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A novel theory is presented for the ground-state equilibrium properties and phase behavior of
hydrogen-bonded crystals in which quantum-mechanical tunneling is important. The approach is
based on a variational correlated wave function and simultaneously treats short- and long-range
proton correlations in addition to the quantum tunneling aspect. Application to an exactly solvable
quantum spin model along with general statistical mechanical considerations suggest the theory is
quantitatively reliable for many three-dimensional crystals of interest. Model calculations reveal a
diverse set of possible phase behaviors as a function of applied pressure. The theory should be use-
ful for predicting and interpreting a range of phenomena induced by high pressure (e.g., order-
disorder phase transitions, dielectric properties, hydrogen-bond symmetrization) for experimentally
interesting systems such as the KDP-like (potassium dihydrogen phosphate) ferroelectrics and ice

polymorphs.

I. INTRODUCTION

Many crystalline materials contain pairs of oxygen
atoms connected by hydrogen bonds. By lowering the
temperature, some of these substances undergo order-
disorder phase transformations to states of spontaneously
broken symmetry characterized by long-range proton or-
der. In addition, these materials display strong short-
range correlations between the interacting protons both
above and below the transition temperature. The fer-
roelectric potassium dihydrogen phosphate (KDP) and the
antiferroelectric ice VIII polymorph are classic examples
of such hydrogen-bonded crystals. In the latter case, the
short-range order at ordinary pressures gives rise to a
structure comprised almost exclusively of intact water
molecules that are hydrogen-bonded according to the so-
called Bernal-Fowler-Pauling ice rules. Indeed, for most
hydrogen-bonded crystals at low pressures the position of
the bridging hydrogen is found (as in the ice example) to
be well off the bond midpoint, and hence can be taken to
“belong” to one of the participating oxygens.

A distinguishing feature of hydrogen-bonded materials
is the possibility of quantum-mechanical tunneling of the
proton between the two equivalent minima along the bond
connecting the two oxygens. For most systems at ordi-
nary pressures the corresponding tunnel splitting is either
negligible or rather small (<50 cm™'), and thus the
consequences of such a process are modest. The phase
behavior of crystals under these conditions has been exten-
sively investigated both experimentally and theoretically.?

Modification of the above picture is expected to occur
upon reduction of the oxygen-oxygen separation via appli-
cation of external pressure. Structural studies have re-
vealed™* the general correlation that the covalent O—H
bond lengths stretch as Ry, the distance between
hydrogen-bonded oxygens, decreases. This behavior leads
to a significant reduction of the potential barrier separat-
ing the two equivalent minima and hence to an increase of
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quantum fluctuations via tunneling. Under these cir-
cumstances, a range of fascinating phenomena can be en-
visioned. A partial list includes the possible destruction of
the long-range proton-ordered state by quantum fluctua-
tions, abnormally large concentrations of ionic configura-
tions, and symmetrization of the hydrogen bond.> Even
the concept of a crystal such as ice being composed of in-
tact water molecules may begin to break down in favor of
an ionic or covalent solid picture. These questions are of
particular interest in the low-temperature regime where
the system is strongly ordered at ordinary pressures and
the consequences of quantum tunneling are not obscured
by thermal fluctuations.

Unfortunately, previous theoretical work is inadequate
for a realistic description of such highly quantum-
mechanical phenomena. In particular, simple mean-field
theory (MFT) considers only the long-range-order aspect,
thereby neglecting all short-range proton correlations and
predicting second-order phase transitions. Attempts to go
beyond this description by including the strong short-
range proton order consist of truncated cluster expansions
about a mean-field reference system.®~® These theories
are inherently high-temperature approximations which are
valid only when the energy scale characterizing the quan-
tum fluctuations is small, or at most of the order of the
thermal energy. They possess the catastrophic feature of
exhibiting an anti-Curie point at low temperatures.® Con-
sequently, a reliable theory beyond MFT for a strongly
quantum system that includes detailed short-range corre-
lations does not seem to exist.

The purpose of the present paper is to develop an accu-
rate theory that addresses the questions of short-range or-
der, long-range order, and strong quantum fluctuations.
As shown elsewhere,” for many systems the tunneling-
driven phase transitions occur at sufficiently high pressure
that in the low-temperature regime [T < + 7, (1 atm)] the
thermal fluctuations are expected to play a minor role.
Consequently, we consider here only the zero-temperature
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quantum ground-state problem. Our formulation is suffi-
ciently general to allow treatment of a wide range of
hydrogen-bonded ferroelectrics and also ice polymorphs.
Applications to specific materials, including the questions
of high ion concentrations and hydrogen-bond symmetri-
zation, will be reserved for future work.>!® Here we con-
centrate on the general consequences of strong quantum
fluctuations in hydrogen-bonded ferroelectrics.

The remainder of the paper is structured as follows.
The basic Hamiltonian model will be discussed in Sec. II
and material-specific features will be identified. A corre-
lated wave-function theory for this model is developed in
Sec. III. Section IV compares the predictions of this
theory with known results for an exactly solvable problem,
the one-dimensional transverse Ising model. The predic-
tions and general characteristic features of the theory for
the full three-dimensional ferroelectric case are explored
in Sec. V via model calculations. The paper concludes
with a discussion of the applicability and significance of
this work, along with future directions of research.

II. MODEL

The Hamiltonian model we consider is very similar to
that applied by previous workers to the hydrogen-bonded
ferroelectric problem.®!! =13 We shall therefore be brief in
our description and concentrate on developing a notation
relevant to our subsequent variational ground-state theory.

We begin by invoking the simplifying assumption that
the lattice (e.g., oxygens for ice, phosphate groups and po-
tassium ions for KDP) is static. Attention is therefore
focused entirely on the protonic motions and interactions.
For the purpose of calculating the proton-proton potential
energy we adopt a two-state description where each proton
is localized on one or the other side of the bond corre-
sponding (at low pressure) to positions of potential mini-
ma. The configuration of the jth proton is therefore
mathematically described by the z-component Pauli spin
operator S7, which can take on the values 1. For the
hydrogen-bonded crystals of interest, we define a “‘vertex”
as the elementary four-coordinated objects which are con-
nected via the hydrogen bonds. For example, in ice the
oxygen atoms are the vertices while for KDP the corre-
sponding objects are the phosphate (PO,) groups. Each
vertex can be classified by the configuration (“near” or
“far”) of the four protons surrounding it. Such a classifi-
cation can be based on merely the ionic character (i.e., the
number of protons that belong to a vertex) or possibly on
a more detailed scheme.

For a realistic description of the short-range interac-
tions between the four protons around a given vertex, it is
necessary to distinguish the changes in local potential en-
ergy associated with each distinct vertex state (e.g.,
OH~,H,0,H,0?* for ice). This requires the introduction
of four-proton interactions in a potential energy of the
form

v (Lj,kDEY i>j

2.1)

The first term in Eq. (2.1) describes the short-range cou-
pling between the four protons around a vertex v. A

specific proton configuration (i,j,k,!) is assigned the ener-
gy Iiji. The second term represents a two-body residual
coupling between protons that describes the longer-range
interaction (typically dipolar) between more distance pro-
tons. Even in the absence of quantum effects, the statisti-
cal mechanics of such a model is too difficult to allow
rigorous treatment. We follow the common approach and
replace this potential-energy function by a simpler one

V= €,Ny+NJ(1—2x)?
a

=Vsr+Vir - (2.2)
Here Vgr represents the energies associated with creation
of a vertex of type a and N, is the number of such ver-
tices. As such, it describes the short-range order of pro-
tons around a given vertex in the extreme shielding limit.
The second term, Vg, treats the longer-range residual in-
teractions in an effective or mean-field fashion. It expli-
citly defines a proton configuration of lowest long-range
potential energy, —2NJ (where 2N is the number of pro-
tons in the crystal), and introduces the long-range-order
parameter, x (0<x < 1), that denotes the fraction of pro-
tons in the “wrong” positions as defined by the uniquely
specified state x=0. (Note that there is a symmetry about
x =+ which simply reflects the fact that the configura-
tions corresponding to all protons in the “right” position
and all protons in the wrong position are equivalent ener-
getically.) For ferroelectric materials, 1—2x is often pro-
portional to the macroscopic spontaneous polarization; for
antiferroelectrics it can be identified with the sublattice or
staggered polarization. Its specific meaning will depend
on the nature of the ordered state of the crystal of interest.
The physical meaning of the second term in Eq. (2.2) lies
in the realization that for any real system different proton
configurations with the same number of vertex types
(short-range order) are not energetically degenerate. For
example, in ice there are approximately (%)N (where N is
the number of oxygen atoms) neutral water molecule con-
figurations which are very close in energy but not exactly
degenerate. The second term provides a mechanism for
the lifting of this degeneracy in a simple mean-field
fashion.

An important feature of the form of the model poten-
tial energy of Eq. (2.2) is its dependence on microscopic
vertex types and their numbers {N,,Nx}. These number
operators describe the short- and long-range proton order,
respectively, and their introduction anticipates the order-
parameter nature of any theory based on Eq. (2.2). As a
technical point, we note in passing that Eq. (2.2) can be
written explicitly in terms of the real-space proton posi-
tions by employing the Pauli spin operators, S7, and intro-
ducing the appropriate fermion projection operators.®
However, for our subsequent purposes this transcription is
not necessary.

Modest quantum effects due to the small proton mass
have been directly observed in many hydrogen-bonded fer-
roelectric crystals by performing isotope substitution stud-
ies. In addition, under pressure the character of the bist-
able potential that a proton moves in along the bond can
be significantly altered. As previously mentioned the
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separation between the two equivalent minima and the
barrier separating them can be greatly reduced. This leads
to an enhancement of the resonance splitting of the proton
ground vibrational state and a more rapid tunneling of the
proton from one side of the bond to the other. We make
the simplifying approximation of retaining only these
lowest two resonance-split quantum states. Diagonaliza-
tion of the single-particle Schrodinger equation yields the
two lowest eigenstates, ®y(») and ®,(r), and the corre-
sponding energies Eq,E,. By constructing the symmetric
and antisymmetric linear combinations of these eigen-
states one obtains states that are localized primarily on
one side of the bond. These latter states represent the ana-
log of the localized classical two-state proton description
and correspond to S7=11. Such a construction is mean-
ingful even when the intervening barrier between the two-
potential minima is small, or even nonexistent.> The ener-
gy difference between the two lowest single-proton states
is characterized by a tunnel splitting parameter, K, de-
fined to be 2K =E, —E, and is a measure of the size of
quantum fluctuations. In terms of the two-state model
the quantized proton motion contributes a one-body kinet-
ic energy term of the form
2N
T=-K Y SF, (2.3)
I=1

where S7 has its standard Pauli spin operator meaning.
The complete model Hamiltonian we shall consider is
given by the combination of Egs. (2.2) and (2.3).

We note that the present model is nearly identical to
that adopted by Blinc and Svetina in their study of KDP-
like ferroelectrics.’ The specific properties of a particular
material enter the theory via the energies €,, J, and K. In
general, these will be pressure dependent to varying de-
grees. Modifications of the model to include other types
of interactions such as short-range ion-ion coupling or
two-body tunneling effects can be appended if desired, but
for the sake of simplicity will not be pursued here. Final-
ly, we observe that the present model does not depend ex-
plicitly on the entire lattice topology but only on the four-
fold coordination of the vertices.

III. THEORY

As discussed in Sec. II, the potential energy we have
adopted is entirely specified by the numbers, {N,}, and
energies, {€,}, of the vertex charge states and the fraction
of protons in the wrong position, x. Therefore, a full clas-
sification of the vertices is defined by how many, and
what types [right (r) or wrong (w)] of protons are at-
tached. An example of such a classification scheme for a
tagged vertex is shown in Fig. 1. Within this framework,
the 2*=16 possible proton configurations around a partic-
ular vertex can be grouped into nine distinct vertex types
and their corresponding numbers: NN N row»
NppsN o s N s »Np Ny ,N . The subscripts in the present no-
tation refer to the protons that are near (belong to) the
tagged vertex. For the systems of interest to us, the vertex
carries a formal charge g. For the case of ice, ¢ = —2e for
the oxygen atom vertex. Therefore, since the proton is
singly charged, the ionicity of the above nine possible

states are ( + 2, 4+ 1, + 1,0,0,0,—1,— 1,—2)e, respectively.
The explicit form of the model potential energy is

V:61(Nrrw +Nrww +N, +Nw)+€2(Nrrww +NO)

— AN, + Ny ) —2NJ (1 —2x)% . (3.1)

The following four characteristic energies have been intro-
duced.

(1) The energy of a singly charged ion, €, [assumed to
be the same for the cation (three protons near the vertex)
and anion (one proton near the vertex)].

(2) The energy of a doubly charged ion, €.

(3) The stabilization energy per vertex, —A, of the two
neutral states (N,,,N,,,) relative to the other four neutral
configurations. For a perfect tetrahedral arrangement of
hydrogen bonds around a vertex we expect A=0. Howev-
er, for many materials (e.g., KDP) there exists a preferred
crystal axis which lifts the degeneracy of the six neutral
configurations. The parameter A accounts for such con-
figurational anisotropy.

(4) The long-range protonic interaction (generally dipo-
lar) energy, J, that contributes to the stabilization of the
lowest energy classical ground state.

Five of the ten variables ({N,},x) of the above descrip-
tion can be eliminated by employing the following rela-
tions: For the vertex number conservation

p— +Nrrw+Nrww +Np+Npy +Nyw +N,

+Ny,+Nog=N, (3.2)
where N is the number of vertices. For charge neutrality
2N o +Nowy + Ny — Ny — Ny —2Ng =0 . (3.3)
For long-range-order definition
2N pow + Nyio + Ny )+ Ny + Ny + Ny =2Nx . (3.4)

Charge conjugation symmetry leads to the expectation
that to within negligible fluctuations of order N ~!/?
N =Ny, Ny =N,, Nppy =N, .

Utilization of the above relations allows a description in
terms of five independent variables which we choose to be
NNy sN oy Nox. In terms of this set, the potential ener-

(3.5)

FIG. 1. Four-coordinated vertex with the two possible proton
positions along each bond labeled as right (») or wrong (w). The
above proton configuration corresponds to a neutral vertex that
is a member of the N, type.
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gy per proton is given by

V/2N =¢€(x, +x,)+€x0—AXpp +Xy) /2

—J(1=2x)?, (3.6)

where the vertex-type concentrations, x,=N,/N, have
been introduced and

(3.7
J

1 1
X=X — 7+7(x,,——x,w—3xww—2xo) ,

N!
N No'N AN o IN !N N o Noro N s

Q{Ny},x)=

1

X(__)Nrnuw+Nrr+Nww+NO( 2
16

15)

N+N,,—N,, ~N,,—2Nq

___NR2
(NoDAN,DHNL N, IN W IN !

In the first line of Eq. (3.9), the leading factor is the ap-
propriate multinomial coefficient, followed by the set of
local attrition factors (probabilities), and the last factor ar-
ises from the single-proton long-range-order probability.
This form is directly analogous to that employed by
Slater!! and Takagi'? for their slightly more restrictive
models. We note in passing that upon combining Egs.
(3.6)—(3.9) one obtains the Slater-Takagi-Senko classical
theory for the partition function

—BVI{Ny}.x]

Z ass = 2 Q({Na},x)e (3.10)

{Ngox}

We now turn to the inclusion of quantum tunneling. A
completely general form for the ground-state wave func-
tion can be written as a linear combination of the ortho-
normal Hartree orbitals

2N
Y= A({Si}) [1 ®;(S5;{Sk}),
(sE} j=1

3.11)

where {S{}] denotes a particular configuration (out of the
22N possibilities) of all the protons and ®;(S7;{Sk}) speci-
fies which side of the bond proton j is on for the configu-
ration {Sﬁ}. From Eq. (3.11), it is obvious that
| A({SE})|* is the probability the system can be found in
the configuration {S7}. To make further progress, we
must invoke a simplification that removes the dependence
of the many-body wave-function amplitudes on the specif-
ic {Si}] configuration. The form of the model potential
energy [Eq. (3.6)] is suggestive in this regard. Since it de-
pends on the specific proton configuration only through
the total number of vertex state types and long-range-
order parameter, all {S7} corresponding to the same set of
order parameters are equally probable in the classical
theory. The natural extension of this feature to the
quantum-mechanical situation is to assume a trial wave
function of the form

XZNX(I__x)ZN(l—x) .

X =F—X 4+ 5 Xy — Xy — 3%, —2X0) . (3.8)

For the purely classical problem the adoption of a poten-
tial energy that depends only on the number of vertex
types implies a degeneracy or entropy associated with the
number of distinct proton configurations, Q({N,},x), that
yield the same vertex type numbers {N,,x}. Assuming a
random arrangement of vertex types subject only to the
global constraints specified by a fixed { N,,x }, one obtains
an explicit expression for the degeneracy factor,

Nrrw+Nrww+Nr+Nw( 4 )me NX(] _y 2N (=)

16

(3.9)

2N
V.= 3 A{N({Sk}),x}) IT (55 (Sk})
{(SE} j=1
2N
= 3 A([Ngx) 3 I @;(s7{sE}) .
{Ng:x} {SZIE(Nx} I=1

(3.12)

We shall refer to this form as a “random-mixing” approx-
imation since it requires all proton configurations corre-
sponding to a fixed set {N,,x} to be equally probable.
For a fixed set of {N,,x} the real space proton positions
are random subject only to the global vertex number con-
straints and geometrical constraints such as the impossi-
bility of having two nearest-neighbor vertices both in the
doubly charged cation state. Normalization of the trial
wave function requires

> A*([NgxPDA({Ng,x PDQ{Ngx})=1. (3.13)
{Ngx}
We proceed by calculating the trial energy
E=(Y,|H [¥,)
=W, |V |¥)+(V, |T|Y,). (3.14)

The potential-energy matrix element is easily computed
since by construction the potential-energy operator is di-
agonal in the representation of the trial wave function

(W V%)= 3 V(Na} 0 (Nax DA [Nax)

{Ngx}

=V({Ngx}) . (3.15)

In the second line of the above equation, {N,,X}
represents the (ground-state) average values of the order
parameters. This reduction is valid since fluctuations in
the order parameters are O(1/N) and hence vanish in the
large-system-size limit.

Employing Eq. (2.3) the kinetic energy (tunneling) ma-
trix element is given by
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2N
—K > SF

(‘I’,|T]‘I’,>=<\I/,
1=1

= —2NK(¥, |ST|¥,)
= _2NKS . (3.16)

]

S 3 QUNGxDA((Nax DA([Nox'))
[Na’xl {N"z,x’]

For any particular configuration {S;}€[Ng,x} in the
sum in Eq. (3.17), the matrix element is nonzero only for a
uniquely specified single configuration {S;*}. In addition,
for a specific {N,,x}, the probability that the two con-
nected vertices associated with the tagged proton 1 are a
particular type is determined by the random-mixing statis-
tics. This allows one to write
S= 2 QU {Ng,x})A*({Ng,x})
[Ngx}

2 A({Ng,x"NT({Ngox} | {Noox'}) |,

{Ng.x')

(3.18)

where T({N,,x}|{N,,x'}) is the probability that two
system configurations selected at random from the
{Ng,x} and {N,,x'} sets differ only at bond number 1.
To calculate these probabilities we first observe that the
“state” of a bond is defined by (a) which side the proton is
on, and (b) the states of the two vertices connected by the
bond. For a particular bond, the two attached vertices are

J

Nex}) 3 Sp™a|y;f

k=rw o,y

= 3 Q({Ngx})d*({
o]

where p"(0 | ¥;{Ngx}) [p™(0 | y;{Ngx})] is the prob-
ability for the initial vertex number state {N,,x} that the
tagged bond connects vertices of type o and y with
the proton in the right (wrong) position, and
{Na:x'}=fgy({Ng,x}) is the unique set of vertex-type
numbers that result from transferring the proton from its
initial side of the bond to the opposite one.

Combining Eqgs. (3.14)—(3.16) and (3.19), one can derive
an explicit expression for the trial energy. It is a function-
al of the wave-function amplitudes 4 ({N,,x}). Since the
trial wave function is of the linear variational form, one
can in principle functionally differentiate the trial energy
(subject to the normalization constraint) with respect to
the amplitudes and obtain equations for the entire eigen-
value spectrum. However, such a program generates func-
tional equations that are in general intractable. We there-
fore concentrate on variationally determining only the

Q N({Ngx}) S S

(SEIE (N, x) {SRFIE(N,x
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The operator ST induces proton jumps in a single tagged
bond and hence can give rise to changes in the {N,,Nx},
only in increments of 0, £1, or +2. Employing Eq. (3.12)
we have

(D1({Ng,x}) [ ST | DU{NL,x'}) [1 By (317

g J(£1)

distinguished as either proton (p) or hole (4) depending on
whether the proton belongs or does not belong to the ver-
tex, respectively. One then proceeds to compute the frac-
tion of the Q({N,,x}) configurations which have the two
ends of the tagged polarized bond specified by a particular
pair of vertex types. This fraction is given by a product of
factors for the p and A ends of the polarized bond. For
the model under consideration there are 2 X6 X 6=72 pos-
sible states that the tagged bond can initially have. When
the proton tunnels to the other side (via the ST operator)
each of these is uniquely mapped into one of the other
possible states. The 72 possibilities exist in pairs, differing
only according to the end of the bond at which the proton
initially resides. By accounting for all the possible “ini-
tial” states of the tagged bond, along with the appropriate
probabilities for these states, one can evaluate the quantity
in large parentheses in Eq. (3.18). We do not reproduce
the algebraically complicated details here but refer the
reader to Appendix A for a detailed treatment of an alge-
braically simpler case. An alternative, but equivalent, ap-
proach is discussed in Appendix B. Straightforward, but
tedious, application of these methods to the present gen-
eral case of interest yields a result of the form

a’x})A[fay({Na:x})] > (3.19)

I
ground-state energy. For this case the shifted argument
amplitudes, A[fo,({Ngx})]=A4({Ny+ng"}), can be
evaluated by noting that the probability for finding the
system in a state characterized by {N,,x} is
P({Ng4,Nx})=Q({N,,Nx})AX{N,,Nx}) .

Since the n%" numbers are of order one (specifically 0, +1,
or +2), we have

P({N,+nZ' D=P({N,}[1+0(1/N)] .

Therefore, in the thermodynamic limit (N— o) one ob-
tains

A({Na"f‘ngy}):A({Na})
X[QUNG/QU{Ng+nd"
Substitution of Eq. (3.22) in Eq. (3.19) yields

(3.20)

(3.21)

N2 (3.22)
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S =
(N}

2 Ep(k)(a I Vs {Na’x } )

k=rw o,y
X [QU{NG})/QU{Ny+n3¥})] 2

X Q{Ngx})AX({Ngyx}) . (3.23)

This expression is now of the same form as the diagonal
potential energy matrix element [Eq. (3.15)]. Therefore,
we can perform the summation in Eq. (3.23) to within
corrections O(1/N) by simply replacing the {N,,x} by

|

E/2NK=T/2NK +V/2NK ,

the average values {N,,x} as before. The result is a
closed-form expression for the ground-state energy in
terms of the (to be determined) average concentration pa-
rameters, {X,}. These quantities are then treated as varia-
tional parameters determined via energy minimization

dF
3%,

0. (3.24)

il

Detailed calculation following the analysis outlined in Ap-
pendix A yields a trial ground-state energy per proton
given by

(3.25)

T /2NK =[x (1—x)]"Y2{2x0(x,%,,) 1% +x0(x, 42Xy ) + 2%y (X,%,, )12

42, [ 200X ) 2 4 20Xy X )12 4 2(X 0% )V 4 X+ X ]

+xw [2(x0xrw )1/2 + 2(xrw-xww )1/2 + 2(-760-7‘:ww )1/2+xww +xrw ]

+4(x0xrxwxrw )1/2 + 2(-’coxr-xwxrr )1/2 + 2(x0xrxwxww
+2(xrxwxrwxww )1/2 + 2(xr)‘:wxrw-xrr )1/2 + 2(xrxwxrrxww

V/2NK =(€,/K)(x, +Xy) + (€/K)x 0 — (A /K )Xy + X ) — (J /K)(1—2x )2

)1/2

n2y, (3.26a)

(3.26b)

where for notational convenience X, =x,. The energy is a function of four dimensionless parameters and implementa-
tion of Egs. (3.24) leads to a set of five coupled algebraic equations. These represent the principal results of the present

work.

A structural quantity of interest is the single proton density matrix

PN =AY, |8(r—r) | ¥, ,

(3.27)

which represents the probability of finding a proton at position » along the bond. For the present theory, an elementary

manipulation yields the explicit result

PP =3 {[x2+(1=x)"]®o(r) +[x 12— (1—x)121D (1)} 2+ T {S —2[x (1—x)] 2} [Do(r) + D (1) ][ Po(r) — Dy(7)],

where S is the tunneling element defined in Eq. (3.16).
The functions ®y(r) and ®,(7) are the independent proton
ground and first excited eigenstates, respectively, obtained
by solving the corresponding Schrddinger equation for a
particular choice of bond potential. It is the symmetric
and antisymmetric linear combination of these functions
that represent the localized proton states corresponding to
S7=+1 in the two-state model. Note that even in the
disordered phase (x =), p() is not simply the indepen-
dent particle result but is modified due to short-range
correlations that tend to inhibit tunneling (i.e., cause
S<1). Other properties of interest such as the static
dielectric constant and pair correlation function can also
be straightforwardly computed with in the present formal-
ism.

In summary, the fundamental quantities in our
random-mixing theory are the four self-consistently deter-
mined vertex state concentrations, {X,}, and the long-
range-order parameter, X. The present theory is dis-
tinguished from previous attempts to include both short-
and long-range correlations by not involving the matrix
diagonalization of finite cluster Hamiltonians. The latter
approach leads to unphysical anti-Curie-type behavior at
low temperatures. The present theory has avoided this ca-

(3.28)

[
tastrophe by focusing attention on the global oxygen
vertex-type concentrations as order parameters. Of
course, since our theory is of an order-parameter nature it
predicts classical critical behavior.

IV. APPLICATION: ONE-DIMENSIONAL
TRANSVERSE ISING MODEL

The one-dimensional (1D) transverse Ising model (TIM)
consists of the following Hamiltonian expressed in terms
of the standard Pauli matrices:

N N
H=—-K 3 Sf—J 3 SiSf,\+NJ , (4.1)
I=1 I=1

where N is the number of spins (or protons) and Sf=*1.
For our purposes, this Hamiltonian can be thought of as
arising from the model ferroelectric pictured in Fig. 2.
The nearest-neighbor coupling between protons gives rise
to a polarized classical ground state with all the protons
residing on the same side of the bond. This long-range or-
der is opposed by thermal fluctuations and quantum-
mechanical tunneling. The model is exactly solvable'* and
at finite temperature exhibits no phase transition to an or-
dered state. At zero temperature, however, there is an
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FIG. 2. Section of the one-dimensional crystal described by
the transverse Ising model. The two sides of the bond are la-
beled right (r) and wrong (w) and correspond to S?= +1, respec-
tively. An equivalent representation associates the two possible
proton positions with a spin-—;— object at the bond center.

order-disorder transition at a specific value of the parame-
ter J/K. This feature serves as a convenient test case for
gauging the accuracy of our approximate random-mixing
(RM) theory, even though the underlying lattice of ver-
tices has coordination number two, rather than four.

To analyze the 1D TIM within the framework of our
theory we first observe that a full classification of the ver-
tices requires five number operators or order parameters,
N Ny,Npy,No,N,. As before N, denotes the number of
vertices with a single proton in the right position, N,,
denotes the number of vertices with two protons, etc. The
long-range order is characterized by the total number of
protons in the right position as defined by
N -—-N,=N(1-x).

To apply our RM theory we must express the potential
energy term in Eq. (4.1) in terms of the relevant order pa-
rameters. It is easy to show that

N
7 > (1+5{8f,1)=N,+N,, . (4.2)
=1
The Hamiltonian can then be written as
N
H=—-K z S{+2J(Ny+N,,), 4.3)

=1

where certain linear relations between the N,’s have been
employed (see Appendix A). A detailed derivation of the
random-mixing approximation trial ground-state energy is
presented in Appendix A. The result is

E/N =—2K[x(1—-x)]"'?

X [Xo(X, + Xy, )+ 2%o(X,%,) 2] +4J%, ,  (4.4)

where {x,=(V¥,|N,|¥,)/N} are variational parame-
ters. As shown in Appendix A, there are only two in-
dependent variational parameters, which we choose to be
Xo.%x. Energy minimization yields two coupled algebraic
equations which can be solved in closed form. Introduc-
ing the quantities

Ty=+5—%Xg G=+—%, y=J/K, (4.5)
one can show that
(A+5y)/4, v<
()= T2V v=ve (4.6)
g), v>v.
_ 0, v<v.
wal( )= (4.7)

(g2y)—g 2+ -2V v>7.

where y,=2(v2—1) locates the critical transition point
and g (y) is a soluton of

802 —3)(5 —gH)+ (5 —g+gg — 1)

~TG—g=0. @y

The random-mixing theory value for the critical value,
Y¢» of J/K is presented in Table I along with the exact re-
sult. For comparison purposes, the predictions of the
standard mean-field theory (MFT), cumulant cluster
theory,® and a variational renormalization-group calcula-
tion!* are also indicated. The random-mixing theory
represents a significant improvement over MFT. To put
the result in a more familiar context, the random-mixing
theory is a more accurate approximation for the transition
point [y,=0.828 vs 7y (exact)=1] than the standard
quasichemical Bethe pair approximation is for the classi-
cal two-dimensional Ising model (8,J=0.347 versus the
exact Onsager value of 0.443). To the extent that the tran-
sition point is a reliable barometer of the quality of an ap-
proximation, we conclude that the random-mixing ap-
proach is at least as accurate as a pair theory.

To further explore the accuracy of the present theory,
exact and approximate calculations of the polarization
and ion concentration are presented in Figs. 3 and 4. The
random-mixing result for the polarization is quite good
and represents a significant improvement over MFT due
to the inclusion of short-range correlations. The remain-
ing deviation of the RM theory from the exact result is
due to our neglect of long-range critical fluctuations.
However, many properties of interest are of a more local
nature and hence are not as sensitive to the long-range
correlations. The ion concentration is such a property and
as seen from Fig. 4 the random-mixing theory is nearly
exact for this quantity. Similar agreement is found for
other properties such as the average kinetic energy opera-
tor, (S*), and the ground-state energy. Deviations of the
latter quantity from its exact value are typically less than
1% except in a narrow region surrounding the critical
point where errors are still no larger than 2.5%.

In three dimensions one expects the importance of
long-range critical fluctuations to decrease compared to
the short-range correlation effects. Indeed, if the short-
range proton interactions are sufficiently strong, the phase
transition can become discontinuous (first order) and criti-
cal fluctuations are absent entirely. This is often the situ-
ation for many materials of experimental interest.

TABLE 1. Critical value of y =J /K for the 1D TIM.

Theory Ye
Exact?® 1.000
Random mixing 0.828
Mean field 0.500

0.727
No transition

Renormalization group®
Cumulant cluster®

#Reference 14.
YReference 15.
‘Reference 6.
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FIG. 3. Spontaneous polarization or long-range-order param-
eter (| 1—2x |) for the 1D transverse Ising model plotted as a
function of the scaled variable y /y,=(J/K)/(J/K),. The ex-
act (solid curve), random-mixing theory (dashed-dotted curve),
and mean-field-theory (dashed curve) predictions are shown.

V. MODEL CALCULATIONS

The purpose of the present section is to explore the gen-
eral features predicted by the random-mixing theory for
three-dimensional crystals. Application of the theory re-
quires specification of the four dimensionless energy
scales: €,/J,6,/JA/JK/J, and numerical solution of

0.25

0.20

ION CONC

0.10

0.05

J/7K

FIG. 4. Ion concentration (X, =X, ) for the 1D transverse Is-
ing model as a function of J/K. The random-mixing-theory
(solid curve) and mean-field result (dashed line) are compared
with the exact values (solid circles).
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the five coupled algebraic equations given by Egs.
(3.24)—(3.26). We proceed by considering a specific exam-
ple. The parameters €,/J and €,/€; are chosen to be 20
and 4, respectively. These values are in the range ap-
propriate for many hydrogen-bonded ferroelectrics. The
parameter A/J is a measure of local anisotropy due to the
presence of a preferred crystal axis. For a perfect
tetrahedral solid like cubic ice A=0. However, for many
ferroelectrics such as the KDP family A/J takes on
values® in the range of 2—4. The effect of applied pres-
sure is to increase the parameter K /J continuously. As-
suming a common microscopic origin (e.g., dipolar) for
the proton-proton energies (€,€,,A,J) all the dimensionless
energy scales enumerated above are pressure independent
except K/J. With the above motivation, the variational
equations were numerically solved and the results are
displayed in Figs. 5 and 6.

The behavior of the long-range-order parameter (as-
sumed to be proportional to the macroscopic polarization)
as a function of pressure is very sensitive to the degree of
local anisotropy, A. In particular the thermodynamic na-
ture of the transition changes from discontinuous to con-
tinuous at a value of A/J=3.79. The sharpness of the
transition is also an increasing function of €,/J. This is as
expected since larger values of the latter parameter corre-
spond to stronger short-range proton correlations. The
overall trends are qualitatively similar to the predictions
of the classical cluster theory'>!® where temperature (play-
ing the role of pressure) is a source of thermal (as opposed
to quantum tunneling) fluctuations. Of course there are

0.8\
ll / €, /J=20
L ! Jei=a
5 0.6 | i €2/€
= I
<
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a |
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FIG. 5. Random-mixing-theory predictions for the spontane-
ous polarization as a function of J/K for the 3D model dis-
cussed in the text. The three curves correspond to three choices
for the local anisotropy parameter: A/J=0 (solid curve),
A/J=2 (dashed-dotted curve), and A/J=4 (dashed curve).
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FIG. 6. Random-mixing-theory predictions for the kinetic
energy matrix element as a function of J/K for the 3D model
discussed in the text. The two curves correspond to A/J=0
(solid curve) and A /J=4 (dashed curve).

fundamental differences between the two fluctuation
mechanisms since the thermal effects are activated (i.e.,
contribute in a Boltzmann factor fashion) while quantum
tunneling induces fluctuations via state mixing.

At the transition the contribution of ionic configura-
tions is very large. For the A=0 case the fraction of ver-
tices that are singly “charged” ions (vertices surrounded
by one or three protons) is 0.12. This is significantly less
then the purely random statistical value of 0.25, but indi-
cates that the transition is driven by the appearance of a
large number of ions in the crystal.

Another property of some interest is the kinetic energy
or tunnel matrix element, {S*). At zero temperature, if
protons moved independently in their respective bonds
then (S*) would be unity. However, short- and long-
range proton-proton interactions in the condensed phase
will tend to oppose quantum tunneling and reduce (S*).
The amount of reduction can be taken as a measure of the
effective tunnel splitting in the crystal via the relation

Ky=K(S*) .

The pressure dependence of this quantity is shown in Fig.
6. For the case of a discontinuous phase transition, (S*)
itself exhibits a jump discontinuity. In terms of the real-
space proton position this implies a discontinuous expan-
sion of the proton charge density, p(r), upon going from
the ordered to disordered phase. It is also interesting to
note that even in the disordered phase proton tunneling is
significantly inhibited due to short-range proton correla-

tions.
Other properties such as the static dielectric constant

(5.1)

KENNETH S. SCHWEIZER AND FRANK H. STILLINGER 29

and pair correlation function can also be computed.
Structural questions such as hydrogen-bond symmetriza-
tion are also amenable to our theoretical analysis. For
many hydrogen-bonded materials the oxygen-oxygen
separations are sufficiently short (~2.5 A) that modest
pressures (~20 kbar) can affect significant deformations
of the proton bond potential. This has allowed experi-
mental study of many of the pressure-induced phenomena
of concern in this paper. Detailed application of the
present theory to measurements on hydrogen-bonded fer-
roelectric crystals will be presented in a planned future
publication.'®

VI. DISCUSSION

We have developed a ground-state correlated wave-
function theory for the equilibrium properties of
hydrogen-bonded crystals. To the best of our knowledge,
it represents the first internally consistent theory that
simultaneously incorporates short- and long-range proton
correlations and two-state quantum-mechanical tunneling.
The predictions of the theory for the exactly solvable one-
dimensional quantum Ising model in conjunction with
general statistical mechanical considerations suggest that
it is a quantitatively reliable theory for a range of experi-
mentally relevant three-dimensional crystals. Consequent-
ly, the theory should be a useful tool for predicting and in-
terpretating high-pressure-induced phenomena in hydro-
gen-bonded materials at low temperature. In particular,
for the well-studied KDF-like ferroelectrics, the theory is
directly applicable!® to the interpretation of measure-
ments® %17 of the pressure dependence of the static dielec-
tric constant and macroscopic polarization, and their vari-
ability upon isotope substitution. Material specific pa-
rameters can be extracted by fitting the theory to the
high-pressure experimental data, thereby providing micro-
scopic information complementary to the usual low-
pressure variable temperature studies.?

Another application is to the high-pressure behavior of
ice polymorphs.’ For these crystals, the ion formation en-
ergies are much larger than for KDP-like ferroelectrics.
Consequently, significantly higher pressures (~ 500 kbar)
are expected to be required to observe phenomena such as
order-disorder phase transitions and hydrogen-bond sym-
metrization. Therefore, the availability of a quantitatively
reliable theory to guide the difficult very-high-pressure ex-
periments is even more crucial for these systems.

Many avenues of future research remain to be con-
sidered. The effect of lattice vibrations (phonons), isoto-
pic (H and D) mixtures, and a description beyond the
two-state level are a few of the obvious generalizations
that can be pursued. Perhaps the most urgent need is the
generalization of the theory to finite temperatures. Such a
task should be possible by employing the finite tempera-
ture analog of the physical content of the random-mixing
approximation. On a qualitative level, one expects the
one-dimensional character of proton motions in the linear
hydrogen bonds will rule out the existence of low-lying ex-
cited states of a spin-wave nature as is found for the
three-dimensional Heisenberg magnet. One possibility is a
particlelike excitation spectrum possessing a finite gap be-
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tween the ground and first excited states. In this case, the
ground-state theory developed in the present paper would
be applicable when the thermal energy is small compared
to the energy gap. On a quantitative level, the fundamen-
tal object at nonzero temperature is the diagonal density
matrix or thermal propagator. Present research is geared
to deriving a closed equation of motion for this object in
terms of a finite set of order parameters which are subse-
quently determined by free-energy minimization. We
hope to report on this work in a future publication.

APPENDIX A

We consider in detail the calculation of the kinetic ener-
gy matrix element for the one-dimensional transverse Is-
ing model discussed in Sec. IV. A full classification of the
vertices employs the five number or order parameters:
N.,N,,N.,,No,N,. Particle conservation, charge neutrali-
ty, and long-range-order parameter definition lead to the
relations

Ny +N,+N,+No=N ,
Ny —No=0,
Nyy+N,=N,=Nx .

(A1)

These equations allow one to reduce the vertex classifica-
tion to two independent parameters. Choosing Ny and N,
as independent, the remaining three concentrations or
mole fractions are given by

Xrw =X0 »

x,=1l—-x—xp, (A2)

Xy =X —Xg ,

where x,=N,/N.

For a tagged bond, there are 2XX4=8 possible bond
configurations. These naturally break up into two groups
corresponding to the tagged proton being on the right or
wrong side of the bond. The eight possibilities are listed

(W|T|¥)=—KNS,

TABLE II. Bond configurations and their probabilities. The
symbols r and w refer to the cases when the proton is on the
right and wrong side of the bond, respectively.

r w
Probability Vertex state Vertex state  Probability
X Xpy(1—2)~! (rw,r) (w,rw) XXX "1
XoXpy(1—x)"" (rw,0) (w,w) xgx !
xH1—x)~! (r,7) (0,rw) XXX !
X, x{1—x)""} (r,0) (0,w) XoXpx !

in Table II. The probability that the proton in the tagged
bond is in the right (wrong) position with the connected
vertices of type (u,v) is denoted by p”(u | v) [p™@(u | v)].
Within the context of the random-mixing approximation
for the configuration {x,} this is given by

(a)

PP v=C%%,x.gNu|v), a=ruw (A3)

where C'* is a normalization factor determined by the
sum rules

Spu|vi=1—x,

v (A4)

zp(w)(lJ | vi=x ,

TR
and g'®(u|v) is a compatibility factor which in the
present case is either 1 or 0 depending on whether the con-
figuration (u,v) is allowed or not allowed. For example,
grw | rw) =g (rw | rw)=0, while g7 (rw |r)=g™
(w | rw)=1. For the present problem there are 2 X 4*=32
distinct g®(u |v)’s. Simple considerations reveal that
only eight are nonzero. This result combined with Egs.
(A3) and (A4) lead to the probabilities shown in Table II.

The calculation of the kinetic energy matrix element

proceeds by employing the results of Table II in conjunc-
tion with the formula given in Eq. (3.19). Recalling that
we have chosen Ny and N, as the independent variables
one obtains

S= 3 QNo,N)A(No,Ny)[2%,%0(1—x) " A(No, N + 14 x3(1—x) "4 (Ng—1,N, +1)

lNO)Nx]

+x2(1—x)"'4(Ng+1,N, + 1) +2x0x,x ~'4(Ny, N,

+x2x A (Ng+1,Ny — ) 4-x5x ~'"A(Ny—1,N, —1)] .

Further simplification is effected by employing Eq. (3.22).
For the 1D TIM we have

_______i!____ NN, N+ N
QUNo,Nx)= N,!Nw!Nm,!No!( +)
Xx V(1 —x)N1=%) (A7)
and hence

(A5)
~1)
(A6)
T
A(N0+n0,Nx+nx)_ 1—x /2
A(Ny,N,) x
><x8°x:¢,n"—n°)/2x,—(n°+n")/2, (A8)

where ng,n, can assume the values 0,+1. Combining Eqs.
(A6) and (A8) yields



Q(No, N )JAHN, N )2[x (1—x)]7 72

X [2x0(x, %) 2+ x0(x, +%,)]

=2[XF(1—X)]" V[ 2%0(X,%,) !+ %(X, +%,)] . (A9

This result corresponds to the first term in Eq. (4.4) of the
text. Equation (3.26b) is derived in an analogous fashion
but the analysis is considerably more tedious.

APPENDIX B

An alternative approach to deriving the variational
ground-state energy within the random-mixing approxi-
mation is based on the concept of a “bond orbital.” This
object describes the position (r or w) of a tagged proton in
a particular bond and also the state of the two associated
vertices. These considerations constitute a complete
description of the state of a bond and suggests the
introduction of bond orbitals (in ket notation):
Inf,"’(l)n(,, ~9%2));. The superscript o=r,w (and
1 —o=w,r, respectively) denotes the position of the pro-
ton in the bond /, and n,(1) and n,(2) specifies the corre-
sponding vertex types. The bond orbital states are formal-
ly defined by the effect of the Hamiltonian operators on
them. For example, the potential-energy operator, €.V,
can be expressed as a lattice sum over vertices

~ N
eN,=1e, 3 I aP0). (B1)
O=rwi=1
Then
A1) [ng (Dny) = 7(2)) =848, na (1)n}) ~¥(2)
(B2)
and
(nZ (N =7 2) [ (DM (2)) =8,48,,000 -
(B3)
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The above relations make it clear that the bond orbitals
are in an occupation number representation and the 7. Lo)(l )
simply test whether the /th vertex is of the vth type with
the associated proton in the 6th position.

The effect of the kinetic energy operator for the /th pro-
ton (bond), s 7, is to simply flip the proton to the opposite
side of the bond. It does not change the positions of the
secondary protons that serve to define the state of the two
vertices associated with the /th bond. Of course, the hop-
ping of the single proton in the /th bond will change the
state of the corresponding two vertices in a unique
fashion. With these rules, the trial ground-state wave
function can be written as a product of “molecular” orbits
for each bond

2N
Wo= [ (1), (B4)
=1
where
D= 3 I [CU%,%,8Naly)]?
o=nw a,y
X [n(Dnd=2)), . (BS)

The molecular orbital, ®,, is a symmetric linear combina-
tion of all the possible bond orbitals with each individual
coefficient given by the square root of the probability of
finding the bond in a particular state as computed within
the framework of the random-mixing approximation.
Calculation of the energy expectation value for the trial
state of Eq. (B4) yields the same result as obtained by the
procedure discussed in Sec. III and Appendix A. There-
fore, the alternative formulation described above provides
a somewhat simpler (both conceptually and computation-
ally) picture of the physical content of the random-mixing
approximation. The role of the average values of the or-
der parameters, {X,}, as variational parameters is particu-
larly clear from Eq. (B5).
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