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The “inherent structures” which underlie the liquid state are those stable particle packings (poten-
tial minima) which can be reached by a steepest-descent quench on the potential-energy hypersur-
face. This paper explores the dynamics of transition between distinct inherent structures for a sim-
ple classical model of monatomic substances. Molecular-dynamics calculations with 32 and 108
particles have been carried out with running construction of the mapping to potential minima. This
determines the distribution of stable packings according to their potential energy and shows how
transition rates between alternative structures vary with total system energy. Melting and freezing
events have been monitored in this manner. We observe occasional transitions in localized “two-

state” (bistable) systems in strongly supercooled amorphous states.

Transitions in fluid states

display a peculiar intermittency that may have relevance to self-diffusion and viscous flow.

I. INTRODUCTION

Two recent papers have advanced a novel approach to
understanding the liquid state and the melting process
that produces it."?> The basic idea involved was to
separate the statistical problem into two parts, namely, the
identification and characterization of the mechanically
stable packings of the molecules, followed by an account-
ing for vibrational motion (generally anharmonic) about
those mechanically stable points. That prior work was
concerned principally with static equilibrium properties.
This paper extends the study into the dynamic regime by
examining the transition kinetics between “inherent struc-
tures” (i.e., the packings). For this purpose we have car-
ried out some molecular-dynamics calculations on an ele-
mentary model for monatomic substances.

Consider an N-particle system in D dimensions subject
to periodic boundary conditions, and let ®(T) be the po-
tential energy when the configuration of the N particles is
specified by the DN-dimensional vector r. We will sup-
pose that @ is differentiable. The inherent structures for
this many-body system are given by solutions to

Vo(r)=0; (1.1)

these form the set of stable packings within which the
force on every particle vanishes. The packings will differ
in their potential energy, with the expectation that the
lowest packing energy involves maximal crystallinity.

With the exception of a few configurations with vanish-
ing measure, every configuration r can be assigned
uniquely to its own inherent structure, a ® minimum.
The procedure for making this assignment is to move
from 1 along the steepest-descent direction on the @ hy-
perface until inevitably the relevant minimum is encoun-
tered. Steepest-descent paths are solutions to the differen-
tial equation

=V . (1.2)

By this means the full configuration space of vectors ¥ is
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divided exhaustively into connected regions ,,
a=1,...,Q, one surrounding each of the { configura-
tions at which ® is a local minimum.

The Newtonian equations of motion (in suitable units
for which particle masses are unity) can be written as fol-
lows:

F=—-V&(),

to be solved with appropriate initial conditions. As the
system vector ¥(f) moves about in the configuration space
it will, under most circumstances of interest, move across
a sequence of distinguishable regions #,. The primary
concern at present is in the function a(¢) which monitors
transitions between the quench regions. It is clear that in-
itial conditions for Eq. (1.3) determine whether the func-
tion a(t) samples a large number of regions or is trapped
forever in just a few.

One expects®® that the number Q of local ® minima for
large N to be approximately

(1.3)

Q~Nlexp(vN), (1.4)

where v is some positive number. The first factor ac-
counts for particle permutations that yield minima of
identical energy. The second factor estimates the number
of essentially distinct ways of arranging the particles in
stable packings. Results reported below permit a rough
estimate to be made for v for the one specific model sys-
tem examined.

Section II presents the model, and provides some details
about the molecular dynamics simulation technique with
which it has been explored. Systems of two sizes have
been employed. Section III discusses results for N =32, a
system small enough that all ® minima apparently can be
enumerated, yet large enough that the crystal-fluid transi-
tion is clearly manifested. Section IV presents results for
a larger system of N =108 particles. For both of these
system sizes the temperature dependence of transition
rates has been examined. Section V summarizes con-
clusions and discusses directions for future work.
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II. DYNAMICAL MODEL
The Lennard-Jones (LJ) 12-6 pair potential:
VLJ(r)=ev(r/a) 5

v(x)=4(x"12_x—%),

2.1

has frequently been used to represent interactions in
noble-gas systems, such as argon.*~® The function v has
the following properties:

v(l1)=0,
v(2V8)=—1,
v:(21/6)=0 .

2.2)

From the standpoint of the computer simulation of
many-body phenomena, obvious advantage occurs when
interactions have strictly limited range. Since this is not
the case with Vij, often this function has been used only
to represent interactions below some preassigned cutoff
distance R., with all interactions of greater range simply
ignored.*® The same advantage, however, can be achieved
in another way, namely, by considering the following con-
tinuous family of functions:

A(x P _x"Pexp[(x —a)" '], O<x<a

v, (x)= 0. x>a

(2.3)

This form automatically satisfies the first of Egs. (2.2).
By insisting that the other two Eqgs. (2.2) are also satisfied,
the constants 4 and a can be uniquely determined for each
p. Connection to the Lennard-Jones potential is obvious:

lim v,(x)=v(x) . (2.4)
p—6—
Table I presents values calculated for 4 and a with several
selected powers p. In addition to the finite-range advan-
tage that obtains when p <6, the exponential factor in v,
causes derivatives of all orders to go continuously to zero
as r—a, which tends to improve stability of numerical in-
tegration for equations of motion.

Our molecular dynamics study has used v, with p =0
(instead of v with a cutoff), and a cubic unit cell with
periodic boundary conditions. Under these circumstances
a perfect face-centered cubic array of particles can be
created within the system provided that the number of

particles has the form
N=4n3. (2.5)

TABLE 1. Parameters for the reduced pair potential v, de-
fined in Eq. (2.3).

p A a v, (2! )
0 8.805977 1.652 194 67.426
1 8.646 355 1.706 488 64.727
2 8.421246 1.779751 62.381
3 8.096 886 1.886 613 60.399
4 7.604 504 2.064922 58.805
5 6.767 441 2.464918 57.655
6 4.000 000 © 57.146
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We have examined the two cases n =2 and 3 (N =32 and
108).

Classical equations of motion have been integrated by a
standard fifth-order Gear algorithm,’ using reduced units
in which €, o, and particle mass m all are unity. In those
units the step length employed for integration was

Ar =0.00125 . (2.6)

Dynamical runs typically lasted 10*A¢; when converted to
real time by using €, o, and m for Ar this interval corre-
sponds to 27 ps.

For all calculations reported below the reduced density
was held fixed at

p=1.0. 2.7

This is the density at which nearest neighbors in the per-
fect fcc structure have separation 2'/%, and it is extremely
close to the density for which the v, lattice sum over that
structure is at a minimum.

At closely spaced times during execution of the molecu-
lar dynamics program the system configuration r(¢) at
that instant is subjected to a quenching operation that lo-
cates the relevant minimum a(z). The potential energy of
that minimum is then recorded. A conjugate-gradient
method® has been used for this minimum-location task.
By far the larger portion of the required computing time
is devoted to this quenching, and it is this fact which thus
far has prevented us from investigating substantially
larger systems.

Calculations on both system sizes were initiated with
particles placed in the regular fcc arrangement, with very
small initial velocities. Temperatures were determined as
usual from average kinetic energy, and total system energy
was varied by homogeneous velocity scaling. Properties of
any given state were observed only after elapse of an ade-
quate period of equilibration.

III. 32-PARTICLE SYSTEM

The potential energy per particle

¢:N—‘l 2 vo(rjk)

j<k

(3.1)

fluctuates during the temporal evolution of the constant-
energy dynamics. Average values determined for this
quantity have been plotted against reduced temperature T°
in Fig. 1 for the 32-particle system. The results fall along
two clearly distinguishable branches which, in spite of the
small number of particles involved, can be identified as
solid- and liquid-phase branches. Transitions between
these branches have been observed as sudden events during
both heating and cooling stages. Although overlap of the
two branches has been shown in the figure to indicate the
possibility of superheating and undercooling, we find that
transitions between the branches occur in both directions
most frequently when T =2.0%£0.2. We shall informally
designate this as the “melting point” for the small system.

While the system is at low temperature and exhibits
{¢) values lying on the solid branch in Fig. 1, the
steepest-descent quench operation invariably maps the sys-
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FIG. 1. Mean potential energy per particle vs temperature for
the 32-particle system.

tem onto the regular crystalline fcc packing, for which the
potential energy per particle is

$=—6.00000232 . (3.2)

On account of the finite range of the potential, this same
absolute minimum value applies even to the infinite sys-
tem limit at p=1. However, the quench mapping, upon
entering the liquid state, produces a different and more in-
teresting pattern. Figure 2 shows the quench values for ¢
computed every ten time steps during a liquid-phase run
at T'=2.337. Frequent transitions appear between many
distinct inherent structures, all of which lie in potential-
energy well above the absolute minimum, Eq. (3.2). The
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figure displays frequent returns to a previously visited ¢
value. It also shows apparent gaps in the distribution of
quench potential, most notably between —5.371 and
—6.000.

Rates of structural transitions are markedly increased
by raising the temperature, as comparison of Figs. 2 and 3
clearly shows. The latter presents quench-¢ values for a
similar molecular dynamics run of 10* steps, but for a
very hot fluid at 7 =6.440. The transition rate is now so
fast that serious doubt can be raised whether quenching
every ten time steps is frequent enough to convey the true
complexity of the mapping under study. Note the fact
that the crystalline packings at — 6.000 were occasionally
sampled during this run, revealed by a few crosses at this
level. But obviously the available configuration space at
this high total energy is dominated by regions belonging
to amorphous packings.

The highest value ever observed in the 32-particle sys-
tem for a quench ¢ is

¢=—4.86104977 , (3.3)

‘which corresponds to a “worst” packing geometry at the
given density. We cannot absolutely exclude the possibili-
ty that an even higher quench-¢ value might be
discovered, but it seems unlikely in view of the extensive
nature of our search.

A computer-constructed catalog of the distinct
quench-¢ values was created and updated as the various
32-particle runs were carried out. In this manner 157 dis-
tinct packings were discovered with ¢ values in the range
indicated by Egs. (3.2) and (3.3). If this listing is close to
complete and if the Q formula (1.4) approximately de-
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FIG. 2. Quench potential energy per particle during the
dynamics of a 32-particle liquid at 7 =2.337. Individual crosses
appear at each ten-step interval.

-6.5

1

2500

5000
step number

7500

10000

FIG. 3. Quench-¢ values for a 32-particle fluid at 7" =6.440,
evaluated every ten time steps.
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scribes the 32-particle system, then we can estimate the
parameter v:

v=(In157)/32~0.16 . (3.4)

Figure 4 displays a “melting event” as viewed from the
perspective of the quench-¢ plot. The system had been in
one of the crystalline regions at the beginning of the 10*
step run, and remained there for the first 1210 steps. At
this point it discovered an exit channel from this crystal-
line region to the manifold of amorphous states within
which it subsequently remained. The average temperature
for the run was 2.070, close to our estimate of the melting
point for this small system. We also note in passing that
the inverse case, a “freezing event,” has also been observed
in this temperature range, whereby the system dropped
from the amorphous manifold into one of the crystalline
minima.

The system can easily be trapped in the amorphous
manifold by rapidly cooling the equilibrium fluid through
the melting temperature. Figure 5 shows the result of
such treatment, producing an amorphous state at
T =0.773. Quite obviously the transition rate between re-
gions of distinct quench ¢ has declined markedly.

Figure 6 presents the numbers of transitions counted
during the course of several 10*step runs for the 32-
particle system, plotted against temperature. The states
with T > 2.0 are stable fluid states, the others with T < 2.0
are all supercooled amorphous states. Although consider-
able scatter is present the overall trend is clear. By fitting
these numbers to a simple rate expression of the form

KT 2exp(—A®/T) , (3.5)
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FIG. 4. Melting event for the 32-particle system. Quenches
were carried out every ten time steps. Average temperature for
this run is T =2.070.

2411
—4.5 T T T
5+ B
—
- — p—
- —
——— —— ——
S -55 -
6t N
6.5 ) I )
0] 2500 5000 7500 10000

step number

FIG. 5. Amorphous state of the 32-particle system obtained
by supercooling to T'=0.773. Quenches have been constructed
every ten time steps.

we infer that the effective mean barrier that must be sur-
mounted is

AP=2.16. (3.6

IV. 108-PARTICLE SYSTEM

The number of distinct ¢ values that could be encoun-
tered during quenching of this larger system can be es-
timated from the value of v shown in Eq. (3.4) above:

250

200
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100

TRANSITIONS

50

FIG. 6. Numbers of transitions between distinct quench-¢
values detected during 10*step runs for the 32-particle system.
Quenches were carried out every ten time steps for all cases
shown. Smooth curve shows results from a nonlinear least-
squares fit.
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exp(vN)~exp(0.16< 108)

~3.2x107. 4.1)

It is out of the question to create a catalog of such a large
number of geometrically distinguishable packings.
Nevertheless, selected statistical features of this family of
inherent structures is accessible to computation.

Not only does the number  of potential minima rise
with N, but so too should the rate of transition between
the quench regions %, surrounding each of those minima.
In the large system limit it is sensible to expect that the
mean transition rate will be an extensive quantity, i.e., it
will be proportional to N. The reason for this expectation
is that thermally driven particle rearrangement processes
in a large system can occur independently at widely
separated locations. By doubling the size of a system (at
fixed temperature and density) the number of local rear-
rangement processes per unit time likewise should double,
thereby halving the mean residence time for the system
within any given #,,.

Figure 7 shows the quench-¢ values for a 10*step run
with the 108 particles at T'=6.46. This can be compared
with the earlier Fig. 3 for the 32 particles at 7 =6.44. In
both of these cases the energy is so high (the temperature
exceeds three times the melting temperature) that the con-
figuration space is widely sampled during the run, with re-
sults shown giving an accurate image of the density distri-
bution of minima along the ¢ axis. The obvious gap in
the distribution for 32 particles have now filled in or
smoothed out to a large extent. The distribution appears
to have its maximum near ¢= —5.35, while exhibiting
strong skewing toward the low-¢ side of this maximum.

Figure 8 shows the 108-particle system at the much

-4.5 T T T

R
“1‘33'3'}“%’&&:“‘1 ee,z* ’"“"‘” Jze 3???

Ve e

-6.5 L ' :
0 2500 5000 7500

step number

FIG. 7. Quench-¢ values for the 108-particle system at
T =6.46, computed every ten time steps.
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FIG. 8. Quench-¢ values for the 108-particle system at
T =2.11, computed every ten time steps.

lower temperature 2.11; this is still within the stable liquid
range. Although transitions are less frequent than at the
higher temperature the same qualitative view emerges of
the distribution of minima with respect to ¢.

The run depicted in Fig. 8 recorded 780 transitions be-
tween distinct quench-¢ values. The corresponding transi-
tion number interpolated from Fig. 6 for the 32-particle
system at the same T =2.11 is about 165 per 10* molecu-
lar dynamics steps. Thus the expected increase in transi-
tion rate with increasing N is qualitatively achieved, but
strict proportionality with N evidently does not apply
when N is as small as 32.

N=108
P=1.0

FLUID —

QUENCHED FLUID

QUENCHED CRYSTAL

s 1 . L .
o] t 2 3

T
FIG. 9. Mean potential energy for the 108-particle system be-
fore quenching (solid lines) and after quenching (dotted lines).
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Figure 9 presents (solid lines) thermal average values of
¢ determined during the course of the 108-particle molec-
ular dynamics plotted versus 7. The two branches exhibit
only minor quantitative differences from those shown in
Fig. 1 for the 32-particle system. As N has increased
from 32 to 108 the melting temperature appears to have
declined from 2.0 to about 1.85.

Figure 9 also presents (dotted lines) the mean values of
the ¢ minima encountered as thermodynamic states of the
given temperature are subjected to the running quench
maps. These are simply time averages accumulated dur-
ing the dynamical runs generated. While the system is
crystalline it invariably quenches to the absolute minimum
¢. Fluid phases typically produce amorphous quenches
whose mean ¢ is about —5.37 near the melting range and
is nearly independent of the starting temperature; this
means quench ¢ rises only to —5.36 for T'=6.46. Note
should be taken of the fact that at T =1.85 the jump of
A¢=0.63 between the dotted quench curves only accounts
for about 69% of the corresponding jump A¢$=0.91 be-
tween the solid prequench curves. The remainder must be
attributed to the changing extent of anharmonicity that is
brought about by the melting process.

Just as was the case with the smaller system, the 108-
particle system can be supercooled into a rigid amorphous
state. Figure 10 shows both the oscillatory prequench po-
tential energy, and the corresponding quench-¢ values for
a 10*step run at 7 =0.213. Three distinct potential mini-
ma arise

-4.5 T T T

7500

-6.5 L

0 2500 10000

I
5000
step number
FIG. 10. Potential energy per particle vs time for the 108-
particle system in a supercooled amorphous state at 7 =0.213.
Upper curve, potential per particle during the Newtonian
dynamical motion. Lower curve, quench-¢ values computed

every ten time steps.
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A: ¢=—5.624055,
B: ¢=—5.622351,
C: ¢=—5.619199 .

(4.2)

They occur in the sequence 4,B,4,B,A4,C (five transitions),
but are barely distinguishable in Fig. 10. Figure 11 pro-
vides a vertically expanded view of the quench-¢ values
which make those transitions clearer. The alternation be-
tween 4 and B at the beginning of the dynamical sequence
is suggestive of the presence of at least one localized
“two-level” system in the medium (a bistable, low-barrier
degree of freedom). Such two-level systems, when suitably
quantized, are thought to play an important role in many
low-temperature properties of amorphous materials.®!°
We have also observed two-level transitions with different
spacings in other low-temperature amorphous states.

Sequences of quench-¢ values produced during molecu-
lar dynamics runs are entirely insensitive to the possible
presence of particle permutations. It is conceivable, for
instance, that interspersed between the five transitions
shown in Fig. 11 are others which merely interchange par-
ticles, say by concerted motion along a closed loop. In or-
der to detect the presence of such transitions it suffices to
monitor an unsymmetric function of the particle positions
at the potential minima. We have employed the following
function:

i—1

Q0= i S ([5G =D =2)+j1ry}

i=2j=1

(4.3)

where the r; are the particle pair distances in the
quenched configuration of interest, always using the
minimum-image convention. By this means we have
found that direct permutational transitions between

-5.60 T T T

~5.65 L L L
0 2500 5000 7500

step number

FIG. 11. Quench-¢ values from Fig. 10 exhibited on a verti-
cally expanded scale.

10000
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equivalent potential minima do not occur in strongly su-
percooled amorphous states. While they have occasionally
been detected in the equilibrium fluid near its freezing
point, they appear always to constitute a small percentage
of transitions.

When transition kinetics is examined closely in the fluid
state, a pattern of intermittency often appears. This
feature is most clearly evident when the fluid is super-
cooled to a moderate extent so that the kinetic processes
are conveniently slowed down, but not so strongly super-
cooled that diffusion ceases. Figure 12 shows the
quench-¢ values for a short span of 250 time steps for a
supercooled state at 7'=1.414, where now the quenching
has been carried out at every time step. Figure 13 provides
the corresponding smooth and continuous dynamical po-
tential energy. At the beginning of the interval shown in
Fig. 12, at a short interval around step 200, and at the end
of the sequence, there appear chaotic bursts of changing
quench-¢ values that often switch at every time step. In
between these bursts of activity occur relatively quiescent
periods, with rather long stretches of residence in the same
quench region. Evidently the Newtonian dynamics carries
the system through regions which contain closely in-
tertwined ‘“‘drainage ditches” that descend respectively to-
ward many different potential minima. These peculiar re-
gions have no obvious effect on the dynamical potential
energy (cf. Fig. 13). The differential geometry of these
chaos-producing multiple-drainage neighborhoods may
entail extrema of the monkey-saddle type, i.e., many nega-
tive curvature directions. If passage through these regions
is important to relaxation and diffusion processes in the
fluid, then entropy of activation would necessarily be
large. We note in this connection that rate processes in
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FIG. 12. Quench-¢ values computed at every time step for
the 108-particle system in a supercooled fluid state at T =1.414,
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FIG. 13. Potential energy per particle vs time during the
Newtonian dynamics for which Fig. 12 gives the corresponding
quench-¢ values.

glass-forming liquids can often be fitted to an equation of
the Fulcher or VTF form,!! and that this non-Arrhenius
form implies diverging entropy of activation as tempera-
ture declines.

Let @ and B denote a pair of inherent structures that ap-
pear one after the other during the quench mapping of the
Newtonian dynamics. Furthermore let T{*) and 7%’ be
the coordinates of particle / in the corresponding struc-
tures. The geometrical change in the particle packing in-
volved in the transition from a to 8 can be described in
terms of displacement vectors U; for each particle:

—'.=?$ﬁ)_~(a) = 4.4)
Here § is a translation vector that brings the centroids of
the two sets of structures into coincidence, and which thus
has the property that it minimizes the sum of squares of
displacements

N 2

> d;=min . (4.5)

i=1
These sets of displacements have been computed for tran-
sitions occurring during a few short molecular dynamics
runs with the 108-particle system.

It is useful to compare the sets of displacements with a

Gaussian distribution, for which characteristic moment
ratios can be evaluated easily, such as

d*H)/(i2=3

(Gaussian distribution). When the same ratio is evaluated
for the transition displacements in the 108-particle system
the results usually exceed %, and typically lie in the range

(4.6)
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1.8 to 3.0. Occasionally much larger values arise. This
tendency toward large magnitudes of the moment ratio is
characteristic of displacements localized on a small subset
of particles, i.e., the rearrangement mainly effects only a
small group of particles within an essentially rigid host
matrix.

Figure 14 illustrates an extreme example of transition
localization, occurring during the dynamics of an amor-
phous state at temperature 7°=0.881. As Fig. 14 indi-
cates, the transition involved a momentary oscillation be-
tween the two quench-¢ values —5.7295 and —5.7043,
formally producing three transitions in all. Each of these
switches in inherent structure gives rise to

(#?)=0.013988 ,
(¥ *)=0.010632 ,
(U4 /(i?)?=54.34 .

4.7)

These are the values to be expected if two particles each
move the same distance ~0.87, all others remaining fixed,
as in rotation or translation of a nearest-neighbor pair.
Examination of the relative distance of the pair of parti-
cles which have the greatest displacements for the transi-
tions shown reveals that this interpretation is correct.

From the limited studies carried out thus far it has been
our impression that the lower the temperature the more
localized the particle rearrangements between successively
visited inherent structures tend to be. However, further
work is needed on this aspect of the problem before firm
conclusions can be formulated.

V. DISCUSSION

The principal conclusions to emerge from this study are
the following:

(1) Our model argonlike system exhibits a diverse set of
inherent structures which include the crystalline arrange-
ment, but the vast majority of which are amorphous pack-
ings.

(2) Transitions between distinct regions corresponding
to different inherent structures occur rapidly in the stable
liquid phase.

(3) Transition rates rise with temperature, and are prob-
ably extensive properties (i.e., proportional to N) in the
large system limit.

(4) Permutational transitions are rare.

(5) Localized two-level transitions for bistable, low-
barrier degrees of freedom appear prominently in amor-
phous states at temperatures sufficiently low that self dif-
fusion ceases.

(6) Patterns of intermittency in the quench-¢ plots
occur particularly with low-temperature fluids, suggesting
connection to non-Arrhenius behavior of rate processes in-

2415
—4.5 T
,5 b -
S -55 B
—6 4
-8.5 L
0 125 250

step number

FIG. 14. Quench-¢ values computed every time step for the
108-particle system in an amorphous state at T =0.881.

volving matter transport (self-diffusion, viscosity).

Obviously the dynamics of transition between inherent
structures is a complex subject even for “simple” mona-
tomic substances. Many questions remain, such as the
precise effects of system size and shape, the influence of
variations in the pair potential, and the role of variable
density. In regards to the transitions themselves it will be
important to locate saddle-point configurations between
neighboring quench regions, to compute their height dis-
tributions, and to identify the types of “reaction coordi-
nates” which specify the direction of principal negative
curvature for each.

The general approach advocated above suggests an ex-
citing opportunity, namely application to covalent and to
network-forming liquids, which possess nonadditive and
highly directional interactions. The tetrahedral semicon-
ductors silicon and germanium offer important examples,
where coordination number 4 in the crystals appears to in-
crease only modestly upon melting.!? No doubt the amor-
phous structures these substances form display a great
geometric diversity. QOur technique offers a means for
generating those structures, examining their distribution
in potential energy, and securing an understanding of their
interconversions.
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