 500 A in ice near its melting point. The same dielectric shielding 

by interacting Bjerrum defects also applies to an embedded dipole. 

The Slater-Onsager dielectric constant formula (5.20) was derived for ice in a slab 

geometry with conducting boundary conditions. It was argued that this eliminated at 

least the most important effects of long range dipolar interactions between molecules. 

The available theoretical estimates of G do not of course use conducting boundary 

conditions but the more convenient periodic boundary conditions. However this dis-

tinction is not usually regarded as a source of error by those concerned with such 

matters. Since use of the conducting boundary is likewise presumed to remove shape 

dependence of G from the problem, then the theoretical calculations of G ought to 

give results equally applicable to both slabs and spheres of ice surrounded by conduct-

ing boundaries. 

For a sphere of ice composed of polarizable molecules and surrounded by a con­

ductor it is a simple matter to adapt Kirkwood's argument (Kirkwood, 1939), origi­

nally devised for a sphere in vacuo, to show that the local moment g<,u 2> v, and the 

corresponding overall moment G<,u 2>v, must be in the ratio 
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G/g = 3Eo/(2E 0 + I) , (5.87) 

in other words about 1.5 . This argument of course treats the ice medium as a proper 

dielectric, and for that reason interacting Bjerrum defects are implicitly invoked. 

Although this conclusion explains part of the discrepancy between G and g, it does not 

yield the ratio 2.54 . It might be worth mentioning in passing that no reasonable alter-

native value for E00 can rectify matters, nor can introduction of any reasonable ¢ in 

the Kirkwood equation do likewise. 

We are left with the necessity for extending the present nearest-neighbor statistical 

theory of ice to include at least interacting Bjerrum defects. Furthermore it seems 

important to check whether those extended models indeed exhibit the insensitivity to 

boundary conditions assumed above, namely that G should be the same for (a) 

periodic boundary conditions, (b) slab geometry with surrounding conductor, and (c) 

spherical geometry with surrounding conductor. In the present incomplete and .there-

fore unsatisfactory state of the subject it appears likely these assumptions !!lay require 

revision. 

VI. CONCLUSION 

This review constitutes an interim report for the subject of low frequency dielectric 

response in liquid and solid water. While many of the· basic concepts are reasonably 

well understood there remain important issues that require further research. In the 

liquid phase, the quantities <!L 2> Y.!, g, and ¢ each need to be characterized quantita­

tively. In ice <!-!2>¥.1 similarly needs to be determined accurately, and the apparent 

contradiction between theoretical and experimental values for Gfg must be resolved. 

At least part of the missing information can best be supplied by realistic computer 

simulation studies of water in its condensed phases, with proper attention paid to 

molecular polarizability. 

II 
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