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The statistical thermodynamics of water has been recast in a form which distinguishes two basic contributions, 
one of purely structural origin, and one due to anharmonic vibrations. The former involves the collection of 
potential energy minima (“inherent structures”) while the latter concerns thermal motions away from these 
minima. Information about the inherent structures has been adduced from crystallography and from molecular 
dynamics simulation for a 250-molecule cluster with free surfaces. We concluded that near 0 “C the mean molar 
volume of relevant inherent structures contributing to the liquid phase increases as temperature decreases, 
and that this increase probably has a singularity at the supercooling limit due to cooperative aggregation of 
hydrogen-bond polyhedra. Approximately 8590% of the latent heat of melting ice can be attributed to upward 
shift in potential energy of the inherent structures across the transition, the remainder to changing anharmonicity. 

I. Introduction 
Water displays a formidable array of unusual physical 

and chemical properties in its condensed phases.’s2 Be- 
cause this substance is molecularly complex it is not sur- 
prising that the history of attempts to explain these 
properties has involved more imagination than insight. At 
present, any new approach which lightens the conceptual 
burden carried by those seeking to understand water a t  
the molecular level would be most welcome. 

We explore in this paper the possibility that such an 
approach can be constructed along lines previously em- 
ployed to study phase change in two  dimension^.^?^ The 
basic idea concerns separation of the problem into two 
parts. The first part involves identification of a discrete 
set of inherent structures, each of which corresponds to 
a local minimum in the potential energy function for the 
system. The second part examines the generally anhar- 
monic vibrations that the system executes about those 
minima. In fact this separation can be carried out uniquely 
and precisely, and at  least in the two-dimensional appli- 
cation leads to a novel theory of melting.4 The procedure 
for constructing this separation and some general impli- 
cations that follow therefrom are outlined in section 11. 

Section I11 takes up the problem of classifying inherent 
structures in water according to their energies, densities, 
and bonding patterns. The available experimental data 
are surveyed and lead to some useful insights, but they are 
incapable of providing a complete picture. Consequently 
we turn in section IV to molecular dynamics computer 
simulation as an alternative source of information and 
report new results for a 250-molecule study. 

Some of the well-known liquid water anomalies receive 
scrutiny in section V, specifically the density maximum 
phenomenon and the supercooling behavior. The use of 
the inherent structure viewpoint seems to offer conceptual 
advantages in classifying and unifying these anomalies. 

We end our exposition with a few concluding remarks 
in section VI. 

11. Statistical Mechanical Background 
An obvious starting point for application of the inherent 

structure formalism to water is the canonical partition 
function: 
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QN(P) = tr  [exp(-PH)I 

Here H is the Hamiltonian operator for N water molecules, 
consisting of kinetic ( K )  and potential (V) energy parts: 

H = K + V  (2.2) 
The trace in eq 2.1 must be carried out over a suitable 
complete set of functions of both position and spin vari- 
ables. 

The configuration of any molecule j (1 I j I N) can be 
described by a nine-component vector x .  which specifies 
center-of-mass position, orientation, and vibrational de- 
formation. The potential energy function v(x1 ... XN) can 
be assumed to be bounded and at least twice differentiable 
over the entire 9N-dimensional configuration space, except 
for those divergences to plus infinity associated with nu- 
clear coincidences. Quite generally we can suppose that 
V has the following form:5 
V =  

/3 = l / k B T  (2.1) 

CV” (Xj) + c v ( 2 )  (x. x ) + C v 3, (Xj,Xk,XJ + ... 
1 j < k  ” j<k<l  

(2.3) 
The single-molecule function V(l) includes the intramo- 
lecular force field as well as interactions with external 
potentials (container walls, gravity). Pair interactions have 
been denoted by V2) and include the all-important prop- 
ensity for water molecules to form directional, linear hy- 
drogen bonds. The nonadditivity corrections v3), V4), ... 
are known to play a relatively significant role in water.6 
We will assume for the moment that the water molecules 
cannot dissociate into H+ and OH- ions, or exchange hy- 
drogens. 

The “inherent structures” that play a key role in the 
present development are those system configurations for 
which all forces vanish, i.e., relative minima in V. When 
N is of the order of Avogadro’s number the totality of these 
minima is huge. Many are related merely by permutation 
of identical particles, the number of which is 2”! in the 
present case. However, even after accounting for this 
permutation factor, general arguments4 lead to the con- 
clusion that the number of essentially distinct minima rises 
exponentially fast with N. Included among these distinct 
minima of course is one which yields the absolute mini- 

(5) F. H. Stillinger, Adv. Chem. Phys., 31, 1 (1975). 
(6) P. Schuster, “Energy Surfaces for Hydrogen-Bonded Systems”, in 

“The Hydrogen Bond“, Vol. I, P. Schuster, G. Zundel, and C. Sandorfy, 
Ed., North-Holland, New York, 1976, pp 25-163. 
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mum for V, and this should correspond to the most stable 
crystalline structure at  absolute zero temperature. 

We now introduce a mapping M of the system configu- 
rations x xl, x2, ..., xN onto the discrete minima of V, 
for which a serves as an index: 

M(x) = a (2.4) 
This mapping is simply generated by the steepest descent 
path on the V hypersurface which begins a t  x and con- 
verges onto a. These paths can be generated as solutions 
to the partial differential equation4 

dx/dt  = -VV(X) (2.5) 

We note in passing that M is undefined for those x at  
”saddle points” in the 9N-dimensional configuration space, 
but since these constitute a set of zero measure they can 
be disregarded for present purposes. 

Denote by R(a) the set of configurations which M maps 
onto a. This set is connected and has the minimum (Y in 
its interior. It is the region all of whose points “quench” 
by eq 2.5 to a. The union of R(a)  for all a is the entire 
configuration space itself. 

It is now natural to express QN as a sum of contributions 
from each R(a). For this purpose we first write the trace 
in eq 2.1 as an integral over x: 

Q d P )  = ( C N / ~ ” M ) S B ( X , B )  dx 
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C N  = (2sH + 1)2N(2So + (2.6) 

where SH and So are the spins of the hydrogen and oxygen 
nuclei present (assumed in each case to be isotopically 
pure), and where the 9N-dimensional integration includes 
all accessible configurations. The function B(x,P) ap- 
pearing in eq 2.6 is an appropriately normalized Slater 
sum: 

B(x,P) = (zNN!/CN) C qn*(x+Y exp(-PH) *n(X,S) 
n S  

(2.7) 
In this last expression S stands collectively for all spin 
variables, and n is an index spanning the entire complete 
set of spin and space wave functions qn. The normaliza- 
tion chosen for B is such that in the classical limit 

B - AH-6NXo-3N exp(-PV) (2.8) 

where AH and A0 are the relevant mean thermal deBroglie 
wavelengths. However, it must be stressed that this formal 
limit is not relevant to ordinary temperatures, where the 
vibrational normal modes of the molecules remain largely 
in their ground states. 

We can obviously rewrite eq 2.6 in the following way: 

Stillinger and Weber 

We will denote by V, the potential energy at  minimum 

B(x,@) = A ~ - ~ N x ~ - ~ ~  exp(-PV,)b,(x,p) (2.11) 
a. Then if within R(a)  we set 

the expression for the partition function becomes 
Q d P )  = 

where now the integrations span the separate regions R(a). 
On account of the symmetry of H under particle permu- 
tation B will be identical in those R’e which differ only by 
such permutations. Consequently it is useful to collect all 
equivalent terms in the a sum in eq 2.9 to yield 

where the primed summation only includes one minimum 
from each permutational equivalence class. The quantity 
u(a) is a geometric symmetry factor for structure a; it  is 
the number of equivalent structures (permutations) that 
can be achieved by rigid-body rotation of the system as 
a whole that do not require surmounting potential energy 
barriers. 

-. . 
CNXH-@%o-3N C’[ 4a)l- l  exp(-PV,) s ba(x,P) dx 

a Ria) 
(2.12) 

In virtue of eq 2.8, each b,  in the classical limit will equal 
unity at  its corresponding potential energy minimum. 

The density of distinct potential energy minima, mea- 
sured along the potential energy axis on a per-molecule 
basis, is provided by the function 

G(u) = C’6(u - v,/N)/da) (2.13) 
a 

When N is large we can expect to have4 
In G(u) - Ng(u) (2.14) 

where g is independent of system size. Although the in- 
herent structures that contribute to g in the neighborhood 
of some physically accessible u can be expected to show 
diversity, we know that they will be sufficiently large in 
number that their intensive properties (such as density) 
will have well-defined averages with small relative devia- 
tions from those averages. 

In the same spirit we can assume that the “vibrational” 
integrals for each a in eq 2.12 will have narrowly distrib- 
uted values for those minima clustered around u. Hence 
we define the “vibrational” free energy per molecule f(P,u) 
by the expression 

(2.15) 

where the average includes all minima in some infinites- 
imal interval about u. We can now assemble the eq 
2.12-2.15 into the final form: 

Q d P )  = A~-~~Xo-~”Sexp(N[g(u)  - PU - P f ( P , ~ ) l l  du 
(2.16) 

This way of writing the partition function exhibits an 
explicit separation of the inherent structural aspects of the 
many-body system (embodied in g), from the vibrational 
part (expressed by f )  arising from quantum zero-point 
motion and from thermal excitation. It should be stressed 
that eq 2.16 is exact, subject to the large-system limit 
invoked in its derivation. Whether or not it is useful for 
understanding water has yet to be demonstrated. 

That the large number N occurs in the exponent of the 
integrand in eq 2.16 motivates an evaluation by the 
“maximum term” method. For any given P let u,(P) be 
that value of the potential energy per molecule for which 

g(u) - Pu - Pf(P,u) = absolute maximum (2.17) 
Then it follows that 

In Q d P )  - N[-ln (XH6XO3) + g ( U m )  - P U m  - Pf(P,Um)I  
(2.18) 

One of the primary objectives of the present approach is 
to establish how u, varies with temperature, and what 
structural shifts in the corresponding inherent structures 
this temperature variation implies. 

111. Classification of Minima 
Some of the mechanically stable structures that a col- 

lection of water molecules can adopt are obvious, others 
are more obscure. We now undertake to survey some of 
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principle higher (and the same is then true for the mean 
value of the potential minima), cubic ice probably lies very 
close in energy to hexagonal ice. 

The high-density structures formed by quenching and 
decompressing the high-pressure ices no doubt have rela- 
tively high energy, the more so the higher their density. 
This arises from incorporation of bent hydrogen bonds 
(ices I11 and VI) or from repulsive close contacts between 
molecules not directly hydrogen bonded (ice VIII). Olinger 
and Halleck15 have estimated the lattice energy differences 
between ice Ih and ice VI11 extrapolated to 298 K and zero 
pressure to be 1.08 kcal/mol; this is unlikely to change 
much by cooling to 0 K. 

The clathrate frameworks manage to achieve low density 
by incorporating several types of face-sharing polyhedral 
cavities.“j These are geometrically possible while the 
network still maintains the natural tendency for each water 
molecule to engage in exactly four linear hydrogen bonds 
at approximately tetrahedral angles. The reduction in 
density below that of ice Ih evidently entails some loss of 
cohesive energy, due perhaps to attenuation of London 
dispersion attractions. Incorporation of guest molecules 
within these structures clearly makes up for the loss. 
Barrer and Edge17 have calculated that on average it takes 
approximately 0.35 kcal to rearrange 1 mol of ice Ih into 
the empty class I clathrate structure. In view of the ex- 
pected similarity of vibrational motions in ice Ih and this 
clathrate, this number can be taken roughly as the dif- 
ference in mean values of the corresponding groups of 
potential minima. The clathrate group presumably ex- 
hibits proton disorder of the Bernal-Fowler-Pauling type. 
Similar but somewhat larger rearrangement energies 
should be expected for the clathrate networks that have 
even lower density. 

“Mixed” structures are certainly possible. The most 
obvious case involves ices Ih and IC because of their nearly 
identical lattice spacings. Indeed if the former is created 
by adding successive layers one on the other along the 
hexagonal c axis, stacking faults of ice IC type can be in- 
terposed ad libitum without violating the geometric ne- 
cessities of fourfold tetrahedral bonding. If every layer 
were thus faulted this would simply create the IC structure; 
but more interesting is the case of coexisting macroscopic 
regions of hexagonal and of cubic type joined across a fully 
hydrogen-bonded seam, with a distribution of potential 
minima interpolating those of the pure phases. 

“Mixed” structures possessing side-by-side domains of 
other pairs of “pure” structures from Table I are also 
possible. But generally the latter will be incommensurate 
and so would necessitate many bent and broken hydrogen 
bonds at  domain walls. 

Amorphous ice deposits can be formed both by vapor- 
phase deposition on very cold s u r f a ~ e s ’ ~ J ~  and by high- 
pressure injection of liquid water into cryofluids.20 In 
comparison with ice Ih these substances surely have rel- 
atively high potential energy, and indeed can be induced 
to rearrange into crystalline ice by warming. Unfortunately 
no accurate measurements are available either for cohesive 
energy or for density of these materials. 

TABLE I: Densities of Water Molecule Networks 

temp,  density, 
structure K g/cm3 ref 

ice Ih 273 
C1, hydra te  21 7 

class I1 clathrate 253 

Br, hydra te  263 
(CH,),CNH, 243 

ice IC 143 
ice I11 83 
ice VI 98 
ice VIII 100 

(class I clathrate) 

(THF + H,S) 

hydra te  

0.9164 7, p 26 
0.7904 8, p 123 

0.7844 8, p 130 

0.7446 8, p 134 
0.7012 9 

0.934 1, P 9 1  
1.14 7, P 64 
1.31 7, P 68 
1.491 10  

the possibilities with a view to understanding their im- 
plications for the partition function representation derived 
in the previous section 11. To keep the analysis as simple 
as possible attention will be confined to zero-pressure 
structures, so we can suppose that the molecules at the 
minima will be clustered away from contact with container 
walls. 

Table I lists some of the known water molecule networks 
that exist in the ices and in the clathrate hydrate networks, 
giving for each the mass density. Of course these are a very 
special class of structures, but they serve to illustrate the 
important point that the range of achievable densities 
spans at  least a factor of 2. In the cited cases of high- 
pressure ice structures the materials typically were 
quenched to very low temperature to assure kinetic sta- 
bility before pressure was reduced. Strictly speaking the 
positive temperature results in Table I should be corrected 
for thermal expansion and referred to 0 K; however, such 
corrections are expected to be small and not to affect 
substantially the considerable spread in relative densities. 

Hexagonal ice is the most familiar entry in Table I. 
Because of the proton disorder present in this crystal”J2 
many inequivalent molecular arrangements are actually 
comprised in this entry, numbering roughly (3/2)N. No 
doubt there is some energy spread over this group of 
Bernal-Fowler-Pauling structures, but that spread is 
thought to be small. The average binding energy within 
this group of states is 11.3 kcal/mol for H20,13 from which 
it can be inferred (by subtraction of zero-point energy) that 
the mean value for the corresponding collection of potential 
minima is -13.36 kcal/mol.14 The zero-pressure structure 
giving the absolute minimum potential energy presumably 
is included in this collection, and can be expected to dis- 
play proton long-range order. 

In addition to the multiplicity of minima attributable 
to proton disorder in perfectly coordinated hexagonal ice, 
further minima can be expected at some cost in energy as 
point defects are inserted into the lattice. These include 
vacancies, interstitials, and Bjerrum orientational de fe~ t s .~  

Cubic ice (IC) has virtually the same density as hexagonal 
ice (Ih) at the low temperatures where both are kinetically 
stable. However, there is no reason to suspect that ice IC 
is thermodynamically more stable than ice Ih at any 
temperature, including 0 K. While its average is thus in 
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(11) L. Pauling, J. Am. Chem. Soc., 57, 2680 (1935). 
(12) S. W. Peterson and H. A. Levy, Acta Crystallogr., 10, 70 (1957). 
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(14) Reference 7, p 41. 
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num, New York, 1973. 

47, 1229 (1967). 

(15) B. Olinger and P. M. Halleck, J. Chem. Phys., 62, 94 (1975). 
(16) Reference 8, pp 128-46. 
(17) R. M. Barrer and A. V. J. Edge, Proc. R. SOC. London, Ser. A, 300, 

l(1967). 
(18) E. F. Burton and W. J. Oliver, Proc. R. Soc., London, Ser. A ,  153, 

166 (1935). 
(19) (a) T. C. Sivakumar, S. A. Rice, and M. G. Sceata, J. Chem. Phys., 

69, 3468 (1978). (b) M. S. Bergren, D. Schuh, M. G. Sceats, and S. A. 
Rice, ibid., 69, 3477 (1978). 

(20) P. Bruggeller and E. Mayer, Nature (London), 288, 569 (1980); 
298, 715 (1982). 
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TABLE 11: Quenches for 250-Molecule Water Cluster 

Stillinger and Weber 

case initial temp, K 
A 
B 
C 
D 
E 
F 
G 
H 
I 
J 

0 
248.5 
287.4 
300.0 
309 .3  
334.1 
356.0 
288.4 
255.4 
259.8 

(Vj.40, kcalimol 
initial final 

- 1 2 . 3 3 3  1 0 8  -12 .333  1 0 8  
- 1 0 . 4 4 0 0 3 8  -12.238 8 4 5  

-9.704 793  - 12.046 8 9 3  
-9 .283  039 -11 .865  829  
-8.850 360 - 11.624 627 
- 8.267 230 -11.384 275 
-7.873 4 8 1  -11.417 074 
-8 .982  122  -11 .543  295 
-9 .535  264 -11 .725  234 
-9 .561  646 - 11.636 086 

A precise definition of “hydrogen bond” between two 
water molecules is required to classify the wide range of 
possible inherent structures. We adhere to a definition 
for which potential energy is basic.21B22 The general 
many-molecule interaction shown earlier in eq 2.3 leads 
to the following quantity for the instantaneous interaction 
between two molecules j and k :  

This symmetrically divides each wi among the n(n - 1)/2 
participating pairs. Then the existence of a hydrogen bond 
between j and k is taken to mean simply that @(j ,k)  falls 
below some preassigned critical value VHB: 

@G,k)  I VHB: no bond 

4 ( j , k )  < VHB: hydrogen bond (3.2) 

Any sensible and useful definition would require the pa- 
rameter V, to be negative. In order that at least the ices 
Ih and IC and the clathrate frameworks listed in Table I 
be classified as four-coordinate at each molecule, we must 
have VHB fall roughly in the range22 

-4 kcal/mol 5 VH, I -2 kcal/mol (3.3) 

With this completely general criterion in hand, we can 
now proceed to study the number and spatial arrangement 
of hydrogen bonds in an arbitrary structure. 

IV. Simulation Results 
Using the molecular dynamics method of computer 

simulation, we have recently examined several thermo- 
dynamic states for an isolated cluster of 250 water mole- 
c u l e ~ . ~ ~  Interactions between the molecules were ap- 
proximated by the pairwise-additive ST2 effective inter- 
action,24 and classical equations of motion for the simu- 
lation were solved without invoking a cutoff on interac- 
tions. An external potential was present to prevent 
evaporation and escape of any molecule and to keep the 
cluster centered near the coordinate origin; however, its 
perturbing influence on the cluster per se was negligible. 

These cluster calculations provide a convenient basis for 
construction and analysis of inherent structures in water. 
Configurations were selected from the dynamical sequences 
a t  different cluster temperatures and then were numeri- 
cally “quenched” to local potential energy minima. This 
quenching was carried out in two stages for the sake of 

(21) F. H. Stillinger and A. Rahman, J.  Chem. Phys., 57, 1281 (1972). 
(22) A. Rahman and F. H. Stillinger, J.  Am. Chem. SOC., 95, 7943 

(23) T. A. Weber and F. H. Stillinger, J .  Phys. Chem., in press. 
(24) F. H. Stillinger and A. Rahman, J .  Chem. Phys., 60, 1545 (1974). 

(1973). 

NH( - 3.0  ) N ~ ( - 4 . 0 )  

4 4 3  
44 5 
4 50 
454 
449  
4 4 1  
437 
440 
460 
44 7 

442  
44 1 
447 
437 
432 
425 
414 
422 
435 
430 

439 
435 
430 
4 13 
416 
396 
385 
402 
395 
401 

computational efficiency. First, a strong damping was 
applied to the classical equations of motion to remove most 
of the kinetic energy, thereby causing the system to settle 
quickly and without annealing into a rough approximation 
to the final inherent structure. Second, a conjugate gra- 
dient procedure25 was invoked to adjust the molecular 
configuration to the precise position of the local minimum. 
Calculations were carried out on the Murray Hill CRAY-1, 
requiring about 7 h to complete to a given quench. 

Table I1 provides data on ten quenches. It lists initial 
(“fictive”) temperatures, and potential energies per particle 
both as averages in the starting state and as precise values 
in the corresponding quench minimum. It also gives values 
for N H ( V H B ) ,  the number of hydrogen bonds in the 
quenched state, using the definition of hydrogen bonding 
advocated in section I11 with three values for the cutoff 

VHB = -3.0, -3.5, -4.0 kcal/mol 

The ten cases A-J presented in Table I1 appear in the 
order in which they were generated during the molecular 
dynamics Case A is in fact already quenched; it 
is a mechanically stable arrangement of the 250 water 
molecules that differs in local structure from a macroscopic 
ice Ih crystal only because of some surface restructuring. 
Cases B and C resulted from successive heating stages; 
stereopictures reveal that they are also predominately 
ice-Ih-like, but with some surface “melting”. Case D (300 
K) falls at what we have identified as a bulk melting 
temperature for the ST2 water model, and the pre- 
quenched configuration consists of a thick liquidlike 
mantle surrounding a still-icy core. Case E is nearly but 
not quite fully melted, while cases F and G are unambig- 
uously liquid droplets. Subsequent cooling stages yielded 
the slightly supercooled (for ST2) liquid cluster H and the 
deeply supercooled clusters I and J. On the time scale 
available to molecular dynamics computer simulation there 
is virtually no chance that these last three states would 
spontaneously nucleate to re-form ice Ih. 

Surface effects on a free cluster of 250 molecules are 
obviously extremely important. Since our primary interest 
lies in extracting information about bulk water from the 
cluster calculations some strategy is necessary to neutralize 
these surface effects. We have elected to identify a set of 
“cluster-core molecules”, namely, those whose centroids 
lie within 9.0 8, of the coordinate origin (which was always 
nearly coincident with the centroid of the entire cluster). 
Because this subset had no exposed surface it seemed 
reasonable to suppose that its properties on average could 
approximate those of bulk samples. 

Table I11 indicates the number N ,  of cluster-core mol- 
ecules found for each of the ten configurations A-J, both 
before and after quenching to the potential minima. 

(25) R. Fletcher, “Practical Methods of Optimization”, Wiley, New 
York, 1980. 
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tween roughly 250 and 360 K they should provide quali- 
tatively useful guides. 

If the vibrational excitations removed by the quenching 
were strictly harmonic, then the familiar classical equi- 
partition principle would require 

(d/dT)(( V c / N c )  - ( N c / N c ) q )  = 33213 = 
0.005693 kcal/(mol K) (4.4) 

That the actual slope difference implied by eq 4.2 and 4.3 
is substantially larger 
(d/dT)(( V,/Nc)  - ( Vc/Nc)q)  = 0.013264 kcal/(mol K) 

(4.5) 
reveals strong anharmonicity. Restoring forces present in 
the liquid phase thus tend to be weaker than harmonic. 
Put another way, the potential energy hypersurface tends 
to flatten out substantially along many directions at those 
elevations above the minima which are probed thermally 
in the liquid state. In line with Rahman’s observations for 
molecular dynamics simulations of monoatomic liquids,26 
one should expect that unquenched configurations for 
liquid water would show dynamical motions characterized 
by many imaginary frequencies (negative curvature di- 
rections in V). 

Vibrational excitation energy is found to be greater than 
that for harmonic motion over the entire 250-360 K range. 
On account of the large slope difference noted above the 
discrepancy is diminished substantially toward the low 
temperature end. In part this may be due simply to di- 
minished vibrational amplitude. But the effect is so large 
that likely the inherent structures applicable at the lower 
temperatures are manifestly more harmonic (structurally 
tighter) than those generated by quenching from higher 
temperature. 

Comparison between cases C and H is suggestive in 
regards to the source of the latent heat of melting (ex- 
perimentally equal to 1.44 kcal/mol at 273.2 K). They 
both have nearly the same starting temperature which is 
only slightly below the apparent melting point for the ST2 
model. The former (C) has a cluster core that is sub- 
stantially unmelted, while the latter (H) is liquid 
throughout. The difference in potential energy per particle 
before quenching is 1.51 kcal/mol while after quenching 
it drops only slightly to 1.33 kcal/mol. If these numbers 
are typical, then about 88% of the latent heat must be 
ascribed to the upward shift in position of contributing 
minima along the potential energy scale, while the re- 
maining 1 2  % arises from increasing anharmonicity of 
vibrations in passing from crystalline to amorphous 
structures. 

This last result stands in significant contrast to melting 
of simple substances in two dimensions. In particular we 
can cite a dynamical and quenching study of the Gaussian 
core model in two dimensions3t4 which shows that only 
about one-quarter of the latent heat is attributable to 
upward shift in minima, three-quarters to increasing an- 
harmonicity. 

Figure 2 shows how cluster-core molecules in the 
quenches A, C, and H are distributed according to hy- 
drogen bond number nH. The cutoff VHB was set a t  -3.5 
kcal/mol for these histograms. Not surprisingly, all core 
molecules in the ice crystallite A engage in exactly four 
hydrogen bonds. Case C shows some deviation from this 
ideal even though its core is still obviously crystalline upon 
examination of stereophotographs. The 3-fold and 5-fold 
coordinations arise from the surface melting that has taken 

TABLE 111: Properties of the Cluster-Core Subsets 
initial quenched 

configuration configuration 
initial 
temp, Vc”, vc IN,, 

case K N ,  kcallmol N ,  kcal/mol 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 

0 
248.5 
287.4 
300.0 
309.3 
334 .1  
356.0 
288.4 
255.4 
259.8 

92  
94 
92  
88  
87 
73  
74 
96 
85  
82 

-14.324 0 7 8  
- 12.395 299 
- 1 1 . 3 0 1  3 8 3  
-10.006 739 

-9 .254  8781 
-8 .715  0564 

-9.795 7042 
- 8.758 1757 

- 10.336 6 4 1  
-10.116 076 

92  
9 5  
96  
9 3  
84 
89  
82  
98  

1 0 6  
90 

-14.324 078  
-14.157 279 
- 1 3 . 5 4 2 4 2 8  
-12.774 206 
-12 .291  1 8 3  
-12 .001  963  
- 1 2 . 2 3 2 6 2 8  
-12.214 847 
- 12.609 166 
-12 .303  017 

- E 1  1 

p -12 

-13 

F 
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I 

co 
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Figure 1. Cluster-core potential energy per particle before (open 
circles) and after (filled circles) quenching. 

Changes in these integers reflect the relaxation processes 
at  work during the quenching, but in any case N, remains 
around 90. 

The potential energy V, of the cluster-core molecules 
consists partly of pair interactions within this subset, and 
partly of pair interactions with the surrounding layer of 
cluster-surface molecules. The latter must be symmetri- 
cally split between core and surface subsets. Thus we set 

V ,  = C V@)(i,j) + ‘/E V(*)(i,j) (4.1) 

where the serial numbering first exhausts the core subset, 
and where N = 250 for the present simulation. Values of 
V J N ,  before and after quenching for the ten cases are 
provided both in Table I11 and in Figure 1. 
Our Vc/Nc information is very sparse and should not be 

overinterpreted. Nevertheless some interesting qualitative 
conclusions seem to be suggested. I t  is useful to examine 
linear least-squares fits to the values determined for the 
five liquid-state cases F, G, H, I, and J. Such a fit may 
be a reasonable estimate of the average of many such 
initial-configuration selections and their quenching end- 
points. Before quenching, the result is (in kcal/mol) 

( V,/N,) N 0.01663T - 14.5124 (4.2) 

( V,/N,), N 0.003366T - 13.2779 (4.3) 

These fitting functions must not be taken too seriously at 
very low temperature. In particular the former extrapo- 
lates at T = 0 to a potential energy below that of the 
perfect crystal, an obvious absurdity. Also the two linear 
curves cross a t  T = 93.1 K, which is impossible. But be- 

NC NC N 

i<j=1 i = l  j=N,+l 

while after quenching 

(26) A. Rahman, unpublished results. 



2838 The Journal of Physical Chemistry, Vol. 87, No. 15, 1983 Stillinger and Weber 

fined structures upon constant-p reheating. This second 
contribution would vanish if the thermal excitation were 
strictly harmonic, but of course it is not. The existence 
of a density maximum requires 

[av, /aTl ,  = - [aAvq/aTl ,  (5.2) 

The coefficient of thermal expansion of ice Ih at 260 K 
along the locus T,,(p) in the T,p plane. 

and ambient pressure is2* 

( a  In u0/aT), = 1.52 x deg-' (5.3) 

and it is increasing somewhat with temperature. We have 
noted above that ice Ih consists really of a large collection 
of alternative structures owing to proton disorder. The 
value in (5.3) is an average for those Bernal-Fowler- 
Pauling configurations. But since all of those canonical 
ice structures have the same hydrogen-bond network ge- 
ometry and nearly the same cohesive energy, none is likely 
to have its thermal expansion deviate significantly from 
the mean. Because the empty clathrate networks also 
display the same tetrahedral hydrogen bond coordination 
at every water molecule, the thermal expansivity of these 
other families of structures should also be roughly com- 
parable to the ice value shown in eq 5.3. 

Inherent structures that underlie the liquid state surely 
have imperfect hydrogen bonding and have less cohesive 
energy than ice. These softer and more anharmonic 
structures then ought to have thermal expansions that are 
positive and at least as large as that shown above for ice. 
At  T,, such expansion must be cancelled according to eq 
5.2 by a reduction in uq with increasing T, which the above 
reasoning indicates must have a magnitude 

[a In uq/3TIp 5 -1.5 X deg-' (5.4) 

a t  least in the low pressure regime. This reaffirms the 
conventional wisdom that bulky structures are important 
for water at low temperature, while more compact struc- 
tures predominate at higher temperature. Now, however, 
the term "structure" has been given a precise meaning, 
namely, the relevant set of quenches. 

Because T,, at 1 atm is so close to the melting point 
temperature T, it is reasonable to suppose that temper- 
ature derivatives of uq and Au, continue to have the same 
signs and magnitudes down to, and below, T,. Of course 
the exact balance shown in eq 5.2 is now upset: As T 
decreases below T,, the negative quantity (au,/aT), 
dominates the positive quantity (dAu,/dT), more and 
more. 

One of the fascinating attributes of the deeply super- 
cooled regime is that (auo/dr), as well as many other 
physical properties appear to be headed for infinite sin- 
gularities of algebraic character at a common temperature 
T, equal to 228 K.29 Symbolically, property X behaves 
thus 

X ( n  - Ax(T - Ts)-' (5 .5)  

where Ax is a constant and exponent y controls the rate 
of divergence. For (auo/aT), the exponent y is approxi- 
mately 0.98, while for isothermal compressibility and 
constant-pressure heat capacity it is approximately 0.35? 

In order to discuss supercooling anomalies adequately 
we need to return to the partition function representation 
shown earlier in eq 2.16, with one important modification. 
To confine attention to the supercooled state we must 
project out of consideration all inherent structures which 

C ( 2 8 7  4 K )  

" H  

Figure 2. Distributions of cluster-core molecules according to the 
numbers nH of hydrogen bonds in which they engage. VHe = -3.5 
kcal/mol. The cases shown are quenches from configurations A, C, 
and H (see Tables I 1  and 111); the first two are icelike, the last is 
amorphous. 

place; some core molecules reside next to displaced mantle 
molecules. Comparison of histograms for C and H show 
how melting implies profound changes in the hydrogen 
bond statistics of the corresponding inherent structures. 
Not only does melting cause a reduction in the mean 
number of hydrogen bonds, but the breadth of the dis- 
tribution increases. 

V. Water Anomalies 
The liquid-phase density maximum at T,,, = 4 "C is 

the most prominent and widely publicized of the water 
anomalies. It is the low-pressure manifestation of a more 
extensive anomaly: A locus of density-maximum tem- 
peratures T-(p) exists even a t  somewhat elevated pres- 
sure p,  though increasing p causes T,, to decline and 
eventually to di~appear.~'  It is natural now to consider 
how this phenomenon can arise in the present inherent 
structure context. 

At any fixed pressure the molar volume uo of water can 
be written as the sum of two contributions: 

Here uq stands for the mean molar volume of the quenched 
states that originated in the water a t  T,p (where it is un- 
derstood that quenching occurs a t  fixed p). Each one of 
these quenches, while confined to its characteristic region 
R(a), would manifest some volume change if reheated from 
absolute zero to the temperature of interest T Auq stands 
for the mean change in molar volume of these R(a)-con- 

~~ 

(27) Reference 1, p 185; ses also H. Kanno and C. A. Angell, J.  Chem. 
Phys., 73, 1940 (1980). 

(28) Reference 1, p 104. 
(29) R. J. Speedy and C. A. Angell, J.  Chem. Phys., 65, 854 (1976). 
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consist wholly or in substantial part of crystalline ar- 
rangements of molecules. This projection operation has 
the effect of modifying the density of states function for 
minima g(u) to another function g,(u) appropriate for the 
amorphous subset of structures. Obviously 

ga(U) 5 g(u) (5.6) 

Similarly we must replace the vibrational free energy 
function f(P,u) with f,(P,u) for the amorphous subset. 
Owing to greater softness and anharmonicity of the 
amorphous structures compared to their crystalline 
counterparts, it is a reasonable expectation that 

fa(P,u) 5 f(P,u) (5.7) 
I t  is important to consider for the moment what the 

postulated projection is required to do. It must exercise 
pattern recognition capacity to exclude inherent structures 
which contain crystalline regions larger in all dimensions 
than some preassigned diameter. Not only must regions 
of ice Ih character be excluded, but so too must any per- 
iodic array of oxygens such as that in ice IC and those in 
the empty clathrate frameworks. The latter become im- 
portant because estimates have been made30 indicating 
that they become thermodynamically more stable than 
supercooled water below about -25 "C. 

The maximal crystal fragment that is allowable before 
an inherent structure must be rejected is somewhat ar- 
bitrary, a feature which should not lightly be dimissed. On 
the one hand, the critical crystallite diameter cannot be 
allowed to be as large as 1 pm since this would admit 
structures that conventionally would be classified as 
polycrystalline. On the other hand, choosing the critical 
diameter as small as 5 A would be so restrictive that it 
would inhibit structural fluctuations that are a natural and 
frequent occurrence in liquid water even at  room tem- 
perature. Presumably there is a compromise choice, 
probably lying in the 10-30-A range, which excludes 
polycrystalline configurations while leading to predictions 
of liquid water properties into the moderately supercooled 
regime that are sensibly independent of that choice. 

Our use of the projection operation for theoretical study 
of the supercooled liquid parallels laboratory practice. In 
both instances it is mandatory to avoid occurrence of 
critical nuclei of the crystal within the liquid medium 
around which the solid phase would immediately grow. 

The amorphous-structure-projected version of eq 2.18 
is as follows: 

In QN(*) (P)  - 
The quantity u, of course is now determined by the cor- 
responding modification of eq 2.17: 

g,(u) - Pu - Pfa(P,u) = absolute maximum (5.9) 

A graphical analysis is useful. Figure 3 schematically shows 
g, and curves for -P(u + fa) at several representative tem- 
peratures. The quantity u, corresponds to positions at  
which the two curves for the given temperature have equal 
but opposite slopes. k temperature declines it is clear that 
u, must drift to more negative values representing more 
and more strongly hydrogen-bonded inherent structures. 

The minimum achievable potential energy per molecule 
for the amorphous subset has been denoted by uo in Figure 
3. In principle it depends on the critical crystallite diam- 
eter of the projection operation. This minimum will be 
attained in structures which take maximum advantage of 

N-ln (XH6XO3) + ga(um) - - Pfa(P,um) l  (5.8) 
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(30) R. J. Speedy, private communication. 

-B(u+f,)- 

LOW T 

Flgure 3. Schematic representation of the evaluation of free energy 
for the normal and supercooled liquids via eq 5.6. 

!i3 
Flgure 4. Face-sharing polyhedra that can be incorporated within 
extended random structures. Vertices represent positions of oxygen 
atoms, and edges symbolize hydrogen-bonded nearest neighbors. 

tetrahedral bonding opportunities at each water molecule, 
while not doing so in a way which incorporates large pe- 
riodic domains. 

I t  has been pointed out b e f ~ r e ~ l . ~ ~  that one way to  attain 
strong hydrogen bonding in random networks of water 
without crystallites is to utilize a random agglomeration 
of face-sharing polyhedra. Some of the many structural 

(31) F. H. Stillinger, Science, 209, 451 (1980). 
(32) F. H. Stillinger in "Water in Polymers", S. P. Rowland, Ed., 

American Chemical Society, Washington, DC, 1980, ACS Symp. Ser. No. 
127, pp 11-21. 
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possibilities are illustrated in Figure 4. Two features 
deserve attention. First, the number of distinct feasible 
polyhedra is quite large; they include but are not restricted 
to ice Ih and IC polyhedra. Second, they tend in an im- 
portant sense to be “autocatalytic”; the presence of one 
well-formed polyhedron in the matrix predisposes toward 
the existence of another because the molecules on any 
given face are already properly positioned to act as a 
template for completion of the partner sharing that face. 
Amorphous inherent structures will be forced to use this 
architectural ploy more and more frequently as the po- 
tential energy per particle declines. Upon close approach 
to the lower limit uo it seems inevitable that the number 
of face-sharing polyhedra would suddenly rise, forming in 
fact a macroscopically connected mass. Because the ma- 
jority of the available polydedra are so bulky, the mean 
molar volume uq of the quenched structures should rise in 
a singular manner, though possessing a well-defined lim- 
iting value. 

I t  is a straightforward matter to see how supercooling 
singuiarities at  T, might arise from eq 5.8, and being aware 
of such possibilities could be useful in guiding future 
studies. In particular suppose that near u0 the density of 
states g, has the following expansion: 
g,(u) = g,(uo) + a,(u - uo) - a& - u0)P + ... (5.10) 

where al and a2 are positive constants and exponent p 
exceeds 1. Furthermore suppose that when u is again close 
to uo and P = (kBT)-l is close to the singularity value 0, 

u + f a  = bo + b,(u - ~ 0 )  + ... (5.11) 
bo and bl are constants, the latter one positive. Criterion 
(5.9) can then be implemented to yield 
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(2) For liquid water near its normal melting point, the 
mean molar volume of the relevant subsets of inherent 
structures is less than that of the liquid itself, and is de- 
clining with increasing temperature. The density maxi- 
mum phenomenon represents a balance point between this 
shrinkage of the relevant inherent structures and the 
thermal expansion of all structures individually. 

(3) Roughly 85-90% of the latent heat of melting ice is 
attributable to potential energy increase for the inherent 
structures involved (crystalline below T,, amorphous 
above). The remainder is associated with increasing vi- 
brational anharmonicity as the inherent structures change 
character across the transition. 

(4) Supercooling anomalies are associated with incor- 
poration of edge and face sharing polyhedra that appear 
in the inherent structures with increasing probability as 
temperature declines. Since these geometric units tend 
to be bulky and to be “autocatalytic”, they cause the 
relevant inherent structures to decrease dramatically in 
density and in potential energy as the supercooling limit 
is approached. Furthermore, their appearance is dis- 
couraged by elevating the pressure. 

The “inherent structure” view of the various states of 
water seems to provide a significant conceptual unification. 
However, the story is far from complete. I t  is desirable 
to obtain more information about amorphous water 
structures both from direct experimental study and from 
more extensive computer simulations with configurational 
quenchings. In particular more simulation data of the type 
shown in Figure 1 would be extremely useful, starting with 
well-equilibrated samples of strongly supercooled water. 
I t  would also be valuable to see how elevated pressure 
shifts the hydrogen-bonding character of the quenches. 

Although attention here has been focussed on pure 
water, aqueous solutions deserve study as well. It has been 
suggested31 that nonpolar (hydrophobic) solutes become 
encapsulated in convex cages similar to those spontane- 
ously formed in cold pure water, and specifically that they 
are driven together by the tendency of those cages to share 
edges and faces (hence explaining hydrophobic attraction). 
If this suggestion has merit, quenches of the solutions 
should show the solvation cages in vivid form. At the other 
extreme, dissolved ions would doubtless produce very 
different local order in the corresponding electrolytic so- 
lution quenches. 

Another fascinating aspect of water chemistry concerns 
dissociation to produce solvated H+ and OH- ions. This 
phenomenon has been specifically excluded in the present 
study for simplicity, in spite of its obvious importance. 
Since models for water have begun to emerge in which 
dissociation is p ~ s s i b l e ~ * ~ ~  we conclude that the inherent 
structure theory should be reexamined in that context. It 
would be illuminating to see how quenching reduces the 
extent of dissociation, i.e., causes spontaneous recombi- 
nation to occur along hydrogen bond pathways. 
Registry No. Water, 7732-18-5. 

To be consistent with the previously cited divergence in 
the constant-pressure heat capacity the exponent in the 
second of these equations would have to be approximately 
1-0.35 = 0.65, which in turn demands that 

p = 2.54 (5.13) 
At  the present level of precision this is surely indistin- 
guishable from 5/2. 

Future effort devoted to the statistical geometry of 
random networks should help to evaluate the validity of 
assumptions (5.10) and (5.11). 

VI. Summary and Conclusions 
The principle concepts presented above may be sum- 

marised as follows. 
(1) In considering the static properties of water by means 

of the canonical partition function, there exists a natural 
and unique separation of the effects of molecular packing 
geometry on the one hand, from the effects of “vibrational” 
excitation on the other hand. The former comprise all 
mechanically stable arrangements of molecules (i.e., rela- 
tive potential minima), and constitute inherent structures 
different subsets of which are relevant a t  different tem- 
peratures. 

(33) F. H. Stillinger and C. W. David, J. Chem. Phys., 69,1473 (1978). 
(34) T. A. Weber and F. H. Stillinger, J. Phys. Chem., 88,1314 (1982). 
(35) T. A. Weber and F. H. Stillinger, Chem. Phys. Lett., 89, 154 

(1982). 


