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Abstract 

The Gibbs dividing surface concept for liquid-vapor interfaces has k n  extended to accommodate 
molecular scale fluctuations (“capillary waves”). The extension utilizes percolation properties of 
uncovered volume after particles are surrounded by spheres of unique size. An inherent density profile 
for the interface can be extracted by constraining all capillary wave modes to have vanishing am- 
plitudes; it retains finite width in the zero-gravity limit. Interface profiles emerging from the van 
der Waals theory or its recent modifications appear to involve amplitude constraints only for a subset 
of the capillary waves. 

1. Introduction 

Phase change, particularly the condensation of imperfect gases into the liquid 
state, occurs prominantly as a subject in publications by Joseph E. Mayer whom 
this Symposium honors [ 1-71. Those publications first appeared many years 
ago, but even today they and the general topic of phase transitions remain fresh 
and exciting. 

A natural concomitant to phase change is the existence of interfaces between 
coexisting phases. This article is devoted to a fundamental issue that arises in 
the theory of interfaces separating fluids, namely the role of gravity and how 
it affects the stability of those interfaces toward capillary wave deformations. 
Since these deformations qualify as thermally driven surface fluctuations whose 
amplitudes can become large, no theory of the structure of fluid interfaces can 
be regarded as complete if it does not account realistically for the presence and 
effect of capillary waves. 

The first serious attempt to calculate the matter distribution across fluid in- 
terfaces apparently was that of van der Waals [S]. His procedure (and those of 
its more recent elaborations) requires minimizing a local free energy functional 
subject to suitable boundary conditions. For a one-component system the 
functional has the following form: 

Here p ( ’ )  (r) represents the number density at  location r. The quantityfis the 
Helmholtz free energy per unit volume, presumed in the conventional van der 
Waals approach to be a known analytic function of p ( l ) .  The parameter a > 0 
is assumed to possess only weak temperature dependence. 
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For the planar liquid-vapor interface, boundary conditions are selected to 
cause p( ’ )  to become a function of just one Cartesian coordinate, say z, with 

lim p( ’ ) ( z )  = pu, 
r -+m 

to yield the correct bulk phase densities PI and pD for liquid and vapor, respec- 
tively. For any reasonable form forf, minimization of functional (1) produces 
an interfacial density profile p( ’ ) ( z )  which monotonically and smoothly inter- 
polates between pl and pu. Well below the critical temperature T, the transition 
zone is predicted to be only a few molecular diameters wide. However, that width 
increases without bound as T, is approached from below. As a result of the 
minimization it can be shown that the experimentally measurable surface tension 
yex for the planar interface described by Eq. (1) has the form 

yex = a [dp ( ’ ) ( z ) /dz I2  dz. (3) 

In the neighborhood of T, the surface tension becomes very small, indeed van- 
ishing as 

?ex N A(Tc - T)’, (4) 

where the power p is assigned the value 3 / 2  by the van der Waals theory. Ex- 
perimentally it has been determined [9] that p = 1.28 f 0.06. 

The van der Waals interface theory nowadays is classified as a “mean field 
theory” and as such it is at  odds with present understanding about the non- 
classical character of critical points. Widom [9 ]  has shown how this weakness 
can be satisfactorily cured by incorporating a “scaling theory” form forfin place 
of the conventional analytic form. The result of this modification produces an 
exponent p = 1.26, in satisfying agreement with experiment. 

Widom’s revision is important, but the result still fails to acknowledge the 
role of the gravitational field in determining p( ’ ) .  As before, the revised van der 
Waals theory continues to predict density profiles that are independent of the 
gravitational field strength g. In particular when g - 0 at any subcritical tem- 
perature the interfacial zone retains a fixed finite width. 

It has been pointed out [ 101 that as g - 0 capillary waves with long wave- 
length develop large mean-square amplitudes. As a result the subcritical density 
profile inevitably broadens, and in fact has a width diverging as (-ln g)’/2. This 
phenomenon is entirely unanticipated in the van der Waals theory or in its recent 
revisions. 

This article strives to reconcile the van der Waals vision of an inherent density 
profile that exists independently of gravity, with the gravitational instability 
mediated by capillary waves. In this I follow ideas briefly sketched in a recent 
report [ 1 11. The case is presented for a single homoatomic substance, with brief 
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comments in the final discussion concerning generalization to polyatomic mo- 
lecular substances and mixtures. 

2. Molecular Distribution Functions 

I begin by considering liquid-vapor equilibria for single elemental substances, 
that is, those for which all atoms are chemically identical (isotopic distinctions 
will be ignored). It will not matter whether the atoms remain as separate particles 
(noble gases) or whether interactions cause them to bind chemically into iden- 
tifiable molecules (nitrogen, the halogens, sulfur). I employ classical statistical 
mechanics for the sake of pedagogical convenience though its use is not a ne- 
cessity; quantized degrees of freedom could be incorporated as circumstances 
demand. 

The distribution of matter in the system is specified by molecular distribution 
functions p(,)(rl . . . r,) for n 1 1. These functions give the probabilities that 
sets of particles will be found simultaneously at the positions rl . . . r,. As already 
acknowledged in the Introduction, p ( ' )  provides the interface profile, so its 
properties are our primary objective. 

The grand ensemble supplies the following expression for the p(")  at equi- 
librium [ 121 : 

N = n  

X S exp[-Pat(r1. . . ~ N ) I  dr,+i . . . drN, ( 5 )  

p =  l / k g T .  

Here y is the absolute activity and 
the system. The grand potential Q is given by the expression 

is the total potential energy function for 

pl 

exp(-PQ) = C (yN/N!)  1 exp[-P@.,(rl . . . r ~ ) ]  drl . . . drN. (6) 

In the usual large system limit (and provided gravity is weak) the grand po- 
tential can be identified thermodynamically in terms of the pressure p ,  system 
volume V ,  and the surface free energies per unit area, na, over the collection of 
phase boundaries with areas A,: 

N=O 

Q = - p v  + c aaAa. 
a 

(7) 

If the temperature and activity have values that permit liquid and vapor to 
coexist, one of the boundaries will be the liquid-vapor interface with na = yex; 
the other boundaries show contact of liquid or vapor with the container walls 
and have uas irrelevant to the present study. 

The total potential energy at comprises the interatomic potential a, wall 
potentials U, for each particle, and interactions mgz for each particle of mass 
m with the gravitational field. 
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In the following analysis there is no need to assume that is decomposable into 
pair potentials. 

When g = 0, phase coexistence for liquid and vapor corresponds to a curve 
in the y ,  T plane connecting the triple point to the critical point as shown in 
Figure 1 (a). However, this linear locus spreads into a narrow two-dimensional 
region when g deviates from zero, for then y must vary from a lower to an upper 
limit at  fixed T continuously to fill the vessel with liquid, starting at the vessel 
bottom and moving the interface upward until it reaches the top. Figure l(b) 
illustrates this feature of finite-g thermodynamics. 

3. Covering Spheres and Void Percolation 

In order to discuss the stability of the interface as a function of the gravita- 
tional field strength, it is necessary to provide a geometric criterion for locating 
the “position” of the interface at  any given instant. This criterion must be suf- 
ficiently general that it can accommodate any kind of interfacial zone rear- 

t 

t 
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Figure 1. Liquid-vapor coexistence loci in the absolute.activity (y), temperature (T) 
plane. 
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rangement of matter driven by thermal motion. Furthermore it is desirable that 
it do so without introducing any arbitrary parameters or functions into the 
theory. 

The present requirement for a geometrical surface able to follow molecular 
scale deformations of the interface is obviously more demanding than that which 
underlies definition of the Gibbs dividing surface [ 131. The latter is simply. a 
plane since the interface is macroscopically flat. It has a vertical position zo 
determined by the condition: 

The Gibbs surface gives the average position of the liquid-vapor interface, 
whereas we are now obliged to consider geometric aspects of the fluctuations 
about that average. 

The suggestion has been made that a suitably defined percolation process will 
automatically generate the desired fluctuation-following surface [ 1 11. This 
process first requires that each atom in the system be centrally surrounded by 
a sphere with radius s, the magnitude of which will be uniquely determined by 
the statistical properties of the system itself. 

Consider first a macroscopic homogeneous sample of the liquid phase. Suppose 
this is the orthobaric liquid, soy  and T correspond to a point somewhere along 
the locus shown in Figure 1 (a). If s is small compared with the average neighbor 
separation, then the covering spheres will consume only a small fraction of the 
total volume 6 of the liquid, and they will hardly ever overlap. The uncovered 
volume will consist almost always of a single (multiply-connected) region, QI (s), 
whose magnitude is comparable to 6. 

By contrast, suppose now that s is large compared with the neighbor spacing 
in the orthobaric liquid. The s spheres will overlap strongly, will consume most 
of 6, and will leave uncovered volume that is disconnected into many small 
fragments Qj(s) ( i  = 1, . . .). Each of the Qi(s) will be comparable to the volume 
per atom V//N rather than to Vl itself, although the sum of the Qi(s)  may indeed 
be of order Vf (we expect order of N such small regions). 

The transition between these two regimes is reflected by singular behavior 
of the quantity 

= Vr- lim ( ~ [ ~ i ( ~ ) l 2 ) ~ /  v!. (10) 

Angular brackets denote an equilibrium average (at g = 0), and the sum includes 
all Q j .  For small s, uf > 0 and is of order unity. It is expected to decline smoothly 
to zero at a specific s value which we will denote by sl( T).  For s > sf( T ) ,  W I  will 
vanish identically. The singular point sf( T )  is the critical percolation threshold 
for uncovered volume in the orthobaric liquid phase. 

Now consider the same argument for the homogeneous orthobaric vapor phase 
in a macroscopic volume V,. After covering all particles with s spheres we de- 
fine 
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As before w, should be positive and of order unity below a critical percolation 
threshold at  s,( T ) ,  while vanishing identically above this threshold. It is obvious 
that when T < T, we will have sl< s, simply because the vapor is less dense than 
the liquid: As s increases from zero the overlapping spheres will succeed in dis- 
connecting the uncovered volume in the liquid before the same happens in the 
vapor. Figure 2 schematically illustrates these features with subcritical curves 
of W I  and w, vs. s. 

The densities p/  and p,, respectively decrease and increase to the common 
limit p, at the critical point. Likewise the critical percolation thresholds s[ and 
s, will be driven to a common critical values, that lies between them, as indicated 
in Figure 2. This critical value will be roughly comparable to the nearest- 
neighbor spacing in the liquid. 

We now choose sc to be the fixed covering sphere radius. Thus for any T < 
T, in a system with g # 0 and phase coexistence, uncovered volume in the liquid 
is disconnected into molecular-size fragments, while uncovered volume in the 
vapor remains globally connected in a porous but macroscopic “Swiss cheese.” 
This situation is illustrated by Figure 3. The tendency for gravity to produce 
hydrostatic compression deep within the liquid, as well as barometric decom- 
pression far above the interface in the vapor interior, causes no alteration in the 
description just given. 

Any path that starts within the macroscopic region of uncovered volume in 
the vapor is free to pass substantially anywhere throughout the phase without 
passing into s, spheres. However, it is clear that such paths cannot enter the 
interior of the liquid phase. They are prevented from doing so by an unbreakable 
barrier formed from exposed portions of s, spheres. The union of these exposed 

Figure 2. Schematic plots of 01 and w, for T < Tc. The singular points sl and s, are critical 
percolation thresholds for uncovered volume in the homogeneous orthobaric phases. The 
common limiting value at  the critical point has been denoted by s,. 
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Figure 3. Pattern of sc spheres and uncovered volume for liquid-vapor coexistence below 
Tc . 

portions is a surface S stretching all the way across the interface, and conforming 
in shape to the instantaneous surface fluctuations that may be present. The 
surface S has been schematically indicated as a bold curve in Figure 3, and the 
particles whose spherical envelopes contribute to S have been identified with 
crosses. 

S need not be topologically equivalent to the planar Gibbs dividing surface, 
because included among the possible surface fluctuations will be those which 
produce “handles” and “tunnels.” In any case S and the surface particles which 
define it are fundamental to further consideration of capillary waves. 

The number N 1  of particles whose s, spheres contribute to S is not fixed but 
can vary as the interface restructures. Nevertheless, the grand ensemble average 
value of N I  will be proportional to A ,  the nominal area of the “planar” inter- 
face: 

(NI) = h ( T , g ) .  (12) 

4. Capillary Wave Coordinates 

For any one of the N1 particles defining surfaces S let z, be the vertical 
coordinate, and let u, = (x,,yj) be the horizontal location. We take the instan- 
taneous deviations of the z j  from their average ( z )  to define capillary wave 
amplitudes as follows: 

NI 

j =  1 
a(k) = C (zj - (2)) exp(ik uj). 

The two-dimensional wavevectors k belong to the reciprocal lattice generated 
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by the macroscopic surface, assumed for convenience to be square. This definition 
of the a(k) applies even when S exhibits complex topology. 

The number of capillary wave modes to be defined is precisely N1. While this 
can vary such variations are expected to be small compared to ( N 1 )  when T < 
Tc. The admissible ks are the N1 which are closest to the origin; the average 
maximum wavevector will be 

( b l a x )  = [47m(T,g)l”2. (14) 

It is important to stress here that no artificial upper cutoff in k space has to be 
introduced, but instead the structure of S naturally supplies its own cutoff. 

When k is small the coordinate a(k) describes transverse distortions of the 
interface with long lateral wavelength, i.e., macroscopic surface waves. Such 
waves propagate independently of one another in the small-amplitude regime, 
and have free energies of excitation that can be assigned from macroscopic 
considerations of surface area increase and work against gravity [ 101. For that 
reason it is convenient to write for all 0 < I kl < k,,,: 

(la(k)12) = n12AkL?T/[y(k)k2 + mgApl, 

AP = PI - P U ,  (15) 

where y ( k )  is an effective surface tension at  the given wavevector. One has 
then 

lim y ( k )  = ye,. 
k-0 

It is clear from Eq. (1 5) that long-wavelength capillary waves develop large 
mean-square amplitudes as g -+ 0. 

The contribution of large-wavelength modes to the mean square vertical 
displacement of surface S is readily estimated: 

This last expression diverges logarithmically as g - 0, which has been the source 
of concern over meaning of the inherent density profile concept. If y ( k )  can 
adequately be replaced by ye, throughout the integration range, Eq. (17) leads 
to 

((z - ( z > ) ~ >  = ( k ~ T / 4 7 ~ e x )  + ( ~ e x k k . / m g A ~ ) I .  (18) 
A similar calculation can be made for correlation of vertical displacements 

of S at two different horizontal locations. The result demonstrates that the 
presence of capillary waves induces long-range lateral correlations for the pair 
distribution function p(2) in the interfacial zone [ 141. 
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5. Inherent Density Profile 

The logarithmic divergence indicated by Eq. (18) for interface width is a 
distracting complication that can easily be removed by constraining all capillary 
waves to have vanishing amplitudes. Thus for all kr in the circle of admissible 
ks we can set 

0 = C (z, - ( z ) )  exp(ik1 - uj). (19) 
j 

The grand ensemble average density in this constrained system is what we take 
to be the inherent density profile, to be denoted by po(z). 

The determinant of coefficients in Eq. (9), 

det[exp(ikl - uj)], (20) 

will vanish only if the surface configurations u1 . . . U N ~  are comprised in a set of 
measure zero. Therefore with unit probability the constraint equations (9) can 
only be satisfied if all N1 particles in the surface set are confined to the same 
plane: 

z .  J = ( z ) .  (21) 

This confined set will contribute n16(z - ( z ) )  to PO(.). 
The remaining particles in the system will contribute a continuous component 

to po(z). The latter is clearly influenced by the geometric fact that these particles 
cannot have their s, spheres supply part of the surface S .  On the vapor side of 
plane given by Q. (21), particles will then be strongly excluded from the vicinity 
of ( z )  to eliminate the possibility of s, sphere overlaps with those in the surface 
set. On the liquid side this is not relevant, but short-range repulsions with the 
gap-free surface set will have a similar exclusionary effect. Figure 4 illustrates 
qualitatively how p ~ ( z )  should appear well below the critical temperature. The 
damped oscillations shown in the liquid phase are to be expected as the natural 
response to the presence of a barrier, i.e., the contrained surface set. 

The function po(z) illustrated in Figure 4 is obviously nonmonotonic, and for 
that reason it conflicts qualitatively with profiles PvdW produced by theories of 
the van der Waals type. However, a reconciliation may lie in a suggestion by 
Weeks [ 141 to the effect that the latter actually contain partial averaging over 
a subset of the capillary waves. Specifically Weeks deduces that capillary waves 
in the van der Waals formalism are unconstrained if their wavelengths are 
smaller than some multiple of the bulk phase correlation length 4. In other words 
pvdW(Z) actually includes surface fluctuations for which 

kmin = 2r+/t < lkl < k m m ,  (22) 

where Q, is a constant of order unity. It is clear that this partial averaging would 
have the effect of smearing out the delta function in our po(z), perhaps creating 
thereby a monotonic profile similar in shape to pvdw(z). 

The remaining somewhat unsatisfactory feature of this reconciliation concerns 



146 STILLINGER 

Figure 4. Inherent density profile for T well below T, 

the arbitrary cutoff parameter 4. No obvious criterion is present to provide a 
unique value for this quantity, similar to that which uniquely determines our 
sphere radius s,. 

6. Discussion 

Finally let us turn to brief consideration of possible extensions. 
In the case of simple liquid mixtures comprising two or more atomic compo- 

nents (e.g., noble gas mixtures), our method of producing a surface S from 
covering spheres is still available. In principle a variety of options exists for choice 
of the sphere radii which do not necessarily have to be equal for all components. 
Nevertheless, the simplest, and therefore most preferable, tactic is to use a 
common radius whose value s, can be assigned by passage to that mixture critical 
point whose composition is that of the liquid of interest. Thus s, would naturally 
depend on that composition, and would interpolate between its values for the 
pure components. The surface S would be the union of exposed sphere surfaces 
from all components, and the capillary waves would be defined as before by 
summing as in Eq. (1 3) over all particles in the surface set. The inherent density 
profile should consist of portions for each of the components, all qualitatively 
resembling the single-component function indicated in Figure 4. 

In the event that the system comprises essentially immiscible liquids, only 
one of the components needs to be covered by spheres in order to produce an 
interface-spanning surface S .  The appropriate radius s, could be determined 
at  the critical consolute point. Regardless of which choice were made the re- 
sulting inherent density profiles would remain finite in the g - 0 limit. The 
capillary wave identification becomes particularly important for immiscible 
liquids because the mass density difference between coexisting bulk phases can 
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be arbitrarily small for some compositions, which tends to magnify the surface 
widening phenomenon even when g # 0. 

The degree of molecular flexibility in liquids composed of polyatomic mole- 
cules clearly must determine how covering spheres are to be placed. For a rigid 
nonplanar molecule it makes no sense to surround every atom with a sphere, and 
then expect to achieve a constrained system with all spheres determining S 
confined to a plane; this would either require rigid molecules to interpenetrate, 
or to deform severely, both improbable prospects. Instead such rigid molecules 
should be centrally surrounded by a single covering sphere, thereby reducing 
the formalism essentially to the case first described in this article. On the other 
hand, a melt composed of a flexible long-chain compound requires its separate 
units to be separately surrounded by spheres. In both cases the corresponding 
critical points would be used to fix the sphere radius, capillary waves would be 
defined as before, and the inherent density profile would follow in turn by setting 
capillary wave amplitudes to zero. 
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