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lection of an alternative starting configuration, say an ice 
crystallite with an impurity molecule or a buried vacancy. 
With this condition melting might begin at  the defect as 
well as a t  the free surface. 

The fact that the crystallite does not melt a t  a sharply 
defined temperature is due in part to the small system size, 
and in part to the rapid rate of temperature rise. With 
respect to the position of the identified melting temper- 
ature (300 K, the inflection point in Figure 3), the first of 
these features tends strongly to mitigate the second. Since 
calculations of the hexagonal ice binding energy indicate 
that the ST2 interaction is roughly 10% too strong,14 it 
is consistent that the observed ST2 "melting point" is 
about 10% too high. 

By reducing the parameter ro in the wall potential U,  
eq 2.1, it should be possible to study the melting of ice 

under pressure. It will eventually be instructive to see if 
the ST2 potential (as well as others that have been used 
in water simulations) can produce the phenomenon of 
lowered melting points at elevated pressure observed for 
real ice Ih. 

We have not attempted to refreeze the melted clusters, 
since spontaneous nucleation of ice from the liquid is ex- 
pected to have negligible probability under the conditions 
used in our calculations. Stepwise cooling of the 356 K 
liquid droplet is expected only to trace out the upper 
straight line in Figure 3, for instance, and to produce su- 
percooled liquid water as represented by the square in 
Figure 3. However, the attractive option exists to cool one 
of the partially melted states, the icy core of which might 
act as a nucleus on which the melted mantle could epi- 
taxially grow. 

(14) M. D. Morse and S. A. Rice, J .  Chem. Phys., 76, 650 (1982). Registry No. Water, 7732-18-5, 
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We have examined at a rudimentary level the quantum-mechanical many-body problem for coupled proton 
motions along hydrogen bonds in compressed ices. Four cases are considered: ice IC, ices VI1 and VIII, and 
the hypothetical planar "square ice". Soft mode calculations were carried out for each to help identify patterns 
of long-range proton order that contribute to the ground state. With a two-level description of each hydrogen 
bond, and the Hartree approximation, a phase transition in the ground state is predicted to occur when the 
oxygen neighbor spacing has been reduced sufficiently. This transition can be viewed as an "ionization 
catastrophe", and in fact such is expected to occur at all temperatures in the phase diagram of water at which 
ices VI1 and VI11 experimentally are encountered. 

1. Introduction 
An interesting structural correlation has been known for 

many years concerning hydrogen bonds connecting oxygen 
atoms in crystals a t  ordinary pressures.'V2 Specifically this 
correlation shows that covalent 0-H bond lengths stretch 
as roo, the distance between hydrogen-bonded oxygens, 
decreases. In particular the data indicate that when the 
participating oxygens are as close, or closer, than about 
2.4 A the hydrogen should be found at  the midpoint 
position. Indeed such symmetrical hydrogen bonds are 
observed in crystals a t  1 atm, though only in ionic group- 
ings (solvated H+ or OH-). 

These observations suggest that if pressure were applied 
to substances containing hydrogen-bonded oxygens so as 
to vary the relevant oxygen separation, the same correla- 
tion should obtain. In particular if the substance were ice, 
then application of pressure sufficient to reduce the 
neighbor distance to about 2.4 A ought to have the effect 
of converting the asymmetric hydrogen bonds to symme- 
tric form. The pressures required for this transformation 
are expected to be sufficiently high that it is the ice VI1 
and ice VI11 regions of the H20 phase diagram that would 

(1) G. C. Pimentel and A. L. McClellan, "The Hydrogen Bond", 
Freeman, San Francisco, 1960, p 259. 

(2) J.-0. Lundgren and I. Olovsson, "The Hydrated Proton in Solids", 
in "The Hydrogen Bond. 11. Structure and Spectroscopy", P. Schuster, 
G. Zundel, and C. Sandorfy, Ed.; North Holland, New York, 1976, p 497. 

require exploration. Walrafen et al. have in fact recently 
examined ice VI1 to about 30 GPa (where roo N 2.5 A) and 
have observed a remarkable drop in the frequency of 0-H 
stretching  vibration^,^ which likely is symptomatic of 
substantial increase in the equilibrium 0-H bond length 
toward a midpoint position. 

The possibility of a pressure-induced transition in ice 
to a new form with symmetrical hydrogen bonds has been 
theoretically considered before. Holzapfel" has examined 
the linear motion of a single proton between two neigh- 
boring oxygens, where that proton was subject to the 
presence of a pair of equivalent Morse potentials. He finds 
that the critical bond length 

roo = 2.41 A (1.1) 
separates the two regimes of proton potential characterized 
respectively by a single minimum at  the bond midpoint, 
and by a pair of equivalent minima displaced from the 
midpoint. 

By treating the proton classically in Holzapfel's one- 
particle model (i.e., searching for the potential minimum 
at each roo), it is straightforward to show that the crystal 
energy will exhibit a singularity in roo (or pressure) at the 
critical lattice spacing (1.1). By itself this might seem to 

(3) G .  E. Walrafen, M. Abebe, F. A. Mauer, S. Block, G. J. Piermarini, 

(4) W. B. Holzapfel, J. Chem. SOC., 56, 712 (1972). 
and R. Munro, J. Chem. Phys., 77, 2166 (1982). 
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indicate existence of a symmetry-changing phase transition 
to a new form of ice. But the fact remains that protons 
are quantum mechanical, and the eigenfunctions and ei- 
genvalues for one-dimensional motion along the bond will 
be nonsingular functions of roo even at the critical spacing 
(1.1). 

It seems clear that the problem of proton motions in ice 
under pressure requires a detailed quantum-mechanical 
study. Furthermore, it is surely insufficient to consider 
just one-body motion; protons are strongly coupled in a 
way which gives rise a t  ordinary pressures to ice formed 
from intact water molecules that are hydrogen bonded 
according to the so-called Pauling ice rules.5 Our objective 
in this paper has been to undertake such a quantum-me- 
chanical many-body analysis, and to see if indeed a le- 
gitimate phase transition should be expected from asym- 
metric-bond ice VI1 or ice VI11 to a new symmetric-bond 
form. 

The appropriate many-proton Hamiltonian is discussed 
in section 2. This Hamiltonian forms the basis for a set 
of soft-mode calculations described in section 3 that are 
directed toward discovering the natural low-energy ar- 
rangements of protons in expanded lattices. Knowledge 
of these low-energy proton patterns then is used in section 
4 to investigate the Hartree approximation to the protonic 
ground state, with the conclusion that indeed a phase 
transition can emerge from the quantum-mechanical 
many-body theory. Section 5 discusses experimental im- 
plications of our results and indicates how a more accurate 
quantum theory might be constructed. 

2. Many-Proton Hamiltonian 
The ices to be considered are the closely related ice VI1 

and ice VIII, as well as the cubic ice IC. In each of these 
forms every oxygen is connected to four near neighbors by 
hydrogen bonds. While ice IC is known to form only at low 
pressure it is natural to include it in the present study since 
the high-pressure forms VI1 and VI11 consist structurally 
of two interpenetrating ice IC lattices.6 Furthermore, it 
is possible that ice IC, if first cooled to very low tempera- 
ture, could be compressed to the regime of interest (roo 
N 2.4 A) without undergoing oxygen-lattice restructuring; 
and because nonbonded neighbors are absent it should 
require far less pressure than with ices VI1 and VI11 to 
achieve this goal. 

we have also included in our study the hypothetical 
%quare-ice” model. As is the case for the real three-di- 
mensional ices this model connects each oxygen vertex to 
four others by hydrogen bonds, but on account of its square 
arrangement of oxygens the constituent H 2 0  “molecules” 
will display unnatural linear or right-angle shapes. 

We invoke two simplifying assumptions. First, the 
lattice of oxygens will be regarded as static. Second, the 
proton motions along hydrogen bonds will be treated as 
strictly one-dimensional. Consequently, the potential 
energy for a crystal consisting of N oxygen vertices and 
2N bonding protons will be given the following form: 

(2.1) 
Here VO) is the potential energy associated with the oxygen 
lattice, and it  depends only on the spacing roo. The co- 
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To maintain a theoretical tradition of long 

V = V0)(roo) + V(’)(X, ... ~zN;roo)  

Stillinger and Schweizer 

ordinates x, measure proton positions from bond mid- 
points. We take V1) to consist of a sum of single-particle 
bond potentials u and particle-pair interactions ujl:  

2N 2N 

j =  1 j 4 = 1  
V(1) = c U ( X j )  + c U j l ( X j , X , )  (2.2) 

The bond potentials will be identical for all bonds and will 
be symmetric: 

u(x )  = u(-x) (2.3) 
The pair interactions will display translational symmetry 
and any rotational symmetries consistent with the un- 
derlying crystal structure. Although u and the u . ~  will all 
depend on roo, the focus of previous work4 has keen en- 
tirely on the way that the first of these changes from 
double-minimum to single-minimum character as roo de- 
clines through the critical region around 2.4 A. 

If we can rely on the known structure and dipole mo- 
ment of the isolated molecule for guidance, the conclusion 
must be that the constituent atoms in the ice system bear 
fractional charges (approximately +e/3 for protons, -2e/3 
for oxygens), as a result of imperfect shielding of nuclear 
charge by electron distributions. Consequently the ujk will 
have to exhibit forms appropriate for these or similar 
charges. 

It is convenient to suppose that Vo) is the potential 
energy for the entire collection of 3N atoms in a static 
configuration with all protons at  bond midpoints. As a 
consequence we have by definition 

4 0 )  = 0 

U j l ( 0 , X l )  = U j l ( X j , O )  = 0 (2.4) 

for all roo. 
The bond potential u corresponds to the change in 

system potential energy when a single proton is displaced 
from its bond midpoint. Likewise ujl is to be extracted 
from the system potential energy change when protons j 
and 1 are simultaneously displaced, all others being con- 
fined to the midpoint positions. If these protons are lo- 
cated on widely separated bonds ujl must reduce to the 
simple Coulombic form: 

ujl N q2[(t,rJ1 - (t,Rjl)-lI (2.5) 

where is an appropriate high-frequency dielectric con- 
stant, r.[ is the distance between the two protons, and Rjl 
is the dstance between the bond midpoints. The proton 
partial charge has been denoted by q. It is valid to expand 
expression 2.5 in displacements to obtain the following 
large distance behavior: 

ujl (s2/€,Rj13)(bj.Tjrbl)Xjx, 

T j ,  = 1 - 3RjiRjl/Rjt (2.6) 

In this expression the bj and bl are unit vectors parallel 
to the respective bonds, oriented in the directions of 
positive xj and x l .  

Our central task is to solve the eigenvalue problem: 
(H - AJ+n(xi X 2 N )  = 0 

H = T + V(l) (2.7) 
where T is the kinetic energy operator 

2N 

j = 1  
T = -(h2/2m)Ca2/axj2 (2.8) 

It is an experimental fact that the low-pressure hexag- 
onal ice Ih (and by implication cubic ice IC as well) exhibits 

(5) L. Pauling, J. Am. Chem. SOC., 57, 2680 (1935). 
(6) D. Eisenberg and W. Kaufmann, ‘The Structure and Properties 

(7) E. A. DiMarzio and F. H. Stillinger, J. Chem. Phys., 40, 1577 

(8) J. F. Nagle, J. Math. Phys., 7, 1484 (1966). 
(9) E. H. Lieb, Phys. Rev., 162, 162 (1967). 

of Water”, Oxford University Press, New York, 1969, Chapter 3. 

(1964). 
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this model with all protons centered along bonds. As the 
figure also indicates, it is convenient temporarily to give 
protons a double index 6,a) 

l S j l N ,  a = 1 , 2  (3.4) 
because there are two protons per unit cell in this lattice. 

As usual the imposition of periodic boundary conditions 
guarantees that all normal modes will have running wave 
character. Hence for any given normal mode the time 
dependence of the displacements has the form 

(3.5) 

where the amplitude factors w, are independent of j and 
of t. The wavevectors k = (k l ,k2)  fall within the first 
Brillouin zone for the square lattice.1° 

-?r/a I k1,k2 I * / a  (3.6) 

where the neighbor spacing roo has for simplicity been 
denoted by a. 

Substitution of (3.5) into the classical equations of 
motion leads directly to the phonon dispersion relation: 

mu2/u2 = 1 - Y2X((C + S )  f [ (C - S)2 + 4P]1/21 (3.7) 

The coupling constant X is 

xj,(t) = w, exp(ik-Rj, - id) 

X = q2/tma3uz (3.8) 

while C, S, and H are dipolar sums over the protons in a 
square ice lattice with unit spacing between neighbor ox- 
ygens. 

x 2  I 
I 
0 ~ 0 ~ 0 ~ 0 ~ 0  

0 . 0 * 0 ~ 0 ~ 0  

0 . 0 . 0 ~ 0 ~ 0  

7 
O L  

0 e 0 0 

0 0 0 0 0 

0 i x i 2  0 0 

0 O j 0  -0 0 0 0 0 
X j l  

0 0 0 0 0 

0 0 0 0 0 ~ 0 ~ 0 -  
X I  

Figure 1. Square ice model with bond-centered protons. 

virtually the full disorder of the asymmetrically resident 
protons that is allowed by Pauling ice rules.5 In terms of 
the many-body wave equation (2.7) this implies that there 
is a nearly degenerate grouping of approximately (3/2)N 
eigenstates, including the ground state, a t  the bottom of 
the spectrum. Linear combinations of these low-lying 
states could be found that form wavepackets localizing 
protons in the canonical ice structures that are typically 
considered in the classical statistical mechanics of ice 

If indeed there is a phase transition associated with 
change in symmetry of the hydrogen bonds, then it should 
appear as a singularity in the limit function 

f o ( r d  = lim Ao(~oo)/N (2.9) 
N-- 

3. Soft Modes 
It is important to examine the potential energy V(l) in 

detail to understand how this function influences the 
many-proton eigenfunctions. One instructive aspect con- 
cerns the quadratic behavior of V1) in the neighborhood 
of the globally centrosymmetric configuration: 

x1 = x 2  = ... = X2N = 0 (3.1) 
Specifically we can examine the implied phonon spectrum. 
We will suppose temporarily that the lattice is strongly 
compressed to assure that harmonic motion about con- 
figuration 3.1 involves only real phonon frequencies. 
Consequently the bond functions u will for the moment 
have narrow single minima at  the bond midpoints, and so 
through quadratic order we can write 

u(x )  = y2u2x2 + 0 ( ~ 4 )  

u2 > 0 (3.2) 
Recalling eq 2.6, we thus consider initially the following 
quadratic potential hypersurface: 

2N 2N 

By decompressing the lattice, u2 will decrease and give 
rise a t  some stage to one or more normal modes going to 
zero frequency. We consider these “soft modes” to be 
important for the problem in hand since they represent 
spontaneous patterns of proton dislocation from bond 
midpoints. These potential-driven deformations play an 
important role in the full quantum mechanical problem 
that is analyzed in section 4. 

A. Square Ice. We examine the simplest case first, 
namely, the theoretical square ice model. Figure 1 depicts 

Here the angles d measure the direction of the corre- 
sponding vectors R connecting bond midpoints with re- 
spect to the X1 axis (see Figure 1). 

When X = 0 the 2 N  protons move independently a t  a 
common angular frequency (uZ/m)’12. But as X increases 
from zero the phonon frequencies spread out across a pair 
of bands [the two phonon branches correspond to the two 
signs in eq 3.71. 

A detailed numerical study of the phonon spectrum has 
been carried out wherein lattice sums (3.9) were evaluated 
over a wide range of finite arrays, and results extrapolated 
to infinite array size. These results unambiguously show 
that the lowest phonon frequencies occur a t  the vertices 
of the Brillouin zone (3.6). Furthermore such soft modes 
require that the upper sign be taken in eq 3.7, and thus 
correspond to maxima with respect to k of 

C + S + [ (C - S)2 + 4 P ] 1 / 2  (3.10) 

When coupling constant X grows to the critical value 
X,(sq) = 0.069341 (3.11) 

these zone-vertex modes go to zero frequency. Any further 
increase in X would lead to imaginary frequencies, implying 
proton displacement instability that could only be arrested 
by anharmonic terms in the bond potentials u. 

Figure 2 shows the pattern of proton displacements 
involved in the zone-vertex soft modes. We see that the 

(10) L. Brillouin, “Wave Propagation in Periodic Structures”, Dover, 
New York, 1953. 
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Flgure 2. Pattern of proton displacement in square ice that resub tom 
zone-vertex soft modes. 

k - 4  
Flgwe 3. Bonding pattern in cubic ice, with protons at bond midpoints. 

lattice now consists of linear “H20” units with alternating 
orientations. 

One of the significant conclusions produced by this 
two-dimensional model calculation is that the displacement 
pattern shown in Figure 2 spontaneously arises even while 
u2 is positive. Evidently the proton-proton interactions 
manage to overcome the localizing influence of the still- 
single-minimum bond potentials a t  the critical coupling 
A,. This explicitly demonstrates the inappropriateness 
(even before invoking quantum mechanics) of identifying 
a bond-symmetrizing phase transition with the vanishing 
of u2.4 This latter criterion of course corresponds to di- 
vergence of X to infinity. 

B. Cubic Ice. Figure 3 shows the bonding pattern in 
cubic ice, with protons located at  bond midpoints. The 
Bravais lattice is face-centered cubic, with two oxygens per 
unit cell. Consequently there will be four protons per unit 
cell and thus four phonon branches. Figure 4 illustrates 
the first Brillouin zone for this structure.1° 

It is straighforward (though somewhat more tedious) to 
set up the dynamical equations in this case. Once again 
the phonon spectra are determined by dipolar sums over 
the unit-spacing lattice, and by coupling constant X in eq 
3.8 wherein distance a is now defined for ice IC by Figure 
3. The w2 for square ice had the special feature that they 
were linear in A; that is no longer the case. 

We shall only summarize results that emerge from the 
numerical analysis. I t  is found that the soft modes (i.e., 
those which first go to zero frequency as X increases) occur 

Figure 4. 
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Fkst Brilbuin zone for the faceGentered cubic Bravais lattice. 
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c x 3  

--D 

X P  

/p.!+ 
x4 

Flgure 5. One of the posslble polarization patterns produced in ice 
IC by spontaneous soft-mode distortion. The planes shown are the 
successive planes of oxygen atoms (see Figure 3), and the arrows 
indicate directions of the H,O symmetry (dipole) axes. 

at  the symmetry points X of the Brillouin zone shown in 
Figure 4, the centers of each of the zone’s square faces. 
The frequencies of these modes in fact go to zero at the 
critical coupling 

&(IC) = 0.0908 (3.12) 
This result is analogous to that obtained for square ice in 
that u2 is still positive at  the instability point. 

The soft modes at  each of the six points X are doubly 
degenerate. The distortion patterns produced by these 
modes can be formed in any one of six equivalent ways. 
Each such pattern involves production of H 2 0  molecular 
units whose dipole directions are parallel within successive 
crystal planes in such a manner as to produce a spiral 
polarization field. Figure 5 illustrates this type of spon- 
taneous pattern. 

When X has the critical value shown in eq 3.12 there are 
other modes that have nearly gone to zero frequency, in 
particular double degenerate pairs at each of the Brillouin 
zone symmetry points K, L, and W. That the system 
almost goes unstable in so many ways simultaneously is 
doubtless related to the Pauling degeneracy of ice, for it 
suggesb that many ways of forming intact H20 units will 
exist with nearly equal energies. 

C. Ices V I I  and VII I .  Ices VI1 and VI11 geometrically 
consist of a pair of interpenetrating ice IC sublattices. Ice 
VI1 has the higher symmetry of the two: Each of its ox- 
ygen atoms is symmetrically surrounded by eight others, 
four of which belong to the same sublattice, and the sym- 
metry overall is cubic.6 The oxygen lattice and hydrogen 
bond connectivity of ice VI11 are similar, resulting in fact 
from tetragonal distortion of the ice VI1 structure. 
Thermodynamically these forms are stable only at  high 
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phonon branches. The first Brillouin zone has already 
been illustrated in Figure 4. 

In order to implement the numerical analysis for ice VI11 
it was again necessary to carry out lattice sums over finite 
cubic blocks of ascending size (up to 64 unit cells on a side). 
Softest modes obtained for finite blocks occur at k # 0, 
but in the infinite block limit convergence of these modes 
to k = 0 is indicated. Even after effecting the tetragonal 
distortion from ice VI1 to ice VI11 the pattern of instability 
continues to be ferroelectric. However, the distortion splits 
the previous three degenerate soft modes into a lowest 
frequency subset (polarization perpendicular to the dis- 
tortion direction) and a very slightly higher frequency 
subset (polarization parallel to the distortion direction). 
The former go to zero frequency when the coupling con- 
stant increases to the critical value 

X,(VIII) 0.085 (3.14) 

The failure of our calculations to produce the observed'l 
antiferroelectric pattern in ice VI11 has led us briefly to 
examine modifications of the simple potential energy used 
for the bulk of our calculations. Specifically we have re- 
placed the uniform dielectric screening factor tm-l in eq 2.6 
by the nonuniform screening function 

S(RjJ = 1 + (€,-I - 1)(1 - exp[-a(Rjl - R,)]] (3.15) 

where a > 0, and R,, is the distance between nearest- 
neighbor protons (at bond midpoints). This form smoothly 
interpolates between no screening at R,, to the previous 
uniform screening at  large separation. We find that for 

a = 20, E, = 10 (3.16) 

the mode that first goes to zero frequency has the anti- 
ferroelectric character that has been observed experi- 
mentally. It should also be mentioned that use of the 
nonuniform screening (3.15) in the undistorted ice VI1 
causes its ferroelectric soft mode to be replaced by zone- 
vertex modes, even when a is small and E, is close to unity. 

All of the ice VI1 and ice VI11 results continue to il- 
lustrate the earlier point that soft-mode instability appears 
while the individual bond potentials still have single- 
minimum character. 

4. Hartree Approximation 
Soft-mode calculations reported in section 3 indicate 

that for sufficiently large X the potential V(l) leads to a 
lowest-energy classical structure with intact water mole- 
cules that (a) are 'arranged in a manner consistent with the 
ice rules, and (b) display long-range proton order. Our next 
task is to assess the influence of quantization on the 
short-range and long-range order, and on the ground-state 
eigenvalue A,. For this purpose we have employed the 
Hartree approximation to keep the theory manageably 
simple. 

The single particle wave functions 4, for the bond po- 
tential u(x) are solutions of 

Flguro 8. Uniaxial dlspiacement that converts the oxygen framework 
of ice VI1 into that of ice V I I I .  

pressure, above roughly 20 kbar. Ice VI1 is observed at  
room temperature, but upon cooling below about 5 OC 
(nearly independently of pressure), ice VI11 spontaneously 
forms. The former appears to be largely proton disordered 
over its canonical ice-rule structures; the latter is anti- 
ferroelectric with completely polarized sublattices re- 
spectively parallel and antiparallel to the tetragonal dis- 
tortion axis." 

We first consider the phonon calculation for ice VII. 
The Bravais lattice is simple cubic. Each unit cell contains 
two oxygens and four hydrogens, leading to four phonon 
branches. The dynamical equations which determine 
phonon frequencies were set up and solved as in the pre- 
ceding two cases. The resulting numerical analysis indi- 
cates that the relevant soft modes occur a t  k = 0 and 
correspond to ferroelectric polarization along any one of 
the three cubic axes. Using the same coupling constant 
definition (3.8) as for ice IC, we find that the critical cou- 
pling constant value is 

XJVII) N 0.080 (3.13) 

I t  should be stressed that this conclusion about a fer- 
roelectric instability in ice VI1 is based on extrapolation. 
Lattice sums were carried out over a sequence of cubic 
blocks up to 64 unit cells on a side. At any stage in the 
sequence the softest modes would appear a t  a set of sym- 
metry-related points displaced from the origin. But as the 
summation block increased in size the positions of these 
softest modes converged smoothly to k = 0, and the ei- 
genvectors in that limit corresponded to uniform polari- 
zation. 

The experimental fact that ice VI1 is not ferroelectric 
in its temperature-pressure region of phase stability im- 
plies either that its Curie point is below 5 "C or that the 
potential energy form (3.3) that we have employed is in- 
adequate. In particular one might reasonably question 
whether use of a constant dielectric shielding factor E ,  at  
all distances (some of which are indeed small for ice VII) 
is appropriate. 

Figure 6 illustrates the tetragonal displacement between 
the interpenetrating networks which converts the oxygen 
framework of ice VI1 to that of ice VIII. Measurements 
a t  the lower stability limit for ice VI11 indicate that the 
fractional displacement 7 is 0.087." As a result of this 
displacement the Bravais lattice reverts to that for ice IC, 
namely, face-centered cubic. But now four oxygens and 
eight hydrogens inhabit each unit cell, yielding eight 

(11) P. T. T. Wong and E. Whalley, J. Chem. Phys., 64,2359 (1976). 

[-(h2/2m) d2/dX2 + U ( X )  - E,]~,(x) = 0 (4.1) 

We will suppose that they are orthonormal. In principle 
these q5,, one set for each bond in the ice lattice, constitute 
a complete set in which the many-proton wave functions +, can be expanded. 

When any of the ices considered is in an expanded state 
the bond potential u will have two well-developed minima. 
The quantum-mechanical ground state will have protons 
residing near these minima, with correlated residence as 
dictated by the long-range ferroelectric or antiferroelectric 
pattern found in section 3. In this circumstance it should 
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The translation of these features into a Hartree approxi- 
mation to q0 is the following well-known form (0 5 0 I 

J/o = n [cos 8 &G)(xj) + sin 0 4,0’)(xj)] (4.6) 

Here & and & are the localized bond functions respec- 
tively at the “right” and at  the “wrong” side of the mid- 
point, and angle 8 is a variational parameter to be deter- 
mined by minimizing the energy. 

It is straightforward to show that the variational energy 
implied by the assumed form 4.6 is 
A0/(2N) = (eo + t,)/2 - K sin (28) - J cos2 (20) (4.7) 

Here we have introduced J by letting -2NJ be the inter- 
action matrix element when all protons are “right”: 

*/2): 
2N 

J=l 

07. 

01’ ’ 1 I I 
0 1 2 3 

K / J  

Figure 7. Probability in the Hartree approximation that any given 
oxygen vertex is an ionic defect. 

suffice to employ only the lowest pair of functions 4o and 
@1 to expand the ground-state wave function q0, since sums 
and differences of the two form basis functions localized 
respectively at  the two minima in u. In this limiting case 
the single-particle excitation energy 

2K = €1 - €0 (4.2) 

will be just the small tunneling splitting. 
In the other extreme of highly compressed ice the ex- 

citation energy 2K will be much larger, and protons are 
now forced to remain localized near the midpoint of the 
now shorter bond. Once again it should be adequate to 
use only #o and &, since proton-proton interactions will 
be relatively weak in comparison with 2K. 

These considerations suggest that it should be adequate 
to use only the two lowest-energy basis functions $o and 
& per bond over the entire range of lattice spacings. We 
shall in fact take advantage of this simplication. Some 
support for this tactic emerges from study of the quar- 
tic-oscillator ferroelectric problem by Koehler and Gillis;12 
exact diagonalization of their one-particle Schrodinger 
equation (with mean field interactions) gave results 
qualitatively similar to those resulting from a corre- 
sponding two-level treatment. 

For the restricted basis of $o and @l, the Hamiltonian 
is 

2N 2N 

j=l j<l=1 
H = N(60 + tl) + KCS,(J + C ~ j l S ~ % ~ ( ‘ )  (4.3) 

where we have used the familiar Pauli matrices 

The pair interactions ujl are given by eq 2.6. Alternatively, 
we can rotate the basis to the localizing sums and differ- 
ences of $o and &, in which case 

2N 2N 

j=l j< l= l  
H = N(t0 + €1) - KCS,G) + ~ j $ 3 ~ 0 ’ ) S ~ ( ‘ )  (4.5) 

The long-range proton orders deduced in section 3 for 
each of the ices have the property that all bonds are 
equivalent, and each proton has an unambiguous side of 
the bond midpoint where it preferentially should reside. 

(12) T. R. Koehler and N. S. Gillis, Phys. Rev. B ,  7, 4980 (1973). 

Finding the angle 8, that minimizes eq 4.7 is elementary 
Om = ‘/z sin-l (K/2J) (0 I K / J  12)  

= a / 4  (2 I K / J )  (4.9) 
The corresponding per-proton energies are 
&/2N = 

‘/z(to + €1) - J(l + P / 4 J 2 )  (0 5 K / J  I 2) 
= ‘/(to + €1) - K (2 I K/J) (4.10) 

Using eq 4.2 to eliminate K, these expressions become 
h0/2N = 
‘/(to + el) - (e1 - to)’/(16J) - J (0 I (el - to)/J 5 4 )  

= ‘0 (4 I (‘1 - t 0 ) / 4  (4.11) 

In a decompressed state of the lattice the first part of 
expression 4.11 gives the protonic energy. The protons are 
well ordered at this stage, corresponding to angle 8, close 
to zero. As the lattice is compressed, however, the splitting 
- eo increases toward the critical value 4J, and as a result 

Bm increases toward a f 4, which in turn diminishes the 
degree of long-range order. All long-range order is lost 
when 8, reaches a14 (“right” and “wrong” positions for 
protons become equally likely), and a new form for the 
energy appears. 

Clearly the single-particle eigenvalues to and el will be 
analytic functions of the lattice spacing, as will J. But the 
shift from one functional form to another for the energy 
of the interacting many-proton system constitutes a non- 
analytic point, i.e., a phase transition. The energy and its 
first derivative with respect to roo are continuous across 
this transition, but the second roo derivative is discon- 
tinuous. 

Short-range order is measured by Pot the probability that 
any given oxygen vertex is part of a neutral water molecule. 
This obtains if two of the four protons along bonds to that 
oxygen are close while the others reside at the remote ends 
of bonds. We have already remarked that the classical 
patterns with long-range order emerging from soft modes 
in section 3 all have Po = 1. However, it is clear that 
quantum mechanical fluctuations can cause ionic config- 
urations to occur, with Po < 1. 

It is easy to show that within the Hartree approximation 
Po = cosa Om + 4 cos4 0, sin4 8, + sins Om (4.12) 

The quantity 1 - Po has been plotted against K l  J in Figure 
7 .  This figure shows that the phase transition can be 
viewed as an ionization catastrophe, with neutral molecules 
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only appearing with random expectation (Po = 318) when 
K I J  exceeds 2. 

5. Discussion 
The displacement distribution p o  for proton j’ along its 

bond follows directly from eq 4.6. Specifically one finds 

p”(xj) = [cos Om &O)(xj) + sin Om 4,”(xj)I2 (5.1) 

This distribution is symmetric about the bond midpoint 
if and only if 8, is r/4, Le., the system is disordered. In 
that event p o  is determined entirely by the lowest proton 
eigenstate: 

P’J(xj)  = [40(xj)12 (5.2) 

Notice that the question of symmetry of pv)  about the 
bond midpoint is logically independent of the following 
questions: 

(1) Does the bond potential u(x) exhibit a single or a 
double minimum? 

(2) Does 4o exhibit a single or a double maximum? 
(3) Does the direction-averaged bond distribution 

p ( x )  = l/z[p”‘(x) + P ( - x ) I  (5.3) 

have a single midpoint maximum or a pair of displaced 
maxima? 

Clearly it is symmetry of pG) which has greatest signif- 
icance in the present study, and when that symmetry exists 
we believe it is appropriate to call the system 
“symmetric-bond ice”. To the extent that we are able 
roughly to estimate bond functions and coupling constants 
in cubic ice, it appears that during compression r$o converts 
to single maximum character no later (and probably be- 
fore) pu) symmetrizes. 

Because our transition is an ionization catastrophe, it 
is hard to avoid the conclusion that it also occurs a t  
nonzero temperature, i.e., in at least the low-lying excited 
states which in decompressed ice form the multitude of 
canonical ice configurations for neutral molecules. A 
many-body theory which improved on the Hartree ap- 
proximation in fact should yield ionization catastrophes 
even for low-lying excited states with no long-range proton 
order present, but rather with just short-range order. In 
any case an ionization catastrophe should manifest, and 
be detectable by, anomalies in the dielectric constant and 
in the electrical conductivity of the ice vs. pressure. 

Our qualitative conclusion is illustrated (in very sche- 
matic fashion!) by Figure 8. The figure provides a rough 
indication of the expected phase diagram in the very 
high-pressure regime. The bond-symmetrizing transition 
has been shown as a dotted line. Our calculations with a 
static oxygen lattice imply that this symmetrizing tran- 
sition would be of order higher than first; however, it is 
reasonable that the transition might become first order if 
coupling of proton motions to lattice phonons were to be 
included. 

There are sure to be yet further transitions encountered 
in the extremely high-pressure region above the top of 
Figure 8. Two likely candidates are (a) a crystal structure 
with close-packed oxygens and (b) a metallic solid phase. 

In view of the strong oxygen repulsions13 that operate 
between nonbonded neighbors in ices VI1 and VIII, it 
seems certain that increasing pressure will cause the dis- 
tortion parameter 9 for ice VI11 (see Figure 6) to become 
smaller. In other words, increasing pressure should reduce 
the tetragonal distortion that distinguishes the ice VI11 
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Figure 8. Schematic diagram of the very high-pressure region of the 
H,O phase diagram. 

oxygen lattice from that of ice VII. At  the transition 
pressure to symmetrical-bond ice q may have been reduced 
to practically zero, so a t  that point the ice VI11 to ice VI1 
transition may virtually be only a proton order-disorder 
transition (a Nee1 point if ice VI11 remains antiferroelec- 
tric). 

The liquid that coexists with ice VI1 and symmetrical- 
bond ice at the triple point shown in Figure 8 is itself likely 
to be highly ionized.14 However, there is no compelling 
reason to believe that an ionization catastrophe phase 
transition should intrude from the solid state into the 
liquid region of the phase diagram. 

In view of the large number of uncertainties involved 
it would be foolhardy for us to attempt an absolute pre- 
diction of the transition pressure to symmetric bond ice. 
However one thing is certain: There should be a significant 
deuterium isotope effect. As a result of its greater mass, 
the deuteron will have a smaller splitting parameter K than 
that for protons. At  the same time the interaction pa- 
rameter J should proportionately be far less sensitive to 
isotopic mass. Consequently, the characteristic ratio K /  J 
will tend to be smaller a t  a given oxygen lattice spacing 
roo in D20 ice than in H20 ice. In order to have this ratio 
equal the value necessary to permit a phase change (2 in 
the Hartree approximation) it is clear that the molar 
density of D20 ice will have to be larger than that for H20 
ice. In either case if it turns out that 2.4 A is the ap- 
proximate range required for roo to create symmetrical- 
bond ice in the laboratory, then from the dependence of 
roo on pressure determined experimentally by Walrafen 
et al.3 the requisite pressure can be estimated very roughly 
as 600 kbar. 

Finally we need to list some ways in which further 
theoretical effort might continue to increase understanding. 

First, there is a clear need for quantitative study of the 
potential surface for protons moving along compressed 
hydrogen bonds. The modern methods of quantum 
chemistry have much to offer here and could succeed in 
determining the bond function u(x) accurately over a wide 
range of oxygen separations. At a somewhat higher level 
of complexity the pair interactions ujl should also be 
amenable to study by quantum-chemical computation, 
thereby shedding more light on the dielectric shielding and 
overlap repulsion that are operative in the dense ices. This 

(13) B. Kamb, J .  Chem. Phys., 43, 3917 (1965). 
~~~ ~ 

(14) K. Todheide, Water, Compr. Treat., 1, 502-4 (1972). 
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should lead to a capability for predicting unambiguously 
the tetragonal distortion and proton-order pattern in ice 
VIII. 

Second, it is obvious that an improvement over the 
Hartree approximation is required. This would entail a 
more realistic description of the configurational correlation 
of the four protons around each oxygen (even in the ab- 
sence of long-range proton order). Such an advance is 
required for ground and excited states to yield an ac- 
ceptable quantal description of canonical Pauling struc- 
tures in decompressed ices, specifically in proton-disor- 
dered ice VII. The ionization probability shown in Figure 

7 would be subject to revision with this more powerful 
approach to the many-body problem and indeed might 
then have a rather different type of singularity. 

Third, the theory eventually should encompass coupled 
motions of both oxygens and hydrogens, and the latter 
should be permitted full three-dimensional motion rather 
than just the linear freedom imposed in the present work. 
This final generalization should be helpful to spectros- 
copists who observe and interpret vibrational bands in the 
compressed ices. 
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Ab initio molecular orbital (MO) calculations have been carried out for water dimers and trimers, using a 
split-valence basis set supplemented with polarization functions (6-31*), including electron correlation for 
nearest-neighbor dimers via second-order Moller-Plesset theory and a dispersion correction for next-near- 
est-neighbor dimers, and with corrections made for basis set superposition errors. These calculations have led 
to a potential energy function for cubic ice which accounts for over half of the compression of the 0-0 separation 
relative to that for the free dimer and which yields a cohesive energy close to the experimental value. A simple 
model for the activated complex in the migration of Bjerrum L defects in ice I, based on the concept of a bifurcated 
OH-0 hydrogen bond in conjunction with MO calculations for appropriate water tetramers with a 6-31* basis 
set, has led to estimates of the activation energy (3.3 and 3.9 kcal/mol) falling in the lower end of the range 
of previous estimates (2-7 kcal/mol), thus indicating that the activation process requires less than the full bond 
energy of a single linear hydrogen bond. 

I. Introduction 
Recent theoretical studies of small clusters of water and 

other hydroxylic molecules using ab initio molecular orbital 
theory have shed considerable light on a variety of phe- 
nomena associated with OH-0 hydrogen bonding'-15 and 
have helped to interpret structural patterns obtained from 
X-ray and neutron diffraction e~pe r imen t s . ' ~ '~J~J~  These 

(1) Hankins, D.; Moskowitz, J. W.; Stillinger, F. H. J .  Chem. Phys. 
1970.53.4544. 

(2) Del Bene, J.; Pople, J. A. J.  Chem. Phys. 1970, 52, 4858. 
(3) Del Bene, J. E. J.  Chem. Phys. 1971, 55, 4633. 
(4) Lentz, B. R.; Scheraga, H. A. J.  Chem. Phys. 1973,58,5296. 1974, 

6 7  R A W  --, 
(5) Kistenmacher, H.; Lie, G. C.; Popkie, H.; Clementi, E. J .  Chem. 

(6) Diercksen, G. H. F.; Kraemer. W. P.: Roos, B. 0. Theor. Chim. 
Phys. 1974, 61, 546. 

Acta 1976, 36, 249. 
(7) Curtiss, L. A.; Pople, J. A. J .  Mol. Spectrosc. 1975, 55, 1. 
(8) Dill, J. D.; Allen, L. C.; Topp, W. C.; Pople, J. A. J. Am. Chem. SOC. 

(9) Kollman, P. A. In 'Modern Theoretical Chemistry", Schaefer 111, 

(10) Tse, Y.-C.; Newton, M. D. J .  Am. Chem. SOC. 1977, 99, 611. 
(11) Newton, M. D.; Jeffrey, G. A. J .  Am. Chem. SOC. 1977,99, 2413. 
(12) Newton, M. D.; Jeffrey, G. A.; Takagi, S. J.  Am. Chem. SOC. 1979, 

(13) Newton, M. D. J.  Chem. Phys. 1977,67,5535. 
(14) Tse, Y.-C.; Newton, M. D.; Allen, L. C. Chem. Phys. Lett. 1980, 

(15) Newton, M. D. Acta Crystallogr., Sec. B ,  in press. 

1975,97, 7220. 

H. F., Ed.; Plenum Press: New York, 1977; Vol. 4. 

101, 1997. 

75, 350. 

studies have included a detailed examination of pertur- 
bations of the basic OH-0 linkage either by chemical 
sub~ti tut ion '~J~ or further hydrogen bonding at  the ac- 
ceptor or donor ~ x y g e n ' - ~ J ~ J ~ J ~  and have revealed several 
cooperative effects. We extend this work in the present 
paper through the use of additional cluster models de- 
signed to elucidate certain features of ice I. In particular, 
we devise a potential energy function for ice based on 
appropriate dimer and trimer contributions, which allows 
us to estiamte the degree to which nearest-neighbor and 
next-nearest-neighbor interactions can account for the 
cohesive energy of ice I and for the significant compression 
of the O--O separation in ice I relative to the dimer.17J8 
In addition, we present a model for the migration of a 
Bjerrium L defectlg which yields an estimate of the acti- 
vation energy for this process. It is of interest to compare 

(16) (a) Jeffrey, G. A,; Takagi, S. Acc. Chem. Res. 1978,1I, 264. (b) 
Jeffrey, G. A,; Lewis, L. Carbohydr. Res. 1978,60,179. (c) Ceccarelli, C.; 
Jeffrey, G. A.; Taylor, R. J. Mol. Struct. 1981, 70, 255. (d) Jeffrey, G. A.; 
Maluszynska, H. Int. J .  Quantum Chem., Quantum B i d .  Symp. 1981, 
8, 231. 

(17) Dyke, T.  R.; Mack, K. M.; Muenter, J. S.  J .  Chem. Phys. 1977, 
66, 498. 

(18) Whalley, E. 'Physics and Chemistry of Ice"; Whalley, E.; S. J. 
Jones, S. J.; Gold, L. W. Ed.; Royal Society of Canada: Ottawa, 1973; p 
73. 

(19) (a) Bjerrum, N. K .  Dan. Vidensk. Selsk. Skr. 1951, 27, 1. (b) 
Eisenberg, D.; Kauzmann, W. "The Structure and Properties of Water"; 
Oxford University Press: New York, 1969. 
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