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A free energy variational principle is proposed for the study of aggregation structures in amphiphile solutions. 
For nonionic amphiphiles the postulated free energy functional depends on the scalar concentration fields for 
solvophilic head groups (H) and solvophobic tail groups (T); it has a form appropriate for a binary mixture of 
head-group chains and tail-group chains supplemented by a term that enforces chemical bond connection 
between pairs of those chains. Numerical solutions to the Euler equations for the variational principle are 
presented for molecules with formal constitution (Hl lO (Tlw under conditions of spherical aggregate 
symmetry. These solutions include globular micelles, hollow vesicles, and a type of point defect in a smectic A 
lamellar system. 

I. INTRODUCTION 

In contrast to and in spite of vigorous experimental 
activity directed toward understanding amphiphile solu­
tions, the theory of such systems has remained rudi­
mentary. This imbalance developed because the mole­
cules involved are typically complex, the forces be­
tween them are poorly known, and the possible patterns 
of molecular aggregation in solution are vast. The 
available theories1_ 6 have invoked dramatic simplifying 
assumptions such as the existence of an underlying lat­
tice or that the prinCipal geometriC features of the ag­
gregates were given. 

This paper explores a new and possibly useful theo­
retical alternative. While drastic simplifications are 
certainly involved, they are different from those pre­
viously used. In particular no basic requirement is 
present to fit the molecules onto a lattice nor is it nec­
essary in prinCiple to preaSSign aggregate shapes. 

The following Sec. II introduces the notion that ag­
gregation structures can be deduced as extremal fields 
for a suitable free energy functional. Such a functional 
is then displayed specifically for nonionic amphiphiles, 
where the fields are Simply the local concentrations of 
"head" and "tail" units that are comprised in each 
amphiphile molecule. This free energy functional pos­
sesses aform that is suggested primarily by the standard 
statistical mechanical theory of multicomponent inho­
mogeneous fluids. 7,8 However, a novel feature now intrudes. 
Whereas" standard" theory represents the system as a 
binary mixture of separate head- and tail-unit chains, 
the fact remains that these entities are linked in pairs 
by chemical bonds into intact amphiphile molecules. 
In the present context this chemical linkage is enforced 
by including appropriate nonlocal integral operators in 
the free energy functional. Consideration of linear 
response theory (Sec. IV) allows those operators (inte­
gral kernels) to be determined uniquely in terms of the 
dilute solution structure of the amphiphile molecule. 

Euler equations for the variational principle are de­
rived in Sec. III. They form the basis for some ex­
ploratory numerical stUdies reported in Sec. V. Not 
only do these nonlinear integrodifferential equations 
yield structures corresponding to spherical micelles, 
but numerical solutions also have been discovered that 

correspond to vesicles and to extended smectic layered 
structures. 

The final Sec. VI indicates how the present work can 
be extended to ionic amphiphiles. It also remarks on 
the need to embed the variational formalism in a more 
complete statistical mechanical context, and on the pro­
cedure for accomplishing that goal. 

II. VARIATIONAL PRINCIPLE 

To ensure maximal simpliCity in the following, atten­
tion will be restricted to solutions of non ionic amphi­
philes. The interesting and important attributes of 
these substances arise from the distinguishability of 
solvophilic head groups (II) and solvophobic tail groups 
(T). These are typically combined in each molecule as 

(2.1) 

i. e., a sequence of nH+nT units, the first nH of which 
are H, followed by nT T units. These are dissolved in 
a low-molecular-weight solvent medium of molecules W. 

The various aggregation patterns that could spontane­
ously form in solution (spherical micelles, rods, layers 
of oriented molecules, bicontinuous phases, microemul­
sions) can be described economically in terms of the 
spatial distributions of head units, tail units, and sol­
vent molecules. These distributions will be denoted 
by the scalar concentration fields C H (r), C T(r), and 
cw(r). The major objective is to predict what fields 
are implied by a given set of molecular structures and 
interaction parameters, under given solvent, concen­
tration, and temperature conditions. 

The following simplifying assumption will be invoked 
for convenience (though it is not a necessity): 

(2.2) 

Put most directly this implies that each of H, T, and W 
on average occupy the same volume, which the choice 
of units sets equal to 1. By this means we can eliminate 
Cwand thus consider only CH and CT to be independent 
fields. 

Having adopted this point of view the next task is to 
identify a free energy functional F{CH, CT} whose ex­
trema with respect to permissible variations in the 
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scalar fields will include physically relevant aggrega­
tion structures. This task (and thus F itself) will be 
separated into two parts. The first part amounts to 
regarding the system as a solution of disconnected H 
and T chains, for which the free energy functional will 
be denoted by Fl{cH, cr}. The second part reconnects 
the Hand T chains into intact amphiphile molecules, 
and so requires inclusion of F2{cH, cr}: 

(2.3) 

Nothing is present in F 1 to prevent external forces of 
modest strength from separating H chains from T chains 
over macroscopic distances; it is the role of F2 to pre­
vent absolutely such a possibility. 

For F1 the following form has been selected (f3=l/k BT): 

(JF't = f dr{/3u~ H+ /3ure r + (cH/nH)ln(cH/nH) 

(2.4) 

The types of terms appearing here are quite standard 
for the theory of mixtures. 7,8 First, there are inter­
actions of H and T units, respectively, with external 
potentials UH and Ur. These are followed by mixing 
entropy terms of the Flory type. The terms quadratic 
in field gradients are of a type familiar in study of 
inhomogeneous fluids9,10; their presence avoids spon­
taneous appearance of concentration discontinuities. 
Finally, the last three terms involve interactions be­
tween units with strengths specified by the param­
eters J,.v' 

Expression (2.4) certainly is not unique for the prob­
lem in hand. But it is perhaps the simplest form which 
retains essentials while avoiding triviality. 

The connection-enforcing functional F2 will be postu­
lated to have a quadratic nonlocal character: 

/3F2=~ S dr1S dr2[cH(r1)lHH(r12)cH(r2) 

+2c H(rl ) lHT(r12)cr(r2) +Cr(r1) lTT(r12) c r(r2)]. 

(2.5) 

The three integral kernels l,.v introduced here will be 
evaluated in Sec. IV, and the procedure leading to that 
evaluation will show that they have the requisite prop­
erty of preventing macroscopic separation of H chains 
from T chains. 

It is worth streSSing that two length scales have been 
distinguished in the amphiphile aggregation problem. 
The shorter length scale is that of separation between 
neighboring units either along the same molecular 
chain, or on neighboring chains. Structural details on 
this scale are largely irrelevant for present purposes 
and have been suppressed by choosing F1 to have the 
local form presented in Eq. (2.4). The larger length 
scale is the coherence length of the aggregation pat-

terns, which is expected to be comparable to the length 
of the amphiphile molecules themselves. Because mo­
lecular reorientations can in fact lead to separation of 
Hand T on this latter scale without violating chemical 
connectivity, it is mandatory that the operators in F2 
be nonlocal over at least the same scale. 

III. EULER EQUATIONS 

The search for concentration fields that extremalize 
the free energy has to be carried out subject to fixed 
total numbers of Hand T units throughout the system: 

nilf cH(r)dr=ny f c~r)dr 

=N, (3.1) 

where N is the number of amphiphile molecules present. 
These conditions require the introduction of a pair of 
Lagrange multipliers >"H and >"r that must appear when 
the first variations of /3F with respect to cHand C rare 
set equal to zero. The Euler equations that result from 
this process are easily obtained. From the CH varia­
tion one finds: 

{ 
[c (r )] 1/" H } 

o =>"H + i3uH(r1) +In 1 H( 1) () 
-CH r1 -Cr r1 

- 2G HHV2CH - G Hrv2C r +2JHH CH(r1) +J HrCr(r1) (3.2) 

+ f dr2[lHH(r12)cH(r2) +lHr(r12)cr(r2)]. 

The C r variation leads to the same type of equation, but 
with H and T subscripts interchanged. 

It is not necessary to know the Lagrange multipliers 
>"H and >"r in order to compute the structure of spontane­
ously formed nonuniformities in the system, when UH 

and ur vanish. We can define the local concentration 
deviation (a =H, T) 

(3.3) 

where c~ is the uniform concentration that obtains far 
from the nonuniformity. The c~) of course must satisfy 
Eq. (3.2) in the external-field-free case, which allows 
the >..'" to be eliminated. The resulting equations are: 

x exp(nH{2GHHV26CH+GHrV26Cr-2JHH6CH (3.4) 

- J Hr6c r - f dr2 [lHH(r12) 6CH (r2) +lHr(r12) 6C r (r2)]} )-1, 
along with the corresponding relation that has Hand T 
permuted. 

After determining the integral kernels l,.v these last 
integrodifferential equations will be suitable for nu­
merical study of aggregation forms. 

IV. LINEAR RESPONSE 

We now consider the response of the initially homoge­
neous amphiphile solution to application of a weak ex-
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ternal potential. In particular we begin by examining 
the case: 

uH(rl) = t: sin(k' rl), 

(4.1) 

where t: is small, and the wave vector k is arbitrary. 
The induced concentration changes will be proportional 
to t: in this weak coupling regime, and will be spatially 
sinusoidal. Therefore we write the following expres­
sions for the perturbed concentrations: 

cH(rl) =c'3 [1 + €TIH sin(k· rl)], 

(4.2) 

The linear response coefficients TlH and TIT can be 
determined by substituting expressions (4.2) into Euler 
equation (3.2) and its H, T - T, H partner, linearizing 
with respect to t:, and then solving the resulting simul­
taneous linear equations. One finds 

(CO _ - (3A TCk) 
CH TlH - AHCk)ATCk) -B2Ck) 

(I) _ (3BCk) 
CT TIT - AHCk)A.j)l) -B2Ck) (4.3) 

where 

ATCk) = ~ + 1 (~ «5 +2GTTk2+2JTT+LTT(k), (4.4) 
n~T -eH -CT 

B(k) =1 (ol «j +GHT k2 +JHT +LHT(k). 
-CH -CT 

Here we have introduced Fourier transforms for the 
integral kernels: 

(4.5) 

A similar calculation can be carried out for a linear 
perturbation opposite to that of Eq. (4.1), namely, 

uH(rl) =0, 

(4.6) 

for which the local concentrations again have sinusoidal 
forms: 

cH(rl) =c'2> [1 HtHsin(k· rl)], 
(4.7) 

C T(rl) =c~ [1 HtT sin(k. rl)] . 

By following the same procedure as before, one obtains 

(I) (3B(k) 
CH tH= AH(k)AT(k) _B2(k) 

(I) - f3AH(k) 
CT !;T = AH(k)AT(k) _B2(k) • (4.8) 

Linear response results (4.3) and (4.8) can also be 
achieved through an alternative route, namely direct 
statistical-mechanical calculation for intact molecules. 
If N amphiphile molecules are present in solution, 

CH(r) =(t ~ 6(r - ria») , 
i=l a=l 
N nT 

cT(r)=(L L 6(r-siY»)' 
i=l 7=1 

(4.9) 

where the brackets indicate Boltzmann averaging, in­
cluding the external potentials. Indices a and ')' span 
the Hand T chains within any given molecule j, and ria 
and s iY locate Hand T units, respectively. 

In the low concentration limit the amphiphile mole­
cules move in isolation through pure solvent, and the 
averages appearing in Eq. (4.9) are determined by the 
properties of these independent molecules interacting 
strongly with solvent and weakly with external fields. 
The easily obtained results of direct calculation then 
can be expressed in terms of the three quantities 

(4.10) 

nT nT 

STT(k)=L L (Sin(kISla- Slyl») , 
0=1 7=1 k ISla - s ly l 0 

which involve configurational averages over single 
molecules in the absence of external perturbations 
(subscript 0). For the case represented by external 
fields (4. 1) the linear response is found to be: 

c'2' TlH = - (3cSHH(k), 

C~) TI T = - {:3cSHT(k), 

where c is the amphiphile number denSity, 

c =Nlv =C': InH =c(~) InT' 

(4.11) 

(4.12) 

For the alternative external field choice (4.6) the cor­
responding result is 

c'ff tH = - (3cS HT(k), 

c('t! !;T = - (3cSTT(k). (4.13) 

We now require that in the small-c limit Eqs. (4.3) 
and (4.11) mutually agree, and that Eqs. (4.8) and (4.13) 
mutually agree. This leads to the following: 

CLHHIk) = [srr(k)1 AIk)] - (l/n t), 
cLHT(k) = -SHT(k)1 A(k), (4.14) 

CLTTCk) = [SHH(k)1 A(k)]- (1/n~), 

where we have set 

(4.15) 

We are thus able to calculate the three integral kernels 
by inserting expressions (4.14) into the inverse trans­
form integral 

l .. v(r12)= (21T)"3 J dkcos(k' r12)L .. v (k). (4.16) 

The asymptotic behavior of the l .. v at large r12 is 
determined by the small-k behavior of the L .. v ' To 
establish the latter we note that Eqs. (4.10) can be 
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expanded to give 

Sl'~(k) =nl'n~ - tM<:>~kz +tlo- M~~k' - O(k6), 

where we have introduced the mean moments 
"H "H 

M~H=} L <lr1 .. -r1rIP)o, etc. 
~ ,..1 

Thereupon, we have 

AVl) = Aaka + A,k' +O(k6), 

wherein 

Az = - t (n~M(~T - 2nH nTM"1T +n~~H)' 

A, =~[n~M<:>T - 2nHnTM<:T +n~M~H] 

+s\[M"1HM~~ - (M<:T)Z]. 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

The small-k expansions of the L I' ~ are then found to be 
as follows: 

n
Z 1 [M'fT n

Z A 1] a 
LHH(k) = cAz~2 --;; 6Aa +~ + ~ +O(k), 

L (k)=_nHn1 ![M~T nHnIA,] O(ka) (4.21) 
HT cA.jl +c 6Aa + Aa + , 

L (k)=~_![M"1H+n~~,+ 1 ]+O(ka). 
TT c;:;;y: c 6Az Aa ~ 

That each of the transforms LI'~ has a double pole at 
the origin in k space implies that the ll'~ are inversely 
proportional to distance in their asymptotic regimes, 
i. e., Coulombic in character. From Eq. (4.16) one 
readily establishes that 

ll'~(r1a) - /3q1' q~/r1a, 

where the effective charges are given by: 

q H =nT/(41T{XAa)1I a, 

qT = -nH/(41T{XAa)1 / a. 

(4.22) 

(4.23) 

The identification of the connectivity kernels as ef­
fective interactions with long-range Coulombic char­
acter is significant. It shows that the effects of covalent 
chemical binding between pairs of H chains and T chains 
can be regarded as a local electroneutrality condition 
familiar from electrochemistry. 11 Just as macroscopic 
separation of anions and cations in an electrolytic solu­
tion is impOSSible, so too is it impossible to separate 
H chains and T chains over macroscopic distances. 

This useful analogy can be reinforced by examining 
the Debye length K-

1 implied by our electrochemical 
transcription. 11 Using Eqs. (4.23) and realizing that 
the effective dielectric constant is unity, we have 

K-l = [41Ttl(C~ qlJ, +c(~ q~)]_l/a 

=[nHnr<n:a+nT)T/a. (4.24) 

The fact that the integral kernels are inversely propor­
tional to concentration [Eq. (4.14)] is necessary for the 
Debye length to be concentration independent, since the 
length scale of intact molecules is fixed. Change in 
temperature and in solvent composition clearly can ef­
fect Az, and this in turn will modify the effective Debye 
length. In any case we see that the latter quite properly 

is determined by the second moments of the amphiphile 
molecule configurational distribution. 

V. NUMERICAL EXAMPLES 

Now that the integral kernels have been identified we 
proceed to carry out a modest numerical exploration. 
For this purpose the point of view will be adopted that 
the asymptotic expressions (4.22) actually apply at all 
distances rla. The validity of this hypothesis is sub­
ject to later assessment of course, but the most im­
portant attribute of the kernels is certainly being re­
tained. 

For the sake of concreteness we will consider the 
case of a molecule HlOTto• In order to calculate ef­
fective charges (now equal in magnitude for H's and 
for T's), it will be supposed that moments M~ can be 
calculated using just the configuration where all 19 bonds 
are collinear and have unit length. This does not imply 
that the amphiphile molecules are invariably straight 
and rigid, but that their configurational fluctuations in 
pure solvent occur in a manner which produces second 
moments equal to those of the unit-bond-length linear 
form. Under this assumption the square of the H or T 
effective charge becomes: 

q a =3/(40 0001T{X). (5.1) 

In order to minimize the confUSing effects of param­
eter variations, we will consistently set 

GHH =GTT =0. 5, 

GHT = -0. 5. (5.2) 

In the present context rather little molecular informa­
tion is present to choose these quantities, but the values 
shown do not seem unreasonable. The common positive 
value selected for G HH and G TT should avoid discontinu­
ities as discussed earlier. At the same time the nega­
tive value for GHT is suggested by chemical structure, 
since antiparallel gradients of H and T are encouraged 
by the intramolecular" interface" between H and T 
chains. 

The dimensionless local interaction parameters JI'~ 
are decisive in prodUCing aggregates. HydrophobiC 
interactions between tail units mediated by water as a 
solvent require J TT to be negative. la The Sign of JHH 

is less obvious and so the results from alternative 
choices are worth exploring, but in any case J HH should 
not be more negative than J TT to avoid micelle inver­
sion. For Simplicity we assume 

(5.3) 

The Euler equations were solved numerically for 
several c, J HH, J TT choices under conditions of spheri­
cal symmetry, which seemed appropriate for globular 
micelles. The radial coordinate r in the range 0 S r S 20 
was subdivided into intervals of length 0.2, derivatives 
were represented as differences, and integrals carried 
out by the rectangle rule. Although many iterations 
typically were required to yield numerical convergence 
for the coupled integrodifferential equations, the task 
was basically Simple enough that it could be carried out 
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FIG. 1. Micelle structure computed from the Euler equations 
under the spherical symmetry constraint. For the case shown 
c = O. OOlO,JHH = -l,JTT =- 2. 

on a programmable desktop calculator (HP 9825A). 

Figure 1 shows the local density profiles oCH(r) and 
oCT(r) that were found for the case 

(5.4) 

At this concentration the overall volume fraction of 
amphiphile is 20c =0.05. A small micellar aggregate 
obviously has formed with a core of T's and an attenuated 
fringe of H's. Consistent with previous remarks, the 
latter exactly counterbalance the former by forming a 
perfect "ion atmosphere." Solvent penetrates somewhat 
into the core region; specifically 
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FIG. 2. Spherical micelle structure for c=O.OOlO,JHH =4, 
JTT =-2. 
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FIG. 3. Spherical micelle structure for c=O.0020,JHH =4, 
JTT =- 2. 

16 

c",(O) =l-cH(O) -CT(O) 

""0.092. (5.5) 

We estimate (by integrating C T to its first zero) that the 
core region contains an average of approximately 102.8 T 
units. These may comprise only parts of T chains, of 
course. 

Figure 2 shows the effect of varying J H H while other 
parameters are held constant. In particular J HN is now 
set equal to four, representative of strong repulsion 
between the head groups. The resulting micelle is even 
smaller than before, with a dramatically extended fringe 
of H units. Quite obviously the change has had the ex­
pected destabilizing influence. The continued ability of 
the aggregate to hold together at all stems from the 
geometric advantage of spherical geometry which allows 
mutually repelling H's to fan out and avoid each other. 

The influence of variable concentration is demonstrated 
by comparing Fig. 2 (c = 0.001) with Figs. 3 (c =0.002), 
4 (c =0.003), and 5 (c =0.004), wherein all other param-
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FIG. 4. Spherical micelle structure for c=O.0030,JHH =4, 
JTT =-2. 

16 
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FIG. 5. Spherical micelle structure for c = O. 0040, JHH = 4, 
JTT =- 2. 

eters remained fixed. The resulting increase in micelle 
size is substantial. The average numbers of tail units 
in the cores of each of these are estimated as before to 
be 53.5, 370.3, 878.5, and 1539.3, respectively. 

Experience has shown that below a critical concen­
tration limit, for any choice of interactions, only the 
trivial solutions 

(5.6) 

to the Euler equations can be found. This characteris­
tic is reminiscent of the well-known critical micelle 
concentration (CMC) phenomenon in amphiphile solu­
tions. 13 However, identification of a true CMC must be 
based on a study of the partition function for the system 
as outlined in the next Sec. VI. 

o ... 

The progression presented in Figs. 2-5 shows a 

10r-------r-------~------,_------_r----_, 

8 

6 

4 

2 

JTT • -2, JHH • +4 

q2·3/140,OOO1T,BC) 

8CT 1rO)=0 

\ , 
' ... ...... ____ METASTABLE 

BRANCH 

O~----~~----~------~------~--~ .0005 .0010 .0015 .0020 

C 

FIG. 6. Concentration dependence of ro, the smallest radius 
at which oCT vanishes. The interaction parameters are JHH 
= 4, JTT = - 2. The metastable extension (dotted curve) has 
tentatively been identified as corresponding to "critical 
nuclei," i. e., free energy saddle points over which the system 
must pass in formation of stable aggregates from monomers. 
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FIG. 7. Vesicular structure obtained for c=0.0040,JHH =4, 
JTT = - 2. These are the same parameters that yielded the 
miscellar structure shown in Fig. 5. 

"core weakening" phenomenon, i. e., a tendency for 
(jCT to develop a local minimum at the origin at the 
larger concentrations. To some extent this may be an 
indirect result of the strong head-group repulSion 
which effectively pulls the aggregating molecules radial­
lyoutward. 

The way that concentration affects micelle size can 
be conveniently dramatized by picking some character­
istic length, for instance the smallest radius ro for 
which 

(5.7) 

and then plotting those ro's against c. This has been 
done in Fig. 6 for the J HH =4, J TT =-2 case, some ex­
amples of which were illustrated in Figs. 2-5. Simi­
lar behavior has been found for other choices of inter­
action parameters. The smooth-curve fit to the dis­
crete numerical results indicates a vertical tangent at 

Co ""0. 0009. (5.8) 

This is the critical concentration below which nontrivial 
solutions appear not to exist. Indeed experience has 
shown that numerical convergence becomes increasingly 
slow as this critical point is approached from above, 
apparently as a result of developing dilatation-con­
traction instability. 

If (as Fig. 6 suggests) the critical concentration (5.8) 
is a simple branch-point singularity of the function 
ro(c), 

ro(c) =ro(co) +A(c - CO)l/Z +o(c - co), 

A> 0, (5.9) 

then the curve of stable micelle structures connects to 
a metastable branch: 

(5.10) 

This alternative branch has been indicated by a dotted 
curve in the figure. It seems reasonable to speculate 
that these metastable aggregates correspond to free 
energy saddle points (analogous to critical nuclei in 
nucleation phenomena 1'--16) over which the system must 
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pass in the process of forming stable micelles from 
dispersed monomers. 

14 

On account of the nonlinearity of the determining 
equations, alternative solutions exist, under proper 
circumstances, beyond just the trivial [Eq. (5.6)] and 
the micellar solutions. Figure 7 shows such a case 
that was discovered inadvertently for the same concen­
tration and interaction choice that applied in the micelle 
structure Fig. 5. Now the structure is vesicular, 17 

with a shell of tail units located around radius r '" 9.5. 
The compensating head units reside both within the 
hollow interior and in the exterior regions of this vesicle. 
Vesicles have been found for other parameter choices 
as well, thus far only with repulsive head groups 
(JHH>O). It is not yet certain what role the radial 
truncation at r =20 in the numerical analysis has in 
stabilizing these hollow aggregates. 

Figure 8 exhibits yet another type of radially sym­
metric structure, for C =0.001, J HH = -1. 5, J TT = - 3. 
The system now has chosen form alternating concentric 
shells of Hand T units, with the central core region 
having predominantly H character. Although the nu­
merical solution terminates at r =20, it is clear that 
the nonlinear out-of-phase oscillations would go on to 
arbitrarily large radius if given the chance. With in­
creasing r these successive shells become locally more 
and more planar, so that the phase being described 
is essentially one with parallel lamellae. It would be 
technically correct to identify this kind of arrangement 
as a smectic A phase. 18 On account of the spherical 
symmetry that has been imposed on the numerical solu­
tion, the speCific structure shown in Fig. 8 constitutes 
one of the possible point defects19 that are possible in 
that smectic A phase. 

VI. DISCUSSION 

The numerical calculations reported here seem to 
establish that the variational method has some value 

16 18 

T 

20 

FIG. 8. Lamellar structure obtained 
for c= O. OOlO,JHH = -1.5,JTT =- 3. 

for investigating aggregation phenomena, at least for 
nonionic amphiphiles. In most respects the extension 
to ionic amphiphiles should be straightforward. After 
eliminating solvent, the independent concentration fields 
would number three, namely head groups (CH), tail 
groups (CT), and counterions (el)' Typically the head 
groups would be reckoned as one per molecule and 
would bear a true electrostatic charge. The basiC free 
energy functional would include both real Coulombic 
interactions as well as the pseudo-Coulombic interac­
tions conveyed by the connectivity kernels l,.v. No 
doubt the resulting triad of coupled nonlinear Euler 
equations could be solved by iteration as before. The 
only feature that might provide some difficulty would 
be how to handle the nonuniformity of dielectric prop­
erties through the region occupied by the aggregate. 

In the long run the present variational approach needs 
to be embedded in a more complete statistical mechani­
cal formalism. The nature of that formalism is clear. 
It will be necessary to evaluate partition functions of 
the form 

(6.1) 

where the functional integral indicated includes all field 
variations (with appropriate weighting) subject to the 
constraints (3.1) that fix the number N of molecules 
present. The aggregation structures sought in this 
paper represent stationary points of the integrand in 
Eq. (6.1). To effect evaluation of QN it is necessary 
to account for fluctuations about those extrema. Under 
some circumstances it may suffice to retain only quad­
ratic fluctuations (second functional derivatives of (3F 
about the extrema). This would lead in turn to calcula­
tion of the stabilities, equilibrium constants, and size 
distributions for aggregates in solution. From this 
information it would then be possible to identify critical 
micelle concentrations, and to map out phase diagrams 
over the entire range of temperature and of solvent-
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amphiphile composition variation. The ability to demon­
strate how these attributes are controlled by details 
of amphiphile molecular structure and of the interac­
tion parameters would be a valuable theoretical asset. 
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