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taminated as the result of room-temperature hydrolysis. 
The need for water vapor in both reactions explains 
why air embrittlement occurs primarily in the summer, 
the most humid time of the year. Changes in ductility, 
due to physical adsorption of carbon dioxide or hydro­
gen chloride, were not observed. 
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By means of the general theory of the classical grand ensemble, the complete formal relations for pressure 
and number of molecules in an open system, as a function of activity, are derived without approximation 
within the scheme of the Frenkel-Band equilibrium cluster theory of association. The physical clusters, 
defined geometrically by overlap of spheres drawn about each molecule, are not regarded as statistically 
independent, but their mutual exclusion property gives rise to free energies of formation work for cavities 
necessary to contain those clusters. A connection is established between these free energies and a suitable 
generalization of the Mayer irreducible cluster sum. The appropriate modification of the theory to include 
external forces (such as the gravitational field) is displayed. A rigorous expansion of molecular distribution 
functions in terms of physical (rather than Ursell-Mayer) cluster integrals is also presented. 

I. INTRODUCTION 

ALMOST simultaneously, Frenkep·2 and Banda 
l't.. pointe(out the value of regarding the imperfec­
tion and condensation of real gases as association 
equilibria of molecules into physical clusters of various 
sizes, causedlby intermolecular attractions. In this 
picture, the gas phase consists of free molecules (mono­
mers) , and descending numbers of bound molecular 
pairs (dimers), bound triplets (trimers), etc. These 
clusters of molecules, in "chemical" equilibrium with 
one another, were originally treated as noninteracting, 
to that the pressure in the system was taken simply 
of be the sum of ideal gas partial pressures for clusters 
so each size, considered as independent species. The 
appearance of liquid as the system is isothermally 
compressed beyond the saturation point, was supposed 
to be due to sudden appearance of clusters of macro­
scopic size. 

Band4 also examined a refinement of this viewpoint 
by introducing hard sphere collision diameters for the 
clusters to account approximately for the interference 
effect between cluster pairs. 

More recently ter Haar,o using Wergeland's6 idealized 
cluster partition function for noninteracting clusters in 

1 J. Frenkel, J. Chem. Phys. 7, 200 (1939). 
2 J. Frenkel, J. Chem. Phys. 7,538 (1939). 
3W. Band, J. Chem. Phys. 7,324 (1939). 
4 W. Band, J. Chem. Phys. 7, 927 (1939). 
6 D. ter Haar, Proc. Cambridge Phil. Soc. 49, 130 (1953). 
6 H. Wergeland, Avhandl. Norske Videnskaps-Akad. Oslo, I. 

Mat.-Naturv. Kl. 1943, No. 11. 

the grand ensemble, has shown that the Frenkel-Band 
approach has the capacity to reproduce the distinctive 
feature of sub critical pressure isotherms: monotonically 
increasing pressure as density is increased from zero, 
followed by a constant-pressure density region. 

In spite of its own intuitive appeal, and the relation 
it bears to the important field of nucleation phe­
nomena,7 the Frenkel-Band technique nevertheless 
still appears to lack a systematic deduction from first 
principles.8 It is this article's aim to provide such as 
basis. The major result is the pair of simultaneous 
Eqs. (14) and (17) for the number of molecules N 
and pressure p in the vessel as a function of the abso­
lute activity y. These equations include a set of density­
and temperature-dependent functions W., which ac­
count for the entire effect of finite cluster size (leading 
to their strict nonindependence). In view of the fact 
that these quantities can be interpreted in terms of 
cavity formation works, one is in a good position to 
propose reasonable approximations to the important 
quantities W., based on extrapolation of macroscopic 
thermodynamics to the molecular regime. 

The general theory is developed in Sec. II first on 
7 D. Turnbull, in Solid State Physics, edited by F. Seitz and 

D. Turnbull (Academic Press Inc., New York, 1956), Vol. III, 
pp. 256-266. 

8 Hill [T. L. Hill, J. Chem. Phys. 23,617 (1955) ] has developed 
an exact physical cluster theory, but with a different definition 
of "cluster" depending not only on particle positions, as in this 
paper, but on their relative momenta as well. Hill acknowledges 
the possibility of our choice (the traditional Frenkel-Band defini­
tion) but does not ever employ it. 
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the basis of intermolecular pair potentials of a special 
cutoff form. This choice represents no fundamental 
restriction, but serves only to clarify the presentation 
by omission of distracting detail. At the end of Sec. II, 
the slight generalization required by more realistic 
molecular pair interactions, as well as by external 
force fields (e.g., gravity), is briefly presented. 

Section III demonstrates that the W. may be 
expressed in terms of series of modified irreducible 
Mayer cluster integrals. Thus, in spite of the superficial 
independence of the Mayer and the Frenkel-Band 
cluster theories, we establish an intimate relation 
between these alternatives. 

Since our method is exact, its formal results for 
the corrected version of the Frenkel-Band equation of 
state are not restricted to fluids, but can in principle be 
applied to the solid-fluid coexistence. That this par­
ticular approach utilizing the physical cluster concept 
then may be rather uninformative, is illustrated by the 
example of the rigid sphere system, also in Sec. III. 

In Sec. IV, the probable behavior of the clusters 
of various sizes is discussed, both with and without 
the modifying influence of the cavity free energies. It is 
suggested that certain electronic computer calculations 
simulating cluster statistics would be a valuable guide 
in understanding the nature of this rigorous version of 
Frenkel-Band theory at elevated temperatures, and 
especially in the critical region. Also in Sec. IV, we 
quote the result of extending the physical cluster idea 
to expansion of molecular distribution functions. 

The exact formulation of the theory obtained here 
still identifies the condensation of gas into liquid (or 
directly into solid) as sudden appearance of one or 
more large clusters at temperatures well below the 
critical. However, in view of the obvious fact that such 
large aggregates use up much of the available vessel 
volume, leaving considerably less for others, it is clear 
that only by taking cluster noninterpenetration into 
account can a proper theory of phase transitions be 
constructed. It would be considered a triumph for 
the physical cluster ideas of the Frenkel-Band theory 
ultimately to lead to prediction of all major features of 
a vapor-liquid condensation, including the strange 

r-

FIG. 1. The initially chosen cutoff pair potential v (r), which 
vanishes identically beyond distance b. 

FIG. 2. Definition of physical clusters by overlap of concentric 
molecular spheres of radius b/2. The twenty-three particles shown 
are in a configuration corresponding to six clusters of just one 
molecule, two containing two molecules, one with three, and two 
with five. 

critical region behavior; only on the foundation of the 
completed theory such as deduced in this article can 
this convincingly be accomplished. 

II. THE GENERAL THEORY 

We examine a classical assembly of molecules, at 
temperature T, whose members interact by a short­
range pair potential energy, v(r). For convencience, it 
will at first be assumed that vCr) vanishes identically 
for all distances r greater than some cutoff distance b. 
The situation is illustrated in Fig. 1. It may be im­
agined that a sphere of radius bl2 has been drawn about 
each of the N molecular centers in the system. 

The grand partition function, exp ( - (3Q) , may be 
expressed as usual: 

exp( -(3Q) = 1+ f(yN IN!) r ... / 
N=l iv 

N 

X exp[ -{3Lv(r;j)]drl' .. drN, 
.<j=l 

{3= 1/kT, y= (27rmkTlh2)i exp(J.LlkT) (1) 

(the symbols m, k, T, J.L, h have their usual meanings). 
The configuration integrals are confined to the interior 
of a container of volume V. In the absence of gravita­
tional or other external forces, and with the neglect of 
surface free energy at the boundary of V (creating an 
error of vanishing magnitude relative to terms re­
tained), -Q may be identified as p V, where p is the 
system's pressure. 

If one chooses to consider for a moment a term in 
the sum in Eq. (1) corresponding to some N, then a 
given configuration of the N particles will lead to a 
picture shown roughly in Fig. 2. The set of spheres 
drawn about each molecule will intersect one another 
to lead to a natural subdivision of the N into subsets. 
These subsets have no mutual overlap, but each pair of 
particles in the same subset either overlap themselves 
or are indirectly connected by an unbroken sequence 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  128.112.66.66 On: Sat, 07 Dec 2013 05:31:23



1488 FRANK H. STILLINGER, JR. 

(or chain) of overlapping particles.9 If a given set of 
molecular center positions rl'" rN corresponds to nl 
clusters of just one molecule, "', n. clusters of s 
molecules, "', where, of course, 

N=I:sn., (2) 
.=1 

we note that there are 

.=1 

essentially different ways of permuting the N molecules 
among subsets, 

The grand partition function (1) can now be trans­
formed into a sum over subdivisions of particles into 
subsets, of configuration space integrals which are 
restricted in their integrations to the requisite over­
lappings: 

exp( -{ID) = 1+ L f "'jfi(l/n.!)ll 
(n,) (n.) .=1 a=! 

• • 
X { (Y'/s!) exp[ -{3 L v (ri(a);(a» JIIdrk(a,j. (3) 

i<i=1 k=1 

On account of the variability of N in the grand en­
semble, we are able to do away with the constraint (2), 
and sum in Eq. (3) over all sets of positive integers 
{n.l. The appearance of \ n.l below the multiple inte­
gral signs in (3) indicates the restriction of overlap to 
form the necessary clusters. The extra index a is re­
quired to distinguish the n. different clusters of a given 
size s. v(ri(a)j(a» is the interaction between particles i 
andj in the same cluster: the ath one of size s. 

Because vCr) vanishes for r> b, no terms v(rij) 
can occur in the integrand of Eq. (3) which link a pair 
of particles in different clusters. If it were not for the 
very complicated configurational restriction on the 
positions and shapes of the clusters, which prevents the 
clusters from overlapping in a given term of the {n.l 
sum in (3), the multiple integrals would factor into 
independent cluster partition functions: 

Q.(O) = (l/S!)I" 'f exp[ -{3 t v(rij) Jdrl' "dr. (4) 
(.) i<j=1 

(here, the s particles as indicated by (s) are constrained 
to form a single cluster). Under this factorization ap­
proximation, one readily recognizes that Eq. (3) would 
represent the expansion of the exponential of a sum; i.e., 

(5) 

Differentiation with respect to logy at constant {3 
subsequently gives the average number of particles: 

N(y) = I:sQ'<O)y'. (6) 
&=1 

The very easily obtained approximate Eqs. (5) and 
(6) are the basis of the past Frenkel-Band theory 
which neglects "cluster interference," a convenient 
term for cluster configurational restrictions of non­
overlap, It is the object of this investigation to avoid 
such simplification. For this reason we define the 
quantity 

p.(rl' , 'r.)drl' , ,dr. 

to be equal to the probability that the s particles of the 
same s cluster (serially numbered, and regarded as 
distinguishable) simultaneously occupy volume ele­
ments drl' , ,dr •. By observing the very strong analogy 
with the grand ensemble theory of molecular distribu­
tion functions,IO it is immediately possible to write out 
the appropriate grand ensemble expression for P.: 

• 
p.(rl" 'r.) = (y'/ s!) exp[f3Q-{3 L v (rij) J 

i<i=1 

".-8.1 I t 

X II {(yl/t!) exp[ -(3 L v(ri(a);(a»)]IIdrk(a)l. (7) 
a=1 i<j=1 k=1 

This form accounts for the possibility, for given {ntl, 
that any of the n. equivalent s clusters can occupy the 
volume elements drl'" dr" though for a specific s 
cluster we allow the particles to occupy positions in 
only one way. The configurational restrictions are the 
same in (7) as in (3), but now one of the s clusters is 
held rigidly in place at rl'" r, and coordinate integra­
tion is only over those clusters remaining free to move 
(hence the Kronecker delta, O,t, in the a-product upper 
limit for position-integrated s clusters). 

Actually to perform the restricted multiple integrals 
in (7) is obviously no less impossible a task than for 
those in (3). It is, however, profitable at this stage to 
recognize that the complicated quantity on the right­
hand side of (7) may be identified in a physically 
simple way. It will be noticed that the rigidly fixed s 
cluster appears to the entire remaining set of clusters 
as an impenetrable object since, by definition, mutual 
overlap of concentric spheres is excluded between them 
and the s cluster. Consequently, we may rigorously 
rewrite Eq. (7) in the much more compact way: 

p.(rl' , 'r.) = (y./ s!) 

8 

Xexp\-(3[ L v (rij) +n.(rl'" r.) -nJI; (8) 
i<i=l 

the quantity exp[ -(3n.(rl'''r.)J is precisely a grand 
partition function of the form (3) [or more simply 
Eq. (1)], except that all particle centers are excluded 
from the volume all of whose points are no further 

9Excepting, of course, the trivial case of the single-particle lOT. L. Hill, Statistical Mechanics (McGraw-Hill Book Com-
cluster. pany, Inc., New York, 1956), pp. 233-235. 
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than b from at least one of rl'" r.. This volume, 
which we denote by T., is a cavity from which all 
other particle centers must completely be absent so 
that the rigidly fixed s cluster may be put in place 
without its possibly overlapping more particles. T. 

would naturally change size and shape if rl'" r. were 
varied within the limits set by the s cluster connec­
tivity definition. 

If one introduces, for chosen rl'" r., a single­
particle potential u(r) which vanishes everywhere in V 
excepting inside T., where it is positively infinite, then 
the explicitly written analog of Eq. (1) leading to 
n.(rl· .. r.) is 

exp[ -!3n.(rl· .. r.)]=l+ I: (yN/N!) 
N=1 

because each factor exp[ -!3u(ri)] vanishes inside T., 
but is unity outside. 

For any open system at equilibrium, the grand parti­
tion function may be identified thermodynamically in 
terms of displacement parameters of external fields 
acting on the system, and conjugate forces of reac­
tionY·12 Indeed, for the homogeneous system repre­
sented in Eq. (1), we have already noted in effect that 
the displacement parameter and conjugate thermo­
dynamic force respectively are V and p. Now, however, 
there must be an additional parameter corresponding 
to placement of the repelling cavity within the system 
at the required position. This placement can be ac­
complished in a variety of ways: (a) The cavity con­
taining the repelling potential u(r) may be pushed 
into the system from outside V to the necessary final 
position. (b) The auxiliary function u(r) may be 
"turned on" in place by increasing the potential energy 
within the region of the final desired cavity contin­
uously from zero to plus infinity, thereby slowly 
squeezing out particles. (c) The cavity may be ex­
panded in place from a point to its final finite size by a 
suitable generalization of the "scaled particle" trick.13•J4 

Regardless of the method of introducing the fixed 
repelling cavity into the initially homogeneous fluid, 
the amount of reversible isothermal work required is 
the same, and we denote it by W. (rl' .. r.). The general 
thermodynamic identification of grand partition func-

11 R. H. Fowler and E. A. Guggenheim, Statistical Thermo­
dynamics (The MacMillan Company, New York, 1956), p. 234. 

12 F. H. Stillinger, Jr., and F. P. Buff, J. Chern. Phys. 37, 1 
(1962) . 

13 F. H. Stillinger, Jr., Part III of an unpublished dissertation 
submitted to the Graduate School of Yale University (1958) for 
the degree of Doctor of Philosophy. 

14 H. Reiss, H. L. Frisch, and J. L. Lebowitz, J. Chern. Phys. 
31,369 (1959). 

tions thereupon rigorously states: 

Accordingly, Eq. (8) is 

p.(rl· .. r.)= (y/s!) 

Xexp/-!3[ t v(rij)+W.(rl·· ·r.)]}. (11) 
,<i=1 

The relation (11) shows clearly that the cavity work 
(it is a free energy, of course) has the effect of modify­
ing the configurational probability distribution for the 
s-particle cluster. If the over-all system were a suffi­
ciently dilute gas, the fixed s cluster would never en­
counter other clusters, and so W. would vanish to leave 
p. in (11) to contain a Boltzmann factor for only the 
internal potential energy of interaction in the s cluster. 
Obviously, therefore, W.(rl"· r.) represents the effect 
of the finite-density medium in which the fixed cluster 
is immersed; this medium consists of segregated clusters 
which interfere geometrically with one another and 
with the fixed s cluster. For potential energies vCr) 
which vanish outside r= b, W. arises only from this 
geometrically determined configurational entropy, and 
since introduction of an impenetrable cavity restricts 
available configuration space, W. must be positive for 
all y > o. 

Owing to the probability character of PB(rl' "r.), 
this function may be integrated over all positions in­
side V to give N. (y), the average number of clusters 
of s: 

N8(y)=j ••• /p.(r1 ... r.)dr1 ... dr.. (12) 
(.) 

Then the total average number of particles, N (y), 
must be 

N(y) = I:sN.(y). (13) 
.=1 

We choose to rewrite (13) as 

N(y) = ESQ.(y)y· (14) 
.=1 

to preserve the analogy with the independent cluster 
approximation (6). In view of Eq. (11), this requires 
that we define 

QB(Y) = (l/s!) f ... f exp{ -!3[ 'tv(rii) 
(8) ;<;-1 

for properly interfering clusters. Since the W., and 
therefore the Q., are functions of y, the form (14) for 
N (y) is no longer a simple power series in y as one 
obtains in the elementary Frenkel-Band approach. 
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FIG. 3. The more realistic case of an intermolecular pair inter­
action possessing an attractive tail beyond the distance o. 

Equation (6) amounts to replacing each Q. in (14) by 

Q, (0) = limQ. (y) . (16) 
y->o 

The grand partition function (and therefore also 
the pressure) may be obtained by integrating (14) 
with respect to y. The result may be expressed in a 
way which is superficially similar to Eq. (5): 

-{3Q= I:Q.*(y)y'; (17) 
.=1 

like Q.(y) , Q.*(y) is activity-dependent on account 
of proper attention to cluster interference: 

Q.*(y) = (lis!) j """ f exp{ -{3[ t v(riJ 
(.) i<F1 

+ W.*(r1"" "r., y) ]}dr1"" "dr., 
exp[ -{3W.*(r1"" "r., y)] 

= (slY') r (y')a-1 exp[ -{3W.(rl""" r., y') ]dy'" (18) 
o 

Equations""'(14) and (17) are the desired results. 
They possess the outward appearance of (6) and (5), 
respectively, but it is clear that one requires two 
different partition functions Q. and Q. *, as "coefficients" 
in the exact Q (or pressure) and N series, neither of 
which generally equals Q'<O). Once again, though, it is 
easily verified that 

Q.(O) = limQ. *(y). 
y->Q 

(19) 

So far, the results (14) and (17) have been restricted 
to pair potentials vCr) which vanish for r>b, and to 
systems subject to no external forces. The form of our 
results however allows these conditions to be easily 
relaxed. Now let Fig. 3 represent the more realistic 
pair potential possessing an appropriate tail outside b, 
as does the traditional Lennard-Jones interaction, for 
example. One can still, as before, define physical clusters 
by overlap of the spheres of diameter b. However, 
the generalization of Eq. (3) now must include in its 
integrands the nonvanishing pair interaction between 
molecules not in the same cluster. Likewise, the 

definition (7) must also incorporate the same modifica­
tion, but Eq" (11), expressing p.(rl"" "r.) in terms of a 
cavity free energy W.(rl""" r.) may still be'deduced 
in its previous form" However, it is now necessary to 
understand that the "cavity," whose introduction 
reversibly and isothermally requires work W., acts not 
just as a particle-repelling object, but outside the 
region T. of complete repulsion, there must be a slight 
attraction for particles in the freely moving clusters. 
Each W. is in principle completely specified by the 
corresponding u( ri) which is again + 00 inside T., but 

• 
u(ri) = LV (rij) (20) 

F1 

outside, rather than zero. 
The general conservative external force field may 

be included in the fundamental grand partition func­
tion, Eq. (1), as a single-particle potential energy 
U (r i) acting separately on each molecule in the system. 
The most important example for nonelectrolytes is the 
gravitational field, for which one takes 

U(ri) =mgzi. (21) 

g is the gravitational constant, and Zi is the altitude of 
the ith particle relative to an arbitrarily chosen co­
ordinate origin. For any U(ri), Eq. (1) becomes12.U' 

exp(-{3Q) =1+ ~(yNIN!) i"""f eXP{-{3[tU(r i ) 

N 

+ L v(riJ]}dr1" " "drN. (22) 
i<F1 

In defining Eq. (7) for P. also we need to add U's 
for each particle appearing in the exponent. The 
fundamental results (14) and (17) are unchanged, but 
the defining relations for Q.(y) and Q.*(y) must in­
clude the necessary U's: 

Q,(y) = (lis!) j """ f exp{ -{3[tU(ri) + t v(rij) 
(.)' i==1 i<F1 

+ W.(r1""" r., y) ]}dr1"" "dr" 

Q.*(y) = (lis!) f.)""" f exp{ -{3[~U(ri) + i~lv(rij) 

+W'*(r1" " "r.,y)]ldr1"""dr,. (23) 

The conclusion to be reached therefore is that the 
grand potential Q and average number of particles N 
are rigorously given by expressions (14) and (17), 
even when external conservative fields are present, 
and when the range of vCr) exceeds b, so long as each 
W. is the proper cavity free energy for repelling region 

16 If one wishes to include an explicit interaction of molecules 
with the wall of the containing vessel as part of U (ri) , this single­
particle potential will be essentially + co outside V, and the 
integration in Eg. (22) may be extended over all space. 
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7. surrounded by the attractive field of Eq. (20), and 
if Q.(y) and Q.*(y) are defined by (23). 

In view of the fact that our general formalism 
applies to the gravitational field case, it is fitting to 
display the thermodynamic identification of Q, where 
g is regarded as the new displacement parameter in 
addition to the old V. If once again surface terms are 
disregarded, one computes12 

-n=PV-mjgN(y, g')zc(y, g')dg'. (24) 
o 

P is the pressure at activity y in the homogeneous 
system when g= 0, and Zc is the position of the center 
of mass, which generally decreases as g increases. 

III. CAVITY FREE ENERGIES 

We turn next to techniques for calculating, or at 
least approximating, the cavity free energies W 8 • The 
identification (10) is especially useful in this con­
nection, for it tells us that W. is the difference between 
the grand potentials for assemblies with, and without, 
an extra "molecule" at a fixed position within the 
system.I6 Because of the power and elegance of Mayer's 
expansion techniques for the grand ensemble,11 we 
elect to exhibit an irreducible Mayer cluster expansion 
for W8 • 

Explicitly, the approach consists in developing the 
integrands of both grand partition functions into sums 
of products of the usual f bonds: 

f(ij) = exp[ -iJv(rij) J-1, (25) 

but in the n. case it is necessary to include as well 
extraordinary bonds of the type: 

f( cluster, i) = exp[ - iJu( ri) J-1 (26) 

to account for interactions between unconstrained 
particles and the fixed cluster. The required manipula­
tions, involving topological identification of terms, is 
now a standard technique,12 and need not be re­
produced at length here. The result may be written: 

iJW.(rl""" r.) = - ~(1/k!) f""" f 
XSk(rI"""r8 ! r'+1" " "r.+k) 

Xp(r'+1, y)"" "p(rs+k, y)dr.+l" " "drs+k' (27) 

The integrations span all space. p (r, y) is the particle 
density at position r in the absence of the fixed s cluster 
(except near the vessel walls p (r, y) would be constant 
if no external field is present). Sk(rl""" r. ! r 8+1" "" r 8+k) 
is the generalized irreducible cluster sum of f bonds of 

16 The grand potential fl. in Eq. (10) it will be noticed refers 
only to the set of particles excluding those that form the fixed 
s cluster, though the former are affected by the presence of the 
latter. 

17 Reference 10, Chap. 5. 

FIG. 4. Illustration of an irreducible (at least doubly connected) 
cluster occurring in S4(n" " "ral r4"" "r7), for a three-particle 
cluster, and four other particles. The term equals f(cluster, 
4)f(4S)f(56)f(67)f(S7)f(cluster, 7). k4." 

both types (25) and"(26); it connects the s cluster 
(still to be regarded for convenience as a single poly­
atomic molecule) to k other particles by bonds of , type 
(26), and these k particles are connected among 
themselves by 1's of type (25), such that the graph 
of the resulting term is at least doubly connected.I8 

The graph of a typicalf bond product for s= 3,·.k= 4 is 
shown in Fig. 4. 

If the number of particles s in the cluster of interest 
were very large, and the cluster reasonably compact, 
one is assured that the primary contribution to W. is 
the hydrostatic pressure P of the undisturbed fluid, 
times the cluster volume 78' Indeed, if the cluster 
almost always had a smooth spherical surface, one 
would argue that surface tension work would be the 
dominant remainder. Under this circumstance, the 
Reiss-Frisch-Helfand-Lebowitz theory of spherical 
cavity formation work in real fluids would apply.19 

More generally though, it is necessary to be con­
cerned with finite-size clusters with often quite rough 
and convoluted surfaces. To obtain a procedure for 
calculating W s , still using to good advantage the macro­
scopic limit, we may subtract term by term from (27), 
in the p (r, y) constant case, 7. times the well-known 
pressure virial series :20 

iJP=p- f[kpk+I/(k+1) 1J 
k=1 

x j"""jsk(r1' r2"" "rk+l)dr 2" " "drk+1' (28) 

If fo (cluster, i) is defined to be the same as (26), but 
with the original cutoff-potential form of u( ri) (+ 00 

18 For; the terminology basic to these cluster specifications, the 
reader IS referred to: J. E. Mayer and M. G. Mayer, Statistical 
Mechanics (John Wiley and Sons, Inc., New York, 1940), Chap. 
13. 

19 H. Reiss, H. L. Frisch, E. Helfand, and J. L. Lebowitz, J. 
Chern. Phys. 32, 119 (1960). 

20 Reference 18, p. 291. 
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Vp-

FIG. 5. The dotted curves I and II are the loci of densities, for 
different temperatures, at which ~ in Eq. (32) transforms from a 
quantity of order one (to the right of the locus), to a quantity of 
order V (to the left of the locus). The two curves correspond to 
different choices for b, with b (II) <b (I). Neither curve neces­
sarily passes through the critical point C. The locus behavior 
below the critical temperature is drawn under the assumption that 
the liquid phase is present on the average as one or a few droplets 
of macroscopic size. The solid curve is the boundary of the two­
phase region. 

in T., 0 outside), so fo is -1 in T. and 0 outside, then: 

,BW.(rl o ° ° r8) = ,BPT. 

+p /[fo (cluster, r.+l) - f(cluster, r.+l)]dr.+l 

+ (k-1)fo( cluster, r.+l) Sk-1(r.+1, r.+2° ° ° r.+k)] 

Xdr.+l o ° odrs+k' (29) 

The integrand of the second term on the right-hand 
side of Eq. (29) is nonvanishing only because the 
actual v(r)'s differ slightly from zero for r>b; it is 
never large, and is confined to the immediate exterior 
neighborbood of T •• Similarly, for large clusters, the 
succeeding integrals have integrands confined to the 
surface region of T., so the individual terms in the series 
(29) will tend to be smaller than those in (27) which 
do not have this surface confinement. The series in 
(29) is therefore a Mayer cluster expansion of cavity 
surface free energy. 

Although one now has in principle a systematic 
procedure for calculating to arbitrary precision21 the 
W., a significant improvement of existing Frenkel­
Band calculations should result simply from use of the 
approximation for all s: 

W.=PT., (30) 

corresponding to neglect of all but the leading term in 

21 Convergence naturally must be assumed for the Mayer cluster 
expansions involved. It is possible that whereas the pressure virial 
expansion may diverge before one reaches densities in the con­
densation region, the subtractive procedure leading to expansion 
(29) might have sufficiently reduced the magnitude of the in­
dividual terms, that convergence in the liquid density range ob­
tains. We cannot at present clarify this point. 

the complete expression (29). The limited literature 
which accounts for cluster interference,4 uses Eq. (30), 
but with the further approximations of spherical 
cluster shape, and only a correction to ideal gas pres­
sure (for the set of physical clusters acting as inde­
pendent molecules) amounting to hard sphere colli­
sions for isolated pairs of physical clusters. Using Eq. 
(30) in an unqualified way, on the other hand, leads to 
pressure appearing in both members of the funda­
mental result (17), and hence requires construction of 
a self-consistent solution. 

We close this section on the nature of the Wis by 
examining the case of the rigid sphere fluid. Here, if 
one takes b to be equal to the distance of closest ap­
proach for a pair of rigid spheres, then of course vCr) 
does rigorously vanish for r> b. Furthermore, no 
clusters of more than one particle can ever form, so 
Eqs. (14) and (17) terminate after just one term. 
In the absence of external forces, they are 

p(y) =y exp[ -,BWl(y)], 

,Bp(y) =y exp[ -,BWl*(y)], (31) 

where now W 1 and Wl* are independent of any position 
coordinates. One finds immediately from (27) that Wl 

is itself the irreducible cluster integral sum for rigid 
spheres. Although it has in the past been assumed that 
cluster interference effects should not alter the quali­
tative nature of the liquid-vapor coexistence, this 
hard sphere example shows that they can be of para­
mount importance in certain contexts. For if the 
suspected first-order fluid-solid phase transitions in 
the two- and three-dimensional rigid sphere systems 
really exist,22 then it is only through the singularities 
of Wl(y) [and Wl*(y)] that Eqs. (31) can reflect 
these phase changes. In view of the generally limited 
possibility of obtaining precise and detailed knowledge 
of the behavior of the W. in this high-density range, 
the Frenkel-Band approach alone does not appear to 
be a promising tool to aid in understanding fluid-solid 
transi tions. 

)( )< X 

x 

FIG. 6. Low-temperature 
"microcrystalline" arrange­
ment of particles in the 
physical cluster. 

22 B. J. Alder and T. E. Wainwright, Phys. Rev. 127, 359 
(1962) . 
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IV. DISCUSSION AND SUGGESTIONS 

Because the expressions (14) and (17) for average 
number of particles and the grand potential are both 
formally exact, they must obviously be independent 
of the value of b if proper account is taken of the re­
definition of th; W.'s when the range of the inter­
molecular potential exceeds b. As b tends to smaller 
and smaller values, the average number of physical 
clusters of a given size decreases. On the other hand, 
even in the dilute homogeneous gas case, if b is chosen 
to be several times the cube root of the density, vir­
tually all particles will be contained in the same 
cluster, extending from one side of the vessel to the 
other. 

In practice, one avoids very small or very large b. 
A value is chosen large enough so that molecules held 
together by attractive forces into a small droplet .(with 
particle neighbor distances comparable. to those III the 
liquid) are relegated to the same phYSIcal clu.ster, but 
pairs separated by more than, say, three times the 
distance of the minimum in vCr), are not to overlap. 
The resulting compromise thus simultaneously hies to 
minimize the amount of the tail of vCr) outside b so 
as not to complicate the W.'s unduly, and yet not to 
have b so large that at moderate temperatures the s 
cluster partition functions cannot reasonably be ap­
proximated by liquid bulk and surface I?roperties.23 

Well below the critical temperature, the eXIstence of a 
suitable compromise b seems to imply that physical 
clusters of more than just a few molecules really are 
spherical droplets of liquid, and the density at which 
droplets C clusters) of macroscopic size become probable 
then should be the condensation point for the vapor. 

On a per-particle basis, the average size ~ of the 
physical clusters is 

Hy) = [fs.sN3 (y) J/N(y) 
0=:1 

= [fSW8(y)J/[fsN8(y)]. (32) 
8=1 8=1 

The above condensation condition is equivalent to 
stating that Hy) becomes of order V for y greater than 
its value, Yo, at condensation, whereas in the vapor 
phase (Y<Yo), Hy) is of order one, and essentially 
independent of V.24 

Figure 5 shows the loci, in the p, 1/ p plane for a 
homogeneous fluid, of these points at which ~ becomes 
of order V for different temperatures. Curves for two 

23 J. Frenkel, Kinetic Theory of Liquids (Clarendon Press, 
Oxford, 1946), pp. 366-374. . 

24 The quantity ~ is a particular percolatIOn process me~sur~. 
Its point of transition from order-one to order-V behaVIOr IS 

known as the "critical percolation value" (of activity or density). 
For a comprehensive discussion of percolation problems, see: H. L. 
Frisch and J. M. Hammersley, J. Soc. Ind. App!. Mat~. (to be 
published); also, relevant literature references appear m: H. L. 
Frisch, E. Sonnenblick, V. A. Vyssotsky, and J. M. Hammersley, 
Phys. Rev. 124, 1021 (1961). 

FIG. 7. Intermediate temperature "liquid droplet" form of 
physical clusters. 

different b values have been drawn. Since the locus for 
a given b generally cannot be expected to pass through 
the critical point, there will exist isotherms for tem­
peratures just below the critical temperature T e with 
the property that they intersect the locus outside the 
coexistence region. Well below T e, though, the locus 
will presumably travel down the vapor phase boundary 
of the coexistence region (since liquid should be present 
as one or a small number of droplets sufficiently dense 
to be interpreted each as distinct physical clusters of 
macroscopic size). Therefore, in attempting to use the 
Frenkel-Band approach to describe the critical region 
of fluids, one either must abandon the ~ locus as 
equivalent to the condensation point (especially since 
the locus exists for all temperatures greater than Te), 
or b must be selected so that the locus passes strictly 
through the critical point, and the condition obviously 
must be applied only below a Te calculated, for ex­
ample, by the condition that peTe, p) have a horiwntal 
inflection point. 

The question of critical behavior raises a set of 
interesting questions concerning the behavior of the 
physical clusters of various sizes for different tempera­
tures. Neglecting the W., Reed26 has calculated ap­
proximate partition functions for physical clusters of 
from 2 to 6, as well as 8, particles which were con­
strained to certain regular arrangements, where par­
ticles interacted only harmonically. Even if the W. 
can be disregarded, this microcrystalline picture is 
probably appropriate only at very low temperatures. 
For a reasonably large number of particles in the 
cluster (perhaps 50 or more), one anticipates rather 
well-defined temperature ranges of distinct behavior 
illustrated by Figs. 6, 7, and 8. 

The first of these is in accord with Reed's assump­
tions-the temperature is so low that its disordering 
effect is unable to overcome the attractive potential 
between particles, and a small crystal lattice should 
result. As T increases, the cluster should "melt," to 

25 S. G. Reed, Jr., J. Chem. Phys. 20, 208 (1952). 
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FIG. 8. High-temperature spongelike structure in physical 
clusters. 

form a compact and roughly spherical droplet with an 
average coordination number still comparable to that 
of the ordered array, but with much more over-all 
configurational disorder. Finally, at high temperature 
the attractive forces between particles would be 
virtually completely overcome by thermal agitation, 
and only the requirement of overlapping b spheres 
should hold the cluster together. As shown in Fig. 8, 
the cluster then should have no reason to remain at 
all compact, and could assume the aspect of an open 
network or sponge. It is not yet known which of these 
latter two structures more appropriately describes the 
clusters in the vicinity of T c. 

As the number of particles in a cluster increases 
it is natural to suppose that the sharpness of transitions 
between these forms increases. In the limit of infinite 
cluster size, these transitions should have precisely the 
character of true phase transitions, and would be 
observed as singularities in: 

lim (1/ s) 10gQ.c°), 

It would be valuable to have available electronically 
computed Monte Carl026 or molecular-dynamic27 esti­
mates of these free energies to see for a given v (r), even 
neglecting the cavity free energies, at which tempera­
ture these transitions occur, how they sharpen as 
cluster size increases, and what is the average value of 
T. in each of the three forms. 

The observed phase transition for the actual system, 
which we have analyzed into a collection of clusters, 

26 N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. 
Teller, and E. Teller, J. Chern. Phys. 21, 1087 (1953). 

27 B. J. Alder and T. E. Wainwright, "Molecular Dynamics by 
Electronic Computers," in Transport Processes in Statistical 
Mechanics, edited by I. Prigogine (Interscience Publishers, Inc., 
New York, 1958). 

must therefore be the result of a delicate interplay 
between the individual cluster transitions, and cluster 
interference effects, The latter, through the W., not 
only modify the cluster size distribution, but also the 
transition temperatures for the clusters. The rapid 
electronic computing techniques should also make 
possible accurate estimation of Q.(y) in Eq. (15), 
including W., by immersing the connected physical 
cluster in a bath of particles identical with those 
forming the cluster; the bath particles would have to be 
free to "cluster" among themselves exactly as the real 
fluid of interest. The results of such calculations might 
substantially improve our understanding of the mys­
terious critical region, 

As a final matter, we acknowledge that parallelism 
between this Frenkel-Band procedure and the Mayer 
cluster expansion, suggests that since the latter gives 
important insight into the behavior of molecular dis­
tribution functions pen) (fl' , 'fn ),10 it might be even­
tually enlightening to apply the former to evaluation 
of these important quantities. Although we shall give 
no details here, but reserve this general problem for 
later more detailed analysis, the results can easily be 
stated and recognized as very similar to those above. 
One finds: 

pen) (fl' , 'fn) 

00 f n+k 
= L(yn+k/k!) exp{ -,BCLU(f;) 
k~ (k conn. to n) .=1 

n+k 

+ L V(rij) + W n+k(fl'" fn+k, y) Jldfn+l' "dfn+k. (33) 
.<j=l 

The terms of the sum represent connection of a certain 
number k of particles to the fixed set 1, , 'n by means 
of overlapping of the familiar b spheres. The set of k 
need not be connected in this way among themselves, 
but only to at least one of 1", n, either directly, or 
through a connected chain of other members of the 
set of k. The integration over the positions fn+l'" fn+k 

of these k particles must include all configurations 
satisfying this connectivity condition. The quantity 
W n+k is the total free energy of cavity formation for the 
entire set of n+k particles, even though they may not 
form a singly connected grouping. W n+k is not equal to 
the sum of cavity free energies for the separate con­
nected subsets of the n+k particles, but contains 
complicated interference effects between neighboring 
cavities. Once again, invariance of results to the value 
of b is assumed ab initio. 
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