
PHYSICAL REVIE% A VOLUME 27, NUMBER 5

Two-dimensional Gaussian core model at high temperature
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The two-dimensional Gaussian core model in the high-temperature regime has been ex-
amined by two means: (1) exact high-temperature series, and (2) molecular-dynamics simu-
lation. The former diverge but can be summed by Borel transforms. Evidence is offered
that in the case of the mean potential energy per particle and the excess pressure that the
Borel transforms are analytic throughout the complex plane. Furthermore, these
transforms grow exponentially along the positive real axis at a rate which determines the
fluid's freezing-point temperature. Approximate Borel transforms have been constructed
which fit the simulation data adequately.

I. INTRODUCTION

Very fcw gcncial methods arc availablc for ex-
tracting exact properties froIn classical partition
functions. Perhaps the best known is the Mayer
cluster expansion' which for short-range intermolec-
ular potentials yields density series for thermo-
dynamic properties of the gas phase. I.ow-
temperature expansions can also be generated, pro-
vided that the structure of the lowest-energy crystal
is known. To these methods could be added the
high"temperature expansions that can, ln principle»
be developed if the intermolecular potentials are
bounded. Heretofore such high-temperature expan-
sions have had limited application, due to the fact
that they are inevitably divergent series.

The present paper is devoted to a study of the
two-dimensional Gaussian core model, ' particular-
ly in its high-temperature regime. This classical
model is defined by its intermolecular potential
function, which in reduced units has the simple
form

We examine below the high-temperature expansions
for this model, and compare predictions based on
those asymptotic series with results from
molecular-dynamics computer siInulation.

At absolute zero temperature the crystal struc-
tures and their energies have previously been deter-
mined for the Gaussian core model. ' In one di-
mension (D= 1) the regular linear array is the
lowest-energy structure, while for D=2 the struc-
ture is the usual triangular close-packed crystal.

When D=3„ the structure is fcc at low density, and
bcc at high density.

Owing to the fact that the Gaussian function is
self-dual under Fourier transformation, the lattice
energies of these T=o arrays satisfy a high-density,
low-density duality relation' for any integer D.
Specifically, let

I=1+ lim (24/X),
N~ oo

where the limit is carried out for the T=O array at
fixed density. If high (pI, ) and low (pt) densities are
chosen so that

one then has the duality relation

~.-'"I(p~) =~I-'"1(~I)

The analysis which produces the duality relations
has an important implication, namely, that energy
differences between alternative particle packings
must vanish as density increases to infinity. This
causes the melting temperature to pass through a
maximum versus density, and to decline to zero in
the infinite density limit. On the high-density side
of the melting-point maximum the Qapeyron equa-
tion requires that thc Auid phase be denser than the
solid with which it cocxists.

Molecular-dynamics simulations for the two-
dimensional Gaussian core model at reduced density

have previously been reported. ' That work exam-
ined a system of 780 particles in a nearly square sys-
tem [side ratio (15/26i3'~ ] to which periodic boun-
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dary conditions applied. The results obtained indi-
cated a solid-fluid coexistence range in reduced tem-
perature as follows:

6.6y10 & T*&7.2y10

Furthermore, the density shown in Eq. (1.5) at
which these simulations were carried out was clearly
larger than that giving the maximum melting tern-
perature. One of the objectives of the present work
has been to extend the earlier simulation study to in-
clude the very high-temperature regime where the
system behaves as a weakly perturbed ideal gas.

Section II discusses the D=2 high-temperature
expansions, indicating how the Sorel transform pro-
vides the means to sum those divergent series. This
is followed in Sec. III by presentation of some new
molecular-dynamics results. Section IV discusses
one approach to fitting the molecular-dynamics data
with series-consistent Borel transforms.

II. HIGH-TEMPERATURE SERIES

The exact high-temperature asymptotic expansion
for the Helmholtz free energy of the Gaussian core
model has previously been calculated through eighth
order, with coefficients that are available as arbi-
trary functions of D and p*. The series may be
displayed in the following form:

-bn, (D)pDP gg —b„,(D)p'p '
( —P)" .

n=2 j=2

(2.1)

Here f stands for the excess Helmholtz free energy
per particle (in the infinite-system limit), and

P= l /T*= l lks T,
+/2p e

Explicit expressions for b„j appear in Table I of Ref.
8; these quantities are always positive.

For present purposes we will be concerned with
high-temperature series for the potential energy per
particle P, and the excess pressure p,„, that can be
obtained from Eq. (2.1) by differentiation:

TABLE I. High-temperature series coefficients for the
Gaussian core model with D=2 and p~=3

0.906 899 6821
0.453 449 8411
0.699461 3026
1,441 656 205
3.540 660 443
9.774 323 697

29.366 392 38
94.164 168 51

0.9068996821
0.226 724 9205
0.415 924 2194
0.897 855 0034
2.247 268 627
6.261 573 848

18.900 844 47
60.735 71705

Table I presents numerical values for coefficients A„
and C„ in the cases of interest, D=2 and p~=3

Figure 1 shows the ratios A„/A„~ and C„/C„
of successive series coefficients from Eqs. (2.3) and
(2.4), plotted against n. At least for the orders
shown these ratios appear to converge toward one
another and to rise monotonically with n. The pat-
tern is similar to that observed for the Gaussian
core-model series for the free energy itself when
D=3. Presuming that this trend continues to all
orders, the ratio test indicates that the series are
divergent. The source of these divergences is clear:
Changing the sign of P from positive to negative is
tantamount to changing particle potentials from
repulsive to attractive, thereby making the system
unstable with respect to collapse. Consequently
P=O is expected to be a singular point. As suggest-
ed earlier the formal f, P, and p,„series then will
only be asymptotic series.

d(13f (P,pD )]

n=O
00

0

FIG. 1. Ratios of successive series coefficients plotted
against order n. Squares show A„/A„& from Eq. {2.3)
and the inverted triangles show C„/C„~ from Eq. {2.4).
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The Borel transform appears to offer the analyti-
cal tool required to connect the asymptotic series to
simulation results away from P=O. Consequently,
we write

P = I G (Pt)exp( t)dt—, (2.5)

G(x)= g (3„/ t!t){—x)",
n=0

p,„=nD~~p. D I H(Pt)exp( t)dt—. (2.6)

Therefore the transform functions 6 and H will
have the following formal power-series expansions:

cles in the fluid may be so improperly coordinated
that they would necessarily be consigned to the 1=1
category, "one-particle crystallites. " Nevertheless,
the available pictures that have been produced from
simulations of two-dimensional fluids clearly show
local regions of crystalline order, ' ' implying that
the 1& 1 categories will not be vacant. We require of
the algorithm only that it describe the fluid phase in
terms of disconnected microscopic crystallites, while
describing the equilibrium solid phase predominate-
ly as a single (possibly defective) macroscopic crys-
tallite, i.e.,

H {x)= Q (C„/n!)( —x )" .
n=0

The coefficient ratios have now become A„/(nA„~)
and C„/(nC„ i}; these are plotted against n in Fig.
2. Notice that beyond n =2 these new ratios decline
with n and behave as though they converge to zero
as n increases to infinity. If this pattern is indeed
valid for all n then G(x) and H(x) will be analytic
functions throughout the complex x plane.

We now revive for D=2 an argument previously
advanced which establishes the behavior of 6(x)
for large positive real x. First, there must exist a
crystallite pattern-recognition algorithm (specific de-
tails need not be of concern here), which for any sys-
tern configuration partitions particles uniquely into
contiguous subsets, each of which constitutes a crys-
tallite. In particular, we mill have

(2.8}

Second, consider now the equilibrium fluid phase
just above its freezing point. We can denote the
mean concentrations of crystallites with various
sizes by (nt)/0, where 0 is the content (area for
D=2) of the system. In the large-/ limit these con-
centrations wi11 surely be determined by macroscop-
ic free-energy contributions of bulk and perimetric
origin. Consequently we expect to have (kp, ki Q 0)

ln( ( nt ) /0) -—kol —k ) 1 '~2 —k2lnl —k3—

(2.10)

IIl this expression ko will vanish llIlearly with teITl-

perature at the freezing point (P=Pf ), while k, (re-
lated to the solid-fluid boundary tension) wi11 remain
greater than zero; i.e.,

ko Eob P+0((—1—)P)'),

k( E)+O(AP)——,
where nI is the number of 1-particle crystallites
present at the given instant. By default, many parti-

where Eo and It i are positive constants, and

(2.12)
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FIG. 2. Series-coefficient ratios for Borel transforms.
Squares refer to 6 defined in Eq. (2.5), inverted triangles
refer to H defined in Eq. {2.6).

is positive in the fluid phase. The exponent shown
for 1 in the second term on the right-hand side of
Eq. (2.10) results from the implicit assumption that
the crystallites will not be highly ramified. Essen-
tially nothing is known about k2 or k3 in Eq. (2.10),
but it is reasonable to assume that they approach the
nonzero limits E2 and E3 at P/.

Because their interiors are more ordered than the
surrounding fluid, large crystallites will give
anomalous negative contributions to the interaction
energy of the system. More precisely we would ex-
pect that the contribution for crystallites of specific
size 1 should have the form

Et=(eol+e(1'~ + )(nt),
where eo is negative (bulk term) and e& is positive
(perimeter term). The entire anomalous contribution



(2.14)

$(p) =p„(p)+p, (p)

—= f, [6„(pt)+G,(pt)]exp( —t)dt, (2.15)

where P, is the appropriate analytic background
term, and G„and 6, are the respective Borel
transforms. By employing Eqs. (2.10)—(2.14), we
can sct

The quantities It absorb factors dominated at large I
by the exponential function shown; for large I, they
will be uniformly positive and are expected to vary
as some power of l. It should now be possible to

attributable to crystallitcs can then be obtained by
summing over I. The resulting function of P,

&Ac.(p)= Q &t
I =].

will have an essential singularity at p/, as reference
to Eqs. (2.10)—(2.13) demonstrates. This singularity
stcIIls from thc accclcI'Rt1ng rapidity, for lafgcI' Rnd

larger I, with which ~ nt ) increases when hp goes to
ZCI'O.

The next task is to isolate in P the crystaHite
essential singularity P„. Formally we can write

in Eq. (2.18),

p„(p)= f I (t,p)exp( t)dt—,

I ( t,p) = —( I /KopI )p(t /Kop/)

Xexpj [1—(ko/KopI)]t

ki(t/K—opI)'~ ] . (2.21)

When b,p is small we can use Eqs. (2.11) to show
that

select a smooth function P(s) of the continuous vari-
able s such that, for every I= 1,2,3, . . . ,

fiexp( —kol —kil'i )

= f y(s)exp( —k,s —k, s'")ds . (2.17)
/ —]

Therefore

P„(P)= —f 1((s)exp( —kos —kis 'i')ds . (2.18)

The function 1((s) will have the same power-law
behavior for large s that ft displays for large I.

Introducing the variable change

I (t,p) = —( I/KQpf )exp[(pt)/pI] [1([(pt)/Kop/]exp[ —(Ki lp/Ko )(pt)' ]+O(b p) I .

The terms explicitly shown here dominate the
small-b, p behavior of I', and depend only on the
variable Pt. They have thus the form of a Borel
transform, RQd so wc can conclude from uniqucncss
of the transform that this must bc the form of the
function 6„ in Eq. (2.15) above. Specifically, as x
tends to plus infinity,

G„(x)-—exp[x /P/ —(Ki /P/Ko )x 'i

+O(lnx)] . (2.23)

Because G, (x) cannot lead to the singular behavior
(at least not as strongly) as that attributable to 6„,
the same asymptotic behavior must. obtain for the
fuH Borel-transform function 6:

6 (x)——exp[x /PI —(Ki /P/Ko )x ' ~

+O(lnx)] .

The importance of this last r'esult is that it shows
how the freezing point P/ appears explicitly in G.
Since the behavior of G(x} near x=0 is connected
by analytic continuation to the large-x behavior, we
can say that the high-temperature expansion which

determines the 6 power series (2.7) contains within
it information about the first-order freezing transi-
tion. Thc Borcl transform offers thc IncRns for ex-

tracting that infomlatlon froIn thc high-tcInpcratuI'c
series. %'e also see that, in principle, the means is at
hand to extract a Auid-solid boundary free energy
from the series via the coefficient of x'~ in Eq.
(2.24).

Suppose now that the free-energy series shown in

Eq. (2.1) were itself to be represented as 8 Borel
transform (examination of its series coefficients sug-

gests that this is appropriate):

f(P)= f F(Pt)exp( t)dt . —(2.25)

Clearly then
6(x)=[1+(dlnF/d lnx)]F(x) .

The only way that 6(x) having the asymptotic form
shown earlier in Eq. (2.23) could have been generat-
ed in this way is for I'(x) to have 8 similar asymp-
totic Iepi'esentation:

F(x)-—exp[x /p/ —
(K i /p/Ko ')x '~ +O(lnx)] .

(2.27)
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Only the 0(lnx) part will differ between F and G.
Carrying the argument one step further, H(x) can

next be generated by applying a density derivative to
F:

BF(x)
8 1HpD

(2.28)

By referring to the asymptotic form above for F we
conclude that

H(x) —[sgn(apf /apn)]

Xexp[x/Pf —(K, /PfKt )x' '

+O(lnx)] . (2.29)

Notice that the density derivative operator causes
the sign of the result to depend on the way that den-

sity change affects the freezing point. As mentioned
above the Gaussian core model has the interesting
property that both signs can occur: At low density

apf/BpD is negative whereas at high density it is
positive.

III. MOLECULAR-DYNAMICS RESULTS

The present molecular-dynamics investigation, in
the high-temperature regime with p~= 3 ', has
continued to employ a system of 780 particles.
Once again the side ratio for the basic cell is
(15/26)3', and periodic boundary conditions apply.
Because the mean particle velocities are so much
higher than before it was necessary to utilize a time
increment At~ for numerical integration of the clas-
sical equations of motion that was only one-tenth
that employed in most of our previous work '; in
reduced units it was chosen to be

lim P(P) =0.906 899 6821,
p~p

lim p„(P)=0.523 5987756 .
p~o

(3.2)

Figures 3 and 4 show the molecular-dynamics re-
sults for P and p,„as inverted triangles. It should be
stressed that the range shown in these figures is
indeed the high-temperature regime, since the freez-
ing transition is encountered only when p increases
to approximately 138.9.

one run to the next by the conventional means of
scaling all momenta uniformly.

Table II presents results computed for a set of
nine distinct temperatures. For each of these nine
states the system was equilibrated for 4000ht*=20
reduced time units, then the requisite averages were
formed over the subsequent 12000ht*=60 reduced
time units. In none of the cases could we detect
symptoms of disequilibrium over the averaging
period.

In addition to the previously discussed quantities

P and p,„, Table II also provides values found for
g(0), the pair-correlation function evaluated at zero
separation. This quantity vividly conveys the extent
to which particles are able to interpenetrate. In the
extreme high-temperature limit the Gaussian core
potential 4 is incapable of perturbing the system-
configuration ensemble from that of an ideal gas,
and g(r) would be identically unity for all r. The
extent to which g(0) deviates from unity thus pro-
vides a convenient measure of configurational
nonideality.

The high-temperature limits for P and for p,„are
easily found to be

2 t' =0.005 . (3.1) IV. DISCUSSION

The final fluid configuration from the previous
phase of this work provided the starting particle
configuration. Temperatures were adjusted from

Direct calculation shows that the first few terms
from asymptotic series (2.3) and (2.4), regarded sim-

TABLE II. Molecular-dynamics simulation data.

Pex g(0)

0.099 261
0.222 14
0.495 05
1.0704
2.222 0
4.345 6
7.985 3

14.110
24.415

0.864 127 2150
0.824040 1235
0.770 874 0256
0.696 549 4077
0.623 257 9440
0.560 2197513
0.512 172 1722
0.478 612 8133
0.455 780 8906

0.511 351 483
0.501 138 898
0.488 192466
0.473 399 342
0.463 012 300
0.462 061 942
0.464 502 106
0.471 014 572
0.477 523 632

0.888
0.805
0.705
0.487
0.340
0.156
0.043
0.008
0.001
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6(x)= g 6 exp( —y x)

H(x)= g Hjexp( rI—J.x) .

+ 0.5

0 4

0 ')

0 .".

The constants GJ, yj. , Hj, and qj could be chosen to
reproduce power-series expansions (2.7) through any
given order. Equations (4.1) then imply

p(p)= g G, I(l+yjp),
j=l

20 24 28 (4.2)

FIG. 3. Potential energy per particle for the two-

dimensional Gaussian core model at reduced density
3 ' . Molecular-dynamics data are shown as inverted
triangles. Curve a, four-term approximant; curve b„ five-

term approximant.

ply as polynomial approximants to P and p,„,are in-
capable of reproducing even the qualitative behavior
of the data in Figs. 3 and 4. This confers additional
importance on the Borel transforms as means of
simply fitting the data to closed-form functions.
%'e now attempt to illustrate the possibilities for
such fitting in the light of results obtained in Sec. II.

Recalling the conclusion that G(x) and H(x)
were analytic throughout the complex plane, it
seems reasonable to represent these functions ap-
proximately as finite sums of exponentials:

0 56

0 54

0 52

As more and morc exponentials are used to improve
the representations of 6 and H, it is presumably the
case that the P-plane poles appearing in Eqs. (4.2)
will become densely arrayed along the negative axis
to simulate branch cuts. Furthermore, , we would ex-
pect that the series of simple exponential functions
(4.1) should converge to limits consistent with the
asymptotic forms (2.24) and (2.29).

The sets of eight series coefficients shown in
Table I suffice to determine four-term approximants
to 6 and H of type (4.1). %e have calculated the
corresponding constants GJ, yj, Hj, and gj with nu-
merical results collected in Table III. The implied
approximations for P and p,„were then computed,
and are shown in Figs. 3 and 4 as curves labeled a.
Overall these curves have qualitatively the proper
behavior indicated earlier by the simulation data. In
particular, the very interesting minimum in p,„ap-
pears once again. Nevertheless there still remain
quantitative deficiencies; in particular, the four-
exponential approximant for 6 yields P values tl;at
are clearly too low for P greater than about 4.

If more series coefficients were available beyond
those shown in Table I the corresponding approxi-
mants no doubt mould do a better job of reproducing
the simulation data. Because higher-order series
coefficients are not yet known, an interim alterna-
tive is to appeal to the simulation data itself to sug-
gest improvements. In particular, we take note of
the fact that P and p,„ in the simulations ' ' are

046-

%0

TABLE III. Parameters for four-exponential Borel ap-
proxim ants.

FIG. 4. Excess pressure for the two-dimensional
Gaussian core model at reduced density 3
Molecular-dynamics data are sho~n as inverted triangles.
Curve a, four-term approximant; curve b, five-term ap-
proximant.

1 0.566 737
2 0.254 552
3 0.078 568
4 0.007 042

0.040933
0.892 689
2.249 352
3.733 180

0.750095
0.111871
0.041144
0.003 790

—0.007361
1.073 311
2.376888
3.794451
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TABLE IV. Parameters for five-exponential Borel approximants. The terms for j=0 were
"forced'* into the approximants to improve fits to molecular-dynamics data.

0.416000
0.215 575
0.203 841
0.065 674
0.005 810

—0.000 500
0.273 919
1.064427
2.368688
3.799 189

0.859097
—0.111346

0.113 139
0.042 107
0.003 902

—0.000 500
0.056 619
1.054491
2.360369
3.784 525

yo
——go ———0.0005,

Go ——0.416000,

80——0.859057,

(4.3)

then the simulation data can be more closely fitted.
By forcing these new terms into the Borel
transforms G and H the remaining exponentials re-
quire shifted parameters to continue fitting the
power-series coefficients listed in Table I. Table IV

roughly constant over the wide P range from 32 (the
largest value shown in Figs. 3 and 4) to the
freezing-point value 138.9. Such behavior could
only arise from one or more terms in Eqs. (4.1) and
(4.21 having very small exponential decay constants

yj and gj. . By simple numerical experimentation we
have found that if G and H incorporate fifth ex-
ponentials with constants

shows the sets of ten parameters required for these
five-exponential approximants. Curves labeled b in
Figs. 3 and 4 display the resulting predictions for P
and p,„. %hile these predictions are still imperfect,
improvement is clear, particularly for P.

%e believe it is significant that the additional
functions forced into 6 and H so as to improve
large-P predictions are automatically found to in-

crease exponentially with variable x. Evidently the
transforms have begun to exhibit crudely the kind of
asymptotic behavior adduced in Sec. II. The ex-

ponential rise rate is not correct, of course, but it is
small, as required, and would probably improve if
yet further terms could be incorporated. This rough
indication that the proper behavior of 6 and H
along the positive real axis has begun to emerge
confers extra importance on the task of generating
further exact series coefficients for the model.
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