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We describe a number of formal properties of the hierarchy of correlation functions describing the statis­
tical geometry of a random porous medium consisting of homogeneous matter and void regions. Our princi­
pal result concerns the determination of the average number of interparticle contacts in a randomly packed 
aggregate of monodisperse hard spheres. We indicate how this number can be determined, in principle, 
from the analysis of large angle scattering of radiation. We discuss the bearing of our result on the Debye 
"random scatterers" and the study of models of random close packing of spheres. We give a brief list of 
possible applications and open problems suggested by this field. 

1. INTRODUCTION 

WE draw further attention in this paper to the 
intimate relationship between: (1) variants of 

the classical Buffon needle problem of geometrical 
probability theoryl,2 and (2) certain algebraic and 
differential geometric properties of instantaneous con­
figurations of random aggregates of impenetrable 
particles, chosen from a suitably defined stationary 
statistical ensemble of configurations, and (3) certain 
features of the scattering curve which would be ob­
served if incident radiation (x-ray, microwave, or 
whatever) of wavelength A were (singly and elastically) 
scattered by a density of matter distributed equally 
uniformly throughout the particles. The purpose of 
this introduction is to provide needed definitions and a 
setting, for our basic result announced in the abstract 
to this paper, amid some new and previous work in 
this field. The next section deals with a demonstration 
of this result and the succeeding sections deal with 
implications of this result both for fundamental studies 
of model random aggregates and certain aggregates met 
in technological practice. Our exposition is heuristic, 
and one of the more serious flaws in rigor is our formal 
use of certain power series without providing proof of 
the existence of a finite radius of convergence. 

For readers who are primarily interested in our 
results concerning assemblies of packed spheres, for 
which the correlation function series development Eq. 
(45) is our major result, it may be suggested that the 

.... elevant physical applications should be clear by 
reading only the remainder of the paper following that 
equation. 

In complete generality we can be concerned with a 
domain D of space of volume V which is divided into 
two phases, matter of uniform density Dl and (relative) 
void Do of volume fraction cp and 1-cp, respectively. 
With respect to some fixed frame of reference we define 

the characteristic function of the matter phase, E(R) 
as 

1
1 if REDl , 

E(R) = 
o otherwise. 

(1) 

We can consider E(rl)' E(r2), E(ra), etc., as a se­
quence of random variables generated by a suitable 
but as yet unspecified 0, 1 stochastic process. The 
introduction of this stochastic process corresponds to 
our desire to study averages of the random variables 
{E(ri)} over configurations drawn from a spatially 
isotropic, time-independent ensemble (the sample 
space). The nature of our ensemble is determined of 
course by the physical mode of selection of our samples 
for study. By the stochastic process we can think of a 
sequence of joint probability distributions: 

Pr{Finding, at random, a point rl somewhere in Dd 
=Pl(rl) = Pr{E(rl) =1}, 

Pr{ Finding, at random, a point rl somewhere in Do} 
=PO(rl) = Pr{E(rl) =O}; 

Pr{Finding, at random, a point rl somewhere in Dl 
and a second point r2 somewhere in Dd 
=Pn(rl, r2)= Pr{E(rl)=1 and E(r2)=1}, 

Pr{ Finding, at random, a point rl somewhere in Dl 
and a second point r2 somewhere in Do} 

=PlO(rl,r2)=Pr{E(rl)=1 and E(r2)=0},etc. 

The nth order joint probability distribution can be 
conveniently written in general as 

with 

1
1 if 

Ei= 0 if 
ri is in Do 

(2) 

(3) 

I E. Borel, R. Deltheil, and M. Huron, Probabilities, Erreures 
(Librairie Armand Colin, Paris, 1958). 

2 L. A. Santal6, Introduction to Integral Geometry, Act. Scient. 
et Ind., 1198 (Hermann & Cie., Paris, 1953). 

Thus with P. I (rl) the probability of finding rl in D.I 

the probability of finding rl in the complimentary 
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domain to D'l> Dl- ol , is Pl-.I(rl), etc. Averages, i.e., 
expectation values, can be found in the usual manner 
using these probability distributions and are hence­
forth denoted by angular brackets: ( ). 

We consider in particular the sequence of correlation 
functions {'Yn(rl, "', rn)} defined by the sequence of 
averages 

(E(rl) )='Yl(rl), 

(E(rl) E(r2) )='Y2(rl, r2), etc., 

or 

'Y2(rl, r 2) = 1'2 ( I rl-r21 ) =Pu(rl, r2) 

=fjJ-PlO(rl, ro) 

PU(rl, r2) = 1'2 (r12) , 

PlO(rl, r2) ='Yl(rl) -'Y2(r12) = fjJ-'Y2 (r12), 

POl(rx, r2) ='Yl(r2) -'Y2(r12) =fjJ-'Y2(r12), 

POO(rl, r2) =l-'Yl(rl) -1'1 (r2) +1'2 (r12) 
(E(rl) E(r2)'" E(r,,) )='Y,,(rl, r2, "', r n ), etc. (4) = 1-2cP+'Y2(r12), (9) 
This is an alternative way of specifying the stochastic 
process. This is not a particular result of our spatially 
isotropic 0, 1 process but holds for a wider class of even 
continuously distributed random variables. Specifically 
we note that the sequence of correlation functions 
h,,(rl, "', rn)} generates by suitable adjustment of 
the arguments the full sequence of moments (averages 
of random variable products) of all orders. The char­
acteristic functions of the probability distributions 
are power series in the Fourier transform variables 
whose coefficients are essentially these moments. If 
these series converge appropriately (i.e., the conditions 
of this moment problem are met by, say, suitable 
bounds on the 1',,) the probability distributions are ob­
tained by Fourier inversion. 

For our spatially isotropic 0, 1 process a much more 
remarkable result holds: Noting first that by virtue of 
(4) 

PU(rl, r2) ='Y2(rl, r2), etc., 

PU ... l(rl, r2, "', r,,) ='Y,,(rl, r2, "', r,,), etc., (5) 

we claim that the 2" nth-order joint probability dis­
tributions P.h ....... (rl, "', r,,), given by (2), are 
uniquely specified by the n functions 'Yl=Pl(rl)'" 
'Yn-l(rl, "', rn-I) =PI ... l(rl, ••. , rn-l), 'Yn(rx, "', 
r,,)=PI, .. l(rl, "', r,,). To demonstrate this we use 
mathematical induction. For n= 1 we have, since a 
point of D must lie in either Dl or Do, 

or 

For n= 2, because of the spatial isotropy of the process 
(invariance under rigid-body motions) we can write 

(7) 

and since the second point must lie in either Dl or Do 

PU(rl, r2)+PlO (rl, r2) =Pl(rl) ='Yl=cP 

POl(rl, r2) + POO(rl, r2) = PO(rl) = 1-1'1 = 1-cP (8) 

as was supposed. We now assume that this result holds 
for n=k-1 we then show that it holds for n=k. Let 
(J>j be thejth permutation of k objects. Then by isotropy 
we find the analog of (7) to be 

P EI .• 2 ...... k (rl, "', rk) =P(l', {.1.E2 ...... kl «(J>j{rl, "', rk}) 

j=l, "',k!, (10) 

and thus we need only consider the joint probability 
densities of form 

P1l1U ... lOOO ... O(rl, "', rn, rm+l, "', rk). (11) 
m times k-m 

times 

Once we know these we know all the others by virtue 
of (10). But using the analog of (8) we have 

Pm ..... U(rl ..... rk)+Pm ..... lO(rl, "', rk) 

='Yk(rI, "', rk) +Pm ..... lO(rl, . ", rk) 

=Plll ..... l(rl, "', rk-l) ='Yk-l(rl, "', rk-l) , (12a) 

Plll ..... lO(rl, "', rk) +Plll ..... OO(rl, "', rk) 

=Pm ... lO(rl, "', rk_2, rk), etc., (12b) 

P lOO ..... oo ( rl, "', rk) + pooo ..... OO(rl ..... rk) 

=POO ... O(r2, "', rk). (12c) 

Thus by solving for Plll .... ,lO(rl, "', rk) from (12a) 
and substituting in (12b) we can solve for 

Continuing in this way we can finally solve (12c) 
for pooo ..... OO(rl, "', rk) which together with (11) 
and (10) completes the induction. Actually we have 
demonstrated that the nth-order joint probability 
densities are linear functions of the 1'1" ''Yn of suit­
able arguments. Only the special cases n= 1 and 
n= 2, i.e., Eqs. (8)-(9), of this general result appear 
to have been stated in the literature devoted to x-ray 
scattering.a- 5 

3 G. Porod, KolJoid-Z. 124,83 (1951); 125,51, 109 (1952). 
4 Guinier, Fournet, Walker, and Yudowitch, Small Angle 

Scattering of X-Rays (John Wiley & Sons, Inc., New York, 1955). 
6 P. Debye, H. R. Anderson, Jr., and H. Brumberger, J. App!. 

Phys. 28, 679 (1957). 
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For certain purposes it is more convenient to con­
sider the set of functions (k= 1, 2, •.• ) 

lh(rl·· ·rk) 

= ([2E(rl) -lJ[2E(r2) -lJ·· ·[2E(rk) -lJ), 

which simply transforms to a -1, + 1 random process. 
In terms of these new quantities, it may easily be shown 
that 

k k 

=2-k[1+ L L (2Eh- l )··· 
0==1 h< ... <i,=l 

The coefficients of the 1/;, are of course just ± 1. 
The geometric significance of the nth correlation 

function 'Yn arises by using and reinterpreting (5) to 
be the probability that the n vertices of the geometric 
figure Fr., rl, r2, ... , r n , thrown at random into the 
domain D land so that they all lie in D1. First it is 
clear that the correlation functions can distinguish the 
dimensionality d of the space in which D is imbedded. 
We are not concerned with this fact since we restrict 
ourselves to d = 3. The second thing to note is that the 
random throwing of a figure F n is a generalization of the 
Buffon needle game.1.2 For n = 2 the figure is a line 
segment of length I rl- r2 I and corresponds to the 
usual version of the Buffon needle game for our random 
domain. The contraction properties of the 'Yn, by virtue 
of the properties of E(R), for example, 

'Y2( rl, rl) =cP, 

='Yn-l(rl, .•• , rm-l, rm+1, ••• , r n), etc., (13) 

have now a simple geometric significance. 
Furthermore, the dependence of the nth-order joint 

probability distributions on 'Yl·· . ')In can be seen to be 
consistent with a known, useful result of geometrical 
probability theory (integral geometry) .1.2 The version 
of the theorem of Crofton which we state here is very 
directly and simply demonstrated in reference 1: Con­
sider the probability P that n points of a domain D of 
volume V possess a property 11' whose statement in­
volves only the lengths and relative orientation of the 
elements of the figure F n formed by these points. Con­
sider the change in P, oP, due to an increase of D by a 
domain D" of volume IlV. Denoting by PCl) the prob­
ability of realizing 11' with n-l points in D and one in 
D", one can write Crofton's theorem: 

oP=n(p(1)-p) (oV /V) +0(OV)2. (14) 

We make use of this theorem later. 
As our discussion so far has shown, no finite number 

of ')I'S determine the entire set of geometrical properties 
of the ensemble of random configurations of the domains 

(since they would incompletely specify the character­
istic fraction) nor the expected properties of any mem­
ber of the ensemble, in general. 

On the other hand, in physical applications, e.g., in 
those in which one is concerned with the flow of a 
property or matter through such a random two-phase 
domain, one is concerned only with suitable averages 
over the lower order correlation functions,6 particu­
larly ')12 and ')13. The experimental determination of the 
form of the higher-order correlation functions is hardly 
feasible for n> 2. In principle, elastic single scattering 
of all wavelengths X, O<X< 00, radiation could deter­
mine ')12 if the scattering curve were known for all 
values of the scattering length s and Fourier inversion 
of the experimental curve could be carried out. Experi­
mentally, since X is finite, only approximate information 
about ')12 is obtainable if the "bandlimited" scattering 
curve approximates sufficiently well the whole scatter­
ing curve. In what follows we assume this is the case. 
Thus, for example, in the case of x rays, Debye and 
Bueche,1 among others, have shown that the expected 
scattered intensity (out of the forward cone) from the 
volume V of the random domain is 

l(s) =le(s) idrlidr2 exp(is·r12)[C(r12) -C( oo)J 

(lS) 

with r12=r2-rl, le(s) the single electron scattering 
power, s the scattering vector in the direction of the 
scattered beam of length 

s= I s I = (411'/X) sin!O, (16) 

with 0 the scattering angle. C(r12) in (15) is the elec­
tron-density correlation function. If Peer) is the in­
stantaneous electron density and 10 is the mean number 
density of electrons then 

C(r) = (Pe(R)Pe(R+r) 

and (for our isotropic random media) 

C(r)/N=')I2(r) , 

(17) 

(18a) 

and the Debye x-ray correlation function4•5•7 ')I(r) is 

(l/N) [C(r) -C( 00) J=')I(r)cp(1-cp). (18b) 

In this article's notation, then, 

')I(r) = [')I2(r) -')12 ( 00 ) J/cp(l-cp). 

Completely equivalent relations to (15)-(18) apply 
for scattering of radiation other than x ray. 

Since only ')12 appears accessible to measurement at 
this time we consider the geometric information con­
tained in this entity. In order to proceed we must 
restrict our stochastic process further to exclude certain 

6 See, for example, S. Prager, "Diffusion and Viscous Flow in 
Concentrated Suspension," Physica (to be published). 

7 P. Debye and A. M. Bueche, J. App!. Phys. 20, 518 (1948). 
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pathologies, which presumably do not arise in the 
physical contexts for which this theory is to apply. For 
example, we wish to ensure that there are no isolated 
points or lines of the matter phase, etc., and that a 
surface S separating the matter from the void phase 
can be defined. The simplest possibility for investi­
gating 'Y2(r) is to consider the first few terms of the 
power series development of 'Y2(r) about r=O. A num­
ber of authors3-5 have carried out such a development 
to terms linear in r. They find 

'Y(r) = 1-[Sr/4cp(1-cf» VJ+O(r2) , (19) 

by straightforward geometric arguments. The coeffi­
cient of the linear term in r in (19) can be shown3- s to 
be directly proportional to the leading term in the 
asymptotic development of the scattering curve, 

i(s) =I(s)/Ie(s), (20) 

in powers of s-r, viz., 

i(s)'d;'27rj025/ s4, as s-tOO. (21) 

Providing that this asymptotic region can be effectively 
reached with the value of the x-ray wavelength used, 
this amounts to a novel technique of determining the 
specific surface of isotropic porous materials.5 

Recently, Kirste and Porod8 have studied the next 
term in the asymptotic development of the scattering 
curve, a term proportional to S-6, for a random iso­
tropic porous material whose surface separating the 
void from the material phase could be developed locally 
in the canonical power series9 

Xa = ![~Xl2+~Xl]+![{~(~)}Xl3+3{~(~)}X12X2 
2 Rl R2 6 aXl Rl aX2 Rl 

+3{~(~)}XlX22+[~(~)}X23]+ 000 (22) aXl R2 aX2 R2 
with Rl and R2 the principal radii of curvature of the 
surface. This next asymptotic term in i(s) arises from 
the next term in the series expansion of 'Y2 in powers of 
r for surfaces satisfying (22), viz., 

'YCr)=1- 5r [1-r2{-1-1klk2da 
4cf>(1-cf» V 125 s 

+ 3;5fs (k l -k2)2da}1+0 0 0, kl= 2~l' k2= 2~2' 
r< 1/max(kl , k2). (23) 

We note first that there is no term in r2. This as we see 
in the next section is a direct consequence of the re­
stricted class of surfaces [i.e., those satisfying every­
where (22) J considered. Equation (23) applies only 
to surfaces containing no edges or corners,8 or double 
points, or in general any singular points at which the 

8 R. Kirste and G. Porod, Kolloid-Z. 184, 1 (1962). 
g W. Blaschke, Vorlesungen uber Differential Geometrie (Dover 

Publications, New York, 1945), p. 120. 

radii of convergence of (22) shrink to zero. We have in­
dependently verified (23) by a method essentially 
equivalent to that used by Kirste and Porod8 at a 
time when their result was not available to us. We 
remark here that the first surface integral in (23) can 
be expressed in terms of the topological genus of the 
surface S, p, since 

4£klk2da= fs Kda=47r(1-p), (24) 

where K=4klk2 is the Gaussian curvature; Eq. (24) is 
the Gauss-Bonnet integral formula.9 

Equation (23) fails already when we consider iso­
tropic porous media formed from aggregates of convex, 
impenetrable particles. Such aggregates certainly con­
tain contacts between the particles even when the 
system is not randomly close packed. This could be the 
case with a stabilized colloidal suspension which at a 
given temperature will contain besides single particles, 
more or less permanent instantaneous aggregates or 
complexes of dimer, trimer, etc., particles due to van 
der Waals forces between them. Certainly close-packed 
powders formed from sufficiently "hard" particles 
possess surfaces which are singular. We are not able, at 
this time, to deal with such unrestricted systems as 
these. We can, though, study aggregates formed from 
monodisperse spheres. These can serve to indicate 
certain features of the series development of 'Y2(r) 
which are neglected in (23). 

2. CORRELATION FUNCTION OF RANDOM 
AGGREGATES OF MONODISPERSE SPHERES 

We consider a particular realization of a random 
aggregate of N spheres distributed over the volume V 
of our fundamental domain, drawn from some suitable 
ensemble. Each sphere of diameter a possesses an elec­
tron density fer) at distance I r I from the center. The 
instantaneous total electron density at a point r in the 
domain is 

N 

Pe(r)= L.!(r-rj). (25) 
j~l 

Weare in teres ted in the ensemble-averaged electron 
density correlation which appears in (15), i.e., 

C(r) = (Pe(R)Pe(R+r) 

N 

= L.(f(R-rj)f(R+r-rj) 
j~l 

+ L. (f(R-rj)f(R+r-rk) 
j""'k~l 

+(N-1)N jf(R-r j ) P(2) (rj, rk) 

Xj(R-rk+r)d(R-rj)d(R-rk) , (26) 
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where P(2)(rh rAJ is the probability that the centers of 
spheres j and k have the indicated positions. 

Neglecting external surface contributions we pass to 
the "thermodynamic limit," i.e., allow N, V~oo in 
such a way that 

N/V=p, (27) 

a constant. In this limit 

(28) 

the generic pair distribution function of the infinite 
system with g(2) the usual pair correlation function of 
centers of spheres whose form depends on the nature of 
the ensemble and in particular on the interparticle 
forces. Substituting (28) into (26) one has 

C(rlll) -C( 00) =p jf(r13)f(r32)dr3+p2jf(rI3) 

X [g(2) (r34) -1Jf(r42)dradr4. (29) 

With (29) substituted in (15) one recovers the usual 
Zernike-Prins formulation of the spherically symmetric 
system scattering curve4 

i(s) {j' } -y=pF2(s) 1+p dr34 exp( -tS' r34) [g(2) (r34) -1J 

(30) 

with shape function F(s), 

F(s) = j exp( -is· r)f(r) dr. (31) 

Equation (29) is the basic relation for studying 
'Y2(r). Taking homogeneous rigid spheres, for simplicity, 
we can set 

lf o 0<r<a/2 
fer) = . 

o r>a/2 
(32) 

Furthermore, for these spheres in random close packing 
or forming more or less permanent contacts we can 
write for pg(r) =pg(2)(r), 

1

0 for 
pg(r) = 

pge(r) + (z/41ra2) 8(r-a), 

O<r<a 
(33) 

with ge(r) the continuous part of g(r) for r just larger 
than a and z the average number of contacts a given 

sphere has with neighbors. Since, if Zi is the number of 
contacts of the ith sphere, 

N 

z=!Lz;/N, (34) 
i=l 

(33) applies as well (with z=O) to systems containing 
spheres not jammed into contact with others. Sub­
stituting (32) into (29) and carrying out the first inte­
gration one obtains for r12:::; a 

(35) 

with 

(36) 

and 

0(r12) isfo2 times the overlap volume of two spheres of 
diameter a separated by the distance r12. 

Noting that l(rI2) is a three-link chain in the usual 
nomenclature of diagrammatic cluster theory, it can 
be immediately rearranged allowing the r3 integration 
to be performed to give 

j Ulin(a.r
12

+r
24

) [(rI4) (rI4)2 (r14)3J X dr14 2 - -3 - + -
Ir12-r24l~a a a a 

(38) 

where Xa~=ra~/a, by virtue of (36). Taking O:$X12:$!, 
the X24 integral, shown above, can be split into three 
intervals: (0, X12) , (X12, l-xI2), (1-xI2, 1+XI2). Since 
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[g(2) (xu) -lJ is -1 in the first two intervals we find 

7r2Npza6{ j"'11 I (r12) - dxuxu 
6X12 0 

111
+"'12 +- dXU[g(2) (X24) -lJ[ (!-X122_X123+!X126)X242 

X12 \-0 

+ (2X12+3x122- X124) xu2+ ( -1-3x12+ 2X123) X243 

+ (1-2X122)Xu4+X12XuL !Xu6J}. (39) 

Equations (39) and (36) substituted in (35), gives 
then the form of the electron density correlation func­
tion for our model aggregates. 

To obtain a power series expansion of this correlation 
function we assume that g c (r) -1 can be expanded in a 
power series in r outside contact (r=a). Thus we set 
[c.f., (33) J 
g(2) (xu) -1 = (z/47rpa3) 5(xu-1) +gO+gl(XU-1) 

+g2(x24-1)2+ ••• , (40) 

where the constants go, gl, g2, etc., are determined by 
the nature of our ensemble, and go~ -1 by the prob­
abilistic definition of g(2). Introducing (40) into (39) 
one finds for I (r12) the series, having set r12=ax, 

I(r12) =brY02pza6 { -l+ixS+!x4 

+ (z/47ra3) (x2-xS+tx4) +igoxS 

+"lh-(gl-3go)x4+0(x5)}. (41) 

Combining (41) with (36) in (35) we find 

(l/N) [C(x) -C( 00 )J=[4>-4>2J+[ -i4>Jx+[iZ4>Jx2 

+ [!4>+i4>2_iZ4>+!go4>2JxS 

+ [¥4>2+ 13
0 (gl-3go) 4>2+"lh-Z4>Jx4+ O(x5) (42) 

with 4>=brpa3 the volume fraction of occupied space. 
Since C(x)/j02 is Pll(X) and Pll (O) =4> [d. (13)J one 
finds by virtue of (39) and (36) that 

C(00)/N=4>2. (43) 

Thus finally the Buffon needle probability that both 
ends of a randomly placed stick of length r lie in matter 
is [d. (18a)J 

'Y2(X) =C(x)/j02=4>-!4>x+iZ4>x2 

+!4>(1 +34>-!z+3goe/» xS 

+ro4>[ 484>+3 (gl-3go) 4>+!z Jx4+O (x5) , 

x=r/a. (44) 

Similarly, using (43) and (18b) , the Debye correlation 
function 'Y (r) is 

() 
1 3r 1 zr2 

'Y r = - 2(1-4»a +4 (1-4»a2 

+ (1+34>-!z+3goe/»r3 +[484>-3 (gl-3go)4>+!zJr4 

2(1-4»a3 1O(1-4»a4 

+O(r6). (45) 

We note that the linear term of (45) agrees with 
(19) since S=7ra3N, 

thus the limiting result is maintained even for surfaces 
which have double points (contacts) and cusps. We 
now find however an additional quadratic term in r 
which is not present in (23). Using (18b) , we may re­
write (15) and its inverse Fourier transform, respec­
tively, as: 

siCs) =4>(1-4» VNj""r'Y(r) sin(sr)dr, (47) 
o 

4>(1-4» VNr'Y(r) =~j""si(s) sin(sr)ds. (48) 
27r2 0 

If i(s) falls off sufficiently rapidly with s, and if the 
"experimentally bandlimited" i(s) approximates suffi­
ciently closely the complete i(s), then the quadrature 
in (48) may be evaluated numerically for several small 
values of r, and the results analyzed to obtain coeffi­
cients of leading terms in the expansion (45). The r2 
coefficient thereupon provides for the first time in­
formation about the packing geometry through the 
average number of contacts, z. 

As a final check of (45) we note that for isolated 
single spheres Z=O and go= -1, so that the r3 coeffi­
cient in (45) must reduce to that of (23) for mono­
disperse isolated spheres. This is the case. Equations 
(39), (44), (45), and (48) are our principal results. 

3. RANDOM AGGREGATES OF CLOSE-PACKED 
SPHERES AS RANDOM SCATTERERS 

We are concerned in this section with a comparison 
of (45) with the correlation function of idealized ran­
dom porous structures proposed by Debye, Anderson, 
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and Brumberger.6 Their random scatterers are materials 
which possesses rigorously an exponential Debye cor­
relation function 

'ro(r) = exp( -p,r) 

= 1-J.'r+tJ.'2rL iJ.'3r3+ •• • , (49) 

with J.'=S/4cf>(1-cf»V. By virtue of our arguments 
advanced in the introduction we know that, in general, 
(49) characterizes a possible class of random porous 
structures and not a single one since the higher-order 
correlation functions are still unrestricted. Concerning 
the demonstration of (49) by Debye et al.6 we note 
two things: The formal resemblance of Eq. (30) of 
reference 5 with Crofton's theorem our Eq. (14), if: 
(a) one relates the incremental volume OV of Crofton's 
theorem to the "sheet" of points in which the measuring 
stick end must lie such that if this latter's length is in­
creased by or, it will cross a phase boundary5; (b) one 
recognizes the neglect in deriving (30) of reference 5 
of the possibility that more than one phase boundary 
is crossed by the measuring stick when its length is 
increased by or. Thus (49) must in some sense reflect 
the expected rarity, in physically realizable systems, of 
phase-boundary crossings. 

Even for aggregates of rigid spheres it is not easy to 
specify what is meant by a random close-packed ag­
gregate. lO Furthermore, this is of considerable interest 
at the moment in connection with the possible structure 
of liquids.u Thus any proposed class of random porous 
media deserves closer scrutiny. 

We note immediately that systems with surfaces 
which can be represented by (22) cannot be random 
scatterers in the sense of (49) since (23) possesses no 
term in r2. The random scatterer must possess cusps or 
double points. To investigate the same question for 
random aggregates of hard spheres we equate (45) 
and (49). We find that the coefficients of the r2 term 
are identical if z is chosen to be 

(50) 

Turning to the coefficients of r3 we note that for equality 

3cf>(1-cf»2(1+go) = -i-icf>-cf>2, (51) 

but this cannot be realized for any cf>, O~cf>~ 1, since 
the left-hand side of (51) is always larger or equal to 
zero while the right-hand side is always negative. Thus 
random aggregates of hard spheres can also not rigor­
ously be idealized random scatterers. 

Still we can define new classes of random porous 
structures by the extent to which their 'Y(r) can be 
approximated by 'Yo(r). Thus all porous structures for 
which a power series beginning as (19) are random 
scatterers to first order. Similarly random aggregates 

10 H. S. M. Coxeter, Illinois J. Math. 2,746 (1958). 
11 J. D. Bernal, Nature 183,141 (1959). 

of hard spheres can be random scatterers if (50) is 
satisfied, etc. It is of some interest to consider what 
density such a random, jammed or close packed, ag­
gregate of hard spheres possesses. Taking the condition 
of jamming that z~12-0, one finds ~0.625, a figure 
comparing favorably with empirical determinations of 
closest random packing of about cf>=0.64.1O 

4. DISCUSSION 

The principal application of our basic result on the 
determination of the average number of contacts z 
from scattering is to the study of models of randomly 
close-packed aggregates of monodisperse "hard" spheres 
of macroscopic diameter. These models can be generated 
either by appropriate mechanical action or constructed 
by hand according to suitable Monte Carlo programs. 
By choosing the spheres of macroscopic size (diameter, 
say, several millimeters) one can ensure their mono­
dispersity and also verify relatively easily, if necessary 
by hand counting, the average number of contacts. To 
minimize intraparticle scattering the microwave radia­
tion wavelength used should be larger than the diam­
eter of the spheres. The material out of which the 
spheres are to be made must be chosen with care to 
allow for ease of production of the monodisperse 
spheres as well as to maximize the impedance mismatch 
at the surface and minimize the absorption of the 
radiation. In this way it is hoped that information other 
than merely the density of randomly close-packed 
spheres can be obtained. These systems also provide 
the only reasonable way in which the theory can at 
present be realiably checked by experiment. 

Predicated on the assumption that our results are 
verifiable on some simple model system we envision 
certain other practical applications to either naturally 
occurring or technologically important (more or less) 
spherical and monodisperse suspensions or aggregations 
of particles. For porous media composed of such par­
ticles a knowledge of z would be an important statistic 
in predicting the amount of a fluid retained by capillary 
forces or in correlating the empirical tortuosity of the 
medium. Further applications to studies of dispersion, 
coagulation and aging of colloidal suspensions come to 
mind. 

A possible interesting application of this method of 
analysis of x-ray or visible light scattering data is to 
dilute solutions of spherical virus particles or reag­
gregated spherical virus protein particles.12 The deter­
mination of a rough bound on z for the protein submits, 
even though these are not necessarily spherical, would 
be useful in helping to decide between various possible 
structures of the virus. 

Three extensions of the present theory (in our esti-

12 See, e.g., A. Klug and D. L. D. Caspar, Advan. Virus Res. 
7,225 (1960). 
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mate of order of difficulty) which would clarify its 
application to real systems are: 

(1) The investigation of the effect on (45) of re­
placing the simplified "electron density" j( r) given by 
(32) by aj(r) with a tail, e.g., a Gaussian tail. 

(2) The extension of (45) to polydisperse spherical 
aggregates. 

(3) The derivation of a result analogous to (45) for 

THE JOURNAL OF CHEMICAL PHYSICS 

aggregates of monodisperse ovaloids with proper ac­
count taken of the possible nonhomogeneous distribu­
tion of contacts over the surface of the ovaloids. 

Perhaps one of the most important questions for 
future study in this field would concern possible re­
strictions on the class of possible functions which 'Ya, 
etc., can belong and still contract [cf. (13) ] to a 
given, known 'Yz. 
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The radiolysis of CD" as well as of equimolar CH.+CD, mixtures, has been investigated in the presence 
of CaHs, C.H10, CSH6, C2H., argon, krypton, and xenon. The results obtained from the radiolysis of CD.­
CaHs-I2 and CD.-C,HurI 2 mixtures indicate that ethyl ions and sec-propyl ions are produced. 

GC2D,+ ~ 1.0, G .. c-C,D,+ ~0.06. 

The radiolysis of methane in the presence of C2H, and C6H6 provided evidence for the occurrence of the 
process: 

CH,*--.CH2+H2• 

The G value of this process is approximately equal to unity. An analysis of the ethanes produced in the 
radiolysis of equimolar CH.-CD, mixtures in the presence and absence of ethylene provided evidence for 
the production of methylene radicals in both the gas phase and the liquid phase. 

INTRODUCTION 

ALTHOUGH in recent years several investiga­
a tions have been published1- 7 on the radiolysis 
of methane, there still exists considerable controversy 
about the relative importance of ionic processes as 
compared to free-radical reactions. Especially disturb­
ing is the fact that in the most recent investigationss- 7 

on methane, neutral excited molecule decompositions 
are considered to playa dominant role, although mass 
spectrometric studies2,8-10 have provided substantial 
information on the reactions which one may expect 
to occur if ions are produced at all in the direct or 
inert-gas--sensitized radiolysis. Of special interest in 
this connection is the recent study of Wexler and 

1 L. H. Gevantman and R. R. Williams, Jr., J. Phys. Chern. 
56,569 (1957). 

2 G. G. Meisels, W. H. Hamill, and R. R. Williams, Jr., J. 
Phys. Chern. 61,1456 (1957). 

3 F. W. Lampe, J. Am. Chern. Soc. 79,1055 (1957). 
• K. Yang and P. J. Manno, J. Am. Chern. Soc. 81, 3507 (1959). 
i G. J. Mains and A. S. Newton, J. Phys. Chern. 65, 212 (1961). 
6 R. R. Williams, Jr., J. Phys. Chern. 66, 372 (1962). 
7 J. Maurin, J. Chim. Phys. 59,15 (1962). 
s V. L. Tal'roze and A. K. Lyubimova, Doklady Akad. Nauk. 

S.S.S.R. 86, 909 (1952). 
9 D. O. Schissler and D. P. Stevenson, J. Phys. Chern. 24, 926 

(1956) . 
10 F. H. Field, J. L. Franklin, and F. W. Lampe, J. Am. Chern. 

Soc. 78,5697 (1956). 

Jessell who investigated the reactions of positive ions 
at pressures up to a few tenths of a millimeter in the 
source chamber of a mass spectrometer. The reactions 
which these authors observed support, to a consider­
able extent, the mechanism proposed by Meisels et 
al.,2 the major discrepancy being the fate of the CHs+ 
ion. 

The present work was undertaken in the hope that 
more direct evidence could be obtained on the role of 
ionic reactions and of neutral excited molecule decom­
positions which, as pointed out recently,tz should both 
be operative. 

EXPERIMENTAL 

Materials 
Methane-d4 was obtained from Merck, Sharp, Dohme 

and Company. Mass spectrometric analysis indicated 
that it contained 2.1% CDaH, as well as chemical 
impurities of higher molecular weight. Research-grade 
methane was obtained from the Phillips Petroleum 
Company. Both methanes were thoroughly purified 
by a repeated slow distillation from a sequence of 
traps maintained at -195°C to a trap maintained at 
-220°C. Nitrogen, hydrogen, and oxygen were re-

11 S. Wexler and N. Jesse, J. Am. Chern. Soc. 84,3425 (1962). 
12 R. L. Platzrnan, Radiation Res. 17, 419 (1962), 
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