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A recently developed ground state variational wave function theory of hydrogen-bonded crystals 
is employed to investigate the high pressure behavior of several ice polymorphs. The theory 
accurately accounts for short and long range proton correlations and quantum mechanical 
tunneling, all of which are important in the high pressure regime. Attention is focused on pressure 
induced order~isorder phase transitions and hydrogen-bond symmetrization for the ices VII, 
VIII, and Ic. We find a strongly first order transition (driven by proton tunneling) at 
approximately 330 kbar from the antiferroelectrically ordered ice VIII phase to a highly ionized 
form of proton disordered ice VII. Despite the large degree of ionization, significant short range 
proton order remains at the transition as indicated by the bimodality of the proton charge density 
along the bond. The crossover to a unimodal situation, i.e., hydrogen-bond symmetrization, is 
predicted to occur at 450 kbar. The effects of deuterium isotope substitution on these phenomena 
are also studied. Calculations for the lower density cubic form of ice indicate that it may be 
possible to observe symmetrical hydrogen bonds in this material at a significantly lower pressure 
than those required for the dense ices. 

I. INTRODUCTION 

Recent development of the diamond anvil pressure cell 
technique has opened up new vistas in the area of high pres­
sure research. I The accessibility of megabar pressures under 
controlled conditions allows the study of a range of fascinat­
ing new phenomena in a variety of materials. Very recently, 
Raman and x-ray techniques were applied2 in a study of the 
high pressure properties of the proton disordered ice VII. A 
major goal of that work was the search for symmetrical hy­
drogen bonds at very high pressure. Such a situation corre­
sponds to a radical change in the bonding of protons in the 
ice crystal. At low pressures, protons exhibit a very strong 
degree of short range order owing to their overwhelming 
propensity to form intact water molecules. However, as the 
oxygen atoms of the ice lattice are pushed closer together by 
applying pressure, the picture of ice as a molecular crystal 
begins to break down. At some specific very high pressure, 
one expects to enter the regime where the proton charge 
density along the bond exhibits a single maximum at precise­
ly the bond midpoint. Such a situation is usually referred, to 
as a symmetrical hydrogen bond. Clearly, the strong short 
range proton order has been destroyed at this point and ice 
can no longer be described as a molecular crystal but rather 
something more akin to a covalent or ionic solid. Such a 
"transition" is not expected to be a true thermodynamic 
phase change but rather a more gradual phenomenon de­
scribing the "crossover" from a molecular picture to one 
where virtually all short range proton order has disappeared. 
This crossover phenomenon is directly observable via neu­
tron diffraction and indirectly by the dramatic changes ex­
pected to occur in the vibrational dynamics associated with 
proton motions. In particular, the description of proton mo­
tions as perturbed molecular oscillators must be replaced by 
an anharmonic phonon picture. 

The crossover in the nature of the dynamical excita­
tions of ferroelectric materials near structural phase transi­
tions has been of considerable theoretical and experimental 
interest recently.3 In particular, the appearance above the 
transition temperature of an intense central peak in dynamic 
light scattering experiments has been interpreted as a signa­
ture of the crossover phenomenon. It is thought to represent 
the onset of short range order or cluster formation that acts 
as a precursor for the low temperature long range ordered 
phase. Similar intense central peak phenomena have recent­
ly been observed for hexagonal ice at atmospheric pressure.4 

The microscopic origin of this peak is not understood at 
present, but its evolution under pressure is certainly an inter­
esting question which may be related to the expected de­
struction of short range proton order as one approaches the, 
hydrogen-bond symmetrization regime. Recent workers 
have speculated4 that the central peak is intimately related to 
defects in the ice crystal. If this is true then pressure mea­
surements may be very helpful in unraveling the mechanism 
of this phenomenon since the orientational (Bjerrum) and 
ionic defects behave very differently as a function of pres­
sure. 

Another interesting phenomenon becomes possible at 
very high pressures if one studies a crystal that exhibits long 
range proton order at relatively low pressures, e.g., the anti­
ferroelectric ice VIII. Increasing pressure deforms the bond 
potential that a proton experiences in such a way as to give 
rise to a tunnel splitting of the ground vibrational level. This 
introduces quantum fluctuations into the system corre­
sponding to proton tunneling from one side of the bond to 
the other. Such fluctuations tend to destroy the long range 
proton ordered state and eventually one expects the competi­
tion between proton tunneling and proton-proton interac­
tons to lead to a phase transition ofthe order~isorder type. 
Such a phase change is observable via a variety of experimen-
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tal methods (e.g., dielectric constant, polarization hysteresis 
loops, calorimetry). A related question is whether the phase 
transition occurs before (i.e., at lower pressure) or after the 
hydrogen bond symmetrizes. 

We have previously attempted to address these ques­
tions theoretically for several ice polymorphs5 (we hereafter 
refer to that paper as I). Simple mean field theory and soft 
mode calculations were employed and our tentative conclu­
sion was that pressures of the order ofO. 5-1 Mbar were need­
ed to observe the order~isorder phase transition and hydro­
gen-bond symmetrization. The picture of the phase 
transition that emerged from the simple treatment was a 
continuous (second order) phase change driven by the ap­
pearance of a large number of ions in the crystal due to pro­
ton tunneling. In particular, there was an ionization catas­
trophe in the sense that the maximum number of ions that 
can be present in ice appears at the transition point. At high­
er pressures the ice was proton disordered, and is describable 
in terms of independent protons coherently tunneling back 
and forth. 

The basic prediction of mean field theory is a pressure 
induced phase transition from a proton ordered to a proton 
disordered state. This is certainly qualitatively correct. 
However, mean field theory is not quantitatively reliable and 
its detailed qualitative predictions of a continuous phase 
change and complete ionization catastrophe as the mecha­
nism of the symmetry breaking cannot be trusted. Indeed, 
because the pressures needed to observe the transition are 
expected to be so high, a quantitatively reliable prediction of 
the transition pressure is a serious experimental question. 
These considerations have led us very recently to develop a 
much more detailed theory which simultaneously addresses 
the questions of short range and long range proton correla­
tions and the quantum tunneling aspect6 (we hereafter refer 
to that paper as II). We have argued in paper II that such a 
theory should be quite accurate for the three dimensional 
materials of interest. 

The purpose of the present paper is to apply our recent­
ly developed theory to examine quantitatively the high pres­
sure behavior of several ice polymorphs. We shall be con­
cerned primarily with the dense ices VII and VIII. Cubic ice 
I will be briefly considered. The questions and phenomena 
addressed for ice in this paper are also relevant to a variety of 
more well studied hydrogen-bonded ferroelectric crystals. 
The application of the theory to these materials is discussed 
elsewhere.7 

The remainder of the paper is structured as follows. In 
Sec. II we briefly discuss the theory and summarize the rel­
evant formulas. Calculations and predictions for the high 
pressure ice polymorphs of interest are presented in Sec. III. 
The effect of isotope substitution and the detailed qualitative 
physical picture of the quantum-fluctuation-driven transi­
tion are discussed. The paper concludes with a discussion of 
the significance of our work and future directions of re­
search. 

II. THEORY 

The present section is devoted to a brief outline of the 
theory developed in paper II. Only the zero temperature 

ground state problem was addressed in II. There are three 
reasons for such a restricted view. First, there is the obvious 
theoretical simplification obtained by neglecting excited 
states. Second, the low temperature regime is of fundamental 
interest because thermal fluctuations will be largely frozen 
out thereby enabling one to study more directly the purely 
quantum aspect of the proton tunneling driven high pressure 
phenomena. Finally, even at the high pressures of interest, 
ion formation energies are still large enough that the activat­
ed thermal mechanism for their creation appears to be a 
much less efficient process as compared to the purely quan­
tum mechanical state mixing mechanism, even at relatively 
high temperatures. This statement will be made more precise 
in Sec. III where calculations are presented to support this 
conclusion. 

A. Model Hamiltonian 

We begin by considering the Hamiltonian adopted to 
describe the interacting protons in ice. There are three basic 
considerations. Two of these involve a detailed description 
of the energetics associated with the different (localized) pro­
ton configurations in the crystal. The first consideration is 
that protons prefer to be arranged in such a fashion as to 
obey the Bernal-Fowler-Pauling ice rules,8 i.e., they form 
intact water molecules. This tendency arises microscopically 
from short range (four-body) proton-proton interactions 
between the four protons surrounding a particular oxygen. 
We therefore introduce the positive energies Eland E2 (a neu­
tral water molecule is taken to correspond to zero energy) 
needed to form a singly charged ion (H30+ and OH-) and a 
doubly charged ion (H40 + + and 0 - -), respectively. The 
second consideration addresses the fact that there are longer 
ranged residual two-body interactions between protons, pri­
marily of dipole character. It is these interactions that lift the 
degeneracy of the different neutral water molecule configu­
rations in the crystal. In particular, one can identify5 a single 
neutral water molecule configuration (and its symmetry-re­
lated partners) that has the lowest classical potential energy, 
- 2NJ, where 2N is the number of protons in the crystal. 

For this lowest energy, long range proton ordered state, each 
proton has a unique side of the bond it prefers to inhabit. 
These two considerations suggest a classification scheme 
based on the number of oxygens in ice of a particular "type" 
or "state." For each configuration of protons, every oxygen 
is classified by: (1) its charge state (ionicity = the number of 
protons "belonging" to it), and (2) the position of each pro­
ton, either "right" (r) or "wrong" (w) as defined by the lowest 
energy long ranged proton ordered configuration. The for­
mer criterion introduces the order parameters ! Na I which 
represent the number of oxygens in the crystal of type a. 
Several examples are shown in Fig. 1. The latter criterion 
introduces an order parameter x that measures the degree of 
long range proton order. It is defined such that 2Nx is the 
number of protons in the crystal that are in the wrong posi­
tion. Detailed analysis6 allows a description in terms of five 
independent order parameters or oxygen types with the re­
sulting potential energy per proton: 

V /2N = E1(X r + xw) + E2XO - J(I - 2xl2
, (2.1) 

where the oxygen type fractions Xu = Na/N have been in-
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troduced and where x, and Xw can be expressed in terms of 
the five independent order parameters, x, xo' X,,, x,w and 
Xww: 

x, = (x -~) + ~(x" - Xrw - 3xww - lxo), (2.2) 

Xw = (i - x) + l(xww - x,w - 3x" - lxo). (2.3) 

The long range residual dipole interaction in Eq. (2.1) has 
been treated at a mean field or infinite range level. 

The final consideration is quantization of proton mo­
tion. We adopt a two-state model corresponding to the pair 
of resonance-split ground vibrational states. For concrete­
ness we employ a double Morse potential model (see Appen­
dix for details) for the single bond proton motion (see Fig. 2). 
The one-body Schrodinger equation can be solved for the 
two lowest energy states <1>o(r) and <1>.(r) and their corre­
sponding energies Eo and E., respectively. Symmetric and 
antisymmetric linear combinations of these states yield orbi­
tals <1> ± (r) that are localized on one side of the bond or the 
other. By working in this representation oflocalized or wave 
packet states one can identify the proton as bemg on either 
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FIG. 2. Typical form of the double Morse potential in the high pressure 
regime. The abscissa y is the deviation of the proton position from the bond 
midpoint. The pair of tunnel-split ground vibrational levels are separated by 
an energy 2 K. 

No 

FIG. 1. Four coordinated vertex with the two 
possible proton positions along each bond la­
beled as right (r) or wrong (w). Three different 
proton configurations around the central vertex 
are displayed along with their corresponding 
notational designation. 

the right or wrong side of the bond. The single bond Hamil­
tonian matrix element that couples these two localized states 
is referred to as the tunnel splitting K and is given by 
2K =E. - Eo. This two-state description is mathematically 
expressible in terms of the usual Pauli spin oprators, with 
kinetic energy given by 

2N 

T= -KLS;, (2.4) 
i= 1 

The full many-body Hamiltonian is taken to be the sum of 
Eqs. (2.1) and (2.4): 

(2.5) 

The model introduces four characteristic energies: K, E., E2, 

J describing the quantum tunneling, short range, and long 
range proton-proton interactions, respectively. The param­
eters are both crystal-structure and pressure dependent. 

B. Ground state wave function 

The zero temperature properties of the Hamiltonian 
(2.5) are obtained by constructing a theory for the ground 
state wave function. A formally exact expression for the 
ground state can be written as a linear combination of the 
orthonormal Hartree orbitals: 

2N 

I{/ = LA (lSk j) IIXj(Sj;[Sd), (2.6) 
I Ski j~. 

where [S k J denotes a particular configuration of all the pro­
tons (Sk is the eigenvalue ofthez-component Pauli spin oper­
ator and can assume the values ± 1 corresponding to the 
two possible proton positions in each bond) and Xj (S;; [Sk J) 
indicates which side of the bond proton j is on for the config­
uration ! Sk J. Further progress requires the selection of a 
trial wave function in which the dependence of the ampli­
tudes A ([ S k J ) on the specific proton configuration [S k J has 
been simplified. The fundamental approximation intro­
duced in paper II was the adoption of a trial wave function of 
the form: 

2N 

I{/,= L A (INa J,x) L IIXj(Sj;[Sk j). (2.7) 
I Na.xl ISkIEINa,xJj~. 

The physical content of this approximation is that all proton 
configurations with the same set of order parameters or oxy-
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types, {Na,xj, occur with equal probability in the ground state. As a consequence, for a fixed set of {Na,xl the real-space 
proton positions are random subject only to the global oxygen type number constraints and geometrical exclusion constraints. 
Detailed analysis6 allows one to derive an explicit expression for the trial ground state energy in terms of the five independent 
variational parameters: 

E /2NK =T /2NK + V 12NK, (2.S) 
V /2NK=(EI/K)(x, + xw) + (Ez/K)xo - (J /K)(l - 2xf (2.9) 

T /2NK ==:=[x(l - x)] ~ 112{2xO(X,xw)IIZ + xo(x, + xw) + 2xrw (X,xw)1/2 + x, [2(XoXrw)IIZ + 2(XrwX,,)1/2 

+ 2(XoX,,)1/2 + x" + xrw] + Xw [2(XoXrw)1/2 + 2(Xrwxww)I/Z + 2(XoXww)1/2 + Xww + xrw] 

+ 4(xoX,xwxrwlIIZ + 2(xoX,xwX,,)IIZ + 2(xoX,xwx ww )IIZ + 2(x,xwXrwx ww )1/2 

+ 2{x,xwx rwx"lI!Z + 2(x,xwX"xww )IIZ}, (2.1O) 

wherexa ={ 1[1, INa 11[1, )/N, and x, andxw are given by Eqs. (2.2) and (2.3). The five parametersxa are determined by energy 
minimization 

aE =0. 
aXa 

(2.11) 

The structural quantity relevant to the hydrogen-bond symmetrization question is the proton density along a bond 

p(r)=( 1[1, 18(r - rl)II[I,)· (2.12) 

Within the context of the present theory, one can derive the explicit result 

p(r) =! {[X 1/2 + (1 - x)1/2]cPo(r) + [XI/2 - (1 - x)IIZ]cPI(rW +! I (SX) - 2[x(1 - xJFIZJ[ cPo(r) + cPI(r)][ cPo(r) - cPI(r)]. 
(2.13) 

As before, cPo and cPI are the ground and first excited 
states for the single bond (double Morse potential) Schro­
dinger equation and (SX ) = T /2NK in Eq. (2.10). It is impor­
tant to note that even in the proton disordered phase (x==:=!), 
p(r) is not the independent proton density (i.e., ground state 
IcPo(rW). In general, there is a condensed-phase-induced 
component, given by the second term in Eq. (2.13), due to 
short range proton correlations that tend to suppress tunnel­
ing. 

III. APPLICATIONS 
A. Hamiltonian parameters 

To apply our theory to real materials we must deter­
mine the values of the interaction parameters (K,E I,E2, J) and 
their dependence on pressure. The general philosophy 
adopted has been to employ all the relevant experimental 
information that is available to determine the parameter val­
ues at low pressure. The change in these values with pressure 
is calculated with the aid of specific models. 

1. Bond potential 

A bond potential of the double Morse form has been 
employed. The details of the potential are discussed in the 
Appendix. The important feature is its dependence on four 
parameters: r OH • Roo, V OH ,aOH • We follow Holzapfel9 and 
fix these potential parameters from known information. In 
particular the OH covalent bond length (rO")' oxygen-oxy­
gen separation (R 00 ). bond dissociation energy (V OH ), ionic 
activation energy (E A)' and OH stretch zero point energy 
(liwal2) at atmospheric pressure are employed. These values 
are summarized in Table I along with the determined poten­
tial parameters. As demonstrated by Holzapfel,9 the result­
ing Morse potential prediction for the variation of OH cova­
lent bond length with oxygen-oxygen separation r OH (R oo) 

is in good agreement with direct experimental measure­
mentsll of rOH and Roo for a wide variety of hydrogen­
bonded materials. In addition. the model Morse potential 
changes from bistable to monostable at R 00 ~2.4 A. This 
result is in good agreement with ab initio quantum chemical 
calculations on small water clusters. 12 We therefore expect 
this bond potential to be reliable over a wide range of pres­
sure. Different ice polymorphs have different values for rOH 

and Roo, but we assume the ion activation energy. zero 
point energy. and bond dissociation energy are identical. 

We also require the tunneling splitting K of the ground 
vibrational state as a function of Roo (Le. pressure). Explicit 
calculation of this quantity for the double Morse potential is 
discussed in the Appendix. 

TABLE I. Parameters employed for the low pressure situations latmo­
spheric pressure for ice I and ~21 kbar for the dense icesl. The values were 
obtained from Ref. 10 unless indicated otherwise. 

Ice VII/VIII Ice I 

rOH(A.) 0.95 1.0 
RoolA.) 2.86 2.76 
V OH (kcal/mol)" 123 123 
EA Ikca1!mollb 13 13 
Eoo 2.56 1.70 
wo/2lkcal/mollc 5 5 
aoHIA.-1)d 2.8 3.1 

a Taken to be the sum of the single water molecule bond dissociation energy 
1118 kca1!mol) and the proton zero point energy. 

bReference 9. 
c The small differences between the proton zero point energy in the dense 
ices and ice I have been ignored. We have adopted the same value em­
ployed in Ref. 9. 

d Determined by requiring that the barrier separating the two minima of the 
double Morse bond potential be equal to the sum of the ionic activation 
energy and the proton zero point energy. 
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2. Proton interaction energies 

The relevant parameters are the singly and doubly 
charged ion formation energies EI and E2, respectively, and 
the stabilization energy per proton J of the lowest energy 
long range proton ordered state. The singly charged ion for­
mation energy has been experimentally measured 10 for hex­
agonal ice and is found to be 11 ± 1.5 kcallmol. The corre­
sponding quantity for the dense ices VII and VIII is not 
available. We therefore estimate the appropriate value by 
assuming the primary microscopic interaction between pro­
tons that determines the energetics is of dipolar form. In this 
case, all protonic energies scale with the factor f5 

1=(q2/€", )1 (<Polrl<PIW/R boo (3.1) 

Here, q is the effective proton charge, E", the optical dielec­
tric constant, R 00 the oxygen separation, and (<Po I rl <P I) the 
dipole matrix element. Hence, we estimate the ionic forma­
tion energy for ice VII (and by implication ice VIII) by 

EI(VIII) = I(VII) .11 kcal. 
1(1) mol 

(3.2) 

To implement Eq. (3.2) we employ known structural param­
eters for the two ices (see the table) and assume q to be the 
same for the two polymorphs. The resulting estimate is suffi­
ciently close to the hexagonal ice value that in view of the 
crudeness of our calculation we simply adopt the value of 11 
kcallmol for the dense ices also. 

Direct measurement of the doubly charged ion forma­
tion energy E2 are not available. Simple estimates based on 
the point dipole model yield E2 = 3EI. We expect this to be a 
lower bound since packing four protons around an oxygen 
will lead to additional short range overlap repulsive contri­
butions to the energy. We adopt the value E2 = 4E I. Our re­
sults are not sensitive to reasonable variations of this quanti­
ty. 

The long range interaction energy J is fixed by requiring 
the experimentally determined low pressure (- 21 kbar) 
phase transition temperature Tc = 0 °C be reproduced by 
the classical finite temperature cluster theory with the pa­
rameters Eland E2 chosen as described above. There are 
slightly different formulations of the classical theory due to 
many workers. 13-15 We employ the formulas given by Eqs. 
(3.6)-(3.10) in paper II. Application of this approach yields a 
very strong first order transition as is observed experimen­
tally. A value of J = 0.174 Tc is required to reproduce the 
experimental transition temperature. 

The trial ground state energy [Eqs. (2.8)-(2.10)] can be 
expressed as a function of three dimensionless energy scales: 
E(EI/J, E2iE l ,K IJ). For the dense ices VII and VIII one has 
EIIJ = 110 and E21EI = 4. The simplifying assumption that 
these three energies have a common microscopic origin re­
quires they exhibit the same pressure dependence. There­
fore, E'; J and E21 E I are taken to be pressure independent. 
Pressure dependence enters solely via the parameter K I J. 
The dependence of K on pressure (or equivalently Roo) is 
calculated directly from the Morse bond potential model, 
whileJis assumed to vary with pressure as the factorlin Eq. 
(3.1) with q2/E", taken to be oxygen separation independent. 
Equation of state data is available for the dense ices2

•
16 allow-

ing us to compute the pressure corresponding to a given 

Roo· 

B. Ice VIIIIVII 

The dense ices VII and VIII are composed of a pair of 
interpenetrating but not interconnecting hydrogen-bonded 
ice Ic sublattices (see Fig. 3). They are stable only at pressures 
exceeding roughly 20 kbar. Ice VII has a body centered cubic 
structure in which each water molecule is eightfold coordi­
nated. It is largely proton disordered over its canonical ice­
rule structures. The crystal of ice VIII is tetragonal, corre­
sponding to a slight (7J~0.02217 in Fig. 3) distortion of one 
sublattice with respect to the other. This form is strongly 
proton ordered in an antiferroelectric fashion corresponding 
to completely polarized sublattices of water molecules with 
their molecular dipoles all parallel and anti parallel to the 
tetragonal distortion axis. 10 At room temperature, ice VII is 
the stable phase but upon cooling to about 0 °C one en­
counters a strong first order phase boundary below which ice 
VIII is stable. 

1. Pressure induced order-<iisorder phase transition 

Calculations were performed by numerically solving 
the five coupled algebraic equations (2.11) with the interac­
tion parameters discussed above. The variation of tunnel 
splitting and proton-proton interaction energies with oxy­
gen separation is shown in Fig. 4. We find a strong first order 
phase transition from the ordered ice VIII phase to disor­
dered ice VII at a pressure of 330 kbar (R 00 = 2.523 A). The 
corresponding deuterated crystal undergoes a transition at 
R 00 ~2.49 A or 390 kbar (the only effect of deuteration was 
assumed to be the mass change and hence decreased tunnel 
splitting). The pressure dependence of the long range order 
parameter (11 - 2x I, assumed to be proportional to the sub-

FIG. 3. Oxygen lattice framework for the dense ices. The lattice constant is 
labeled a, and Tf is the uniaxial displacement parameter which is zero for ice 
VII but nonzero for ice VIII. 
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FIG. 4. The solid curve is the tunnel splitting K in cm - I for the dense ices 
plotted as a function of oxygen separation in angstroms. The dipolar scale 
factor [see Eq. (3.1)] in arbitrary units is denoted by the dashed curve. 

lattice polarization) is shown in Fig. 5. The transition should 
be directly detectable by dielectric measurements analogous 
to those employed by Whalley18 in his pioneering work that 
led to the discovery of ice VIII. 

In an effort to gain a more microscopic picture of the 
transition, we have calculated the singly charged ion concen­
tration at high pressure. Figure 6 presents our results for the 
logarithm of the hydronium ion concentration as a function 
of pressure or oxygen separation. There are several points of 
interest concerning these results. One is the dramatic in­
crease in ion concentration as the pressure increases. At the 
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FIG. 5. Sublattice polarization as a function of oxygen separation (ang­
stroms) and pressure (kbar). 
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FIG. 6. The solid curve is the ground state theory calculation of the loga­
rithm of the hydronium ion concentration as a function of oxygen separa­
tion (angstroms) and pressure (kbar). The horizontal long-dashed line is the 
asymptotic limit corresponding to a random (entirely uncorrelated) distri­
bution of protons in ice. The short-dashed curves are the classical finite 
temperature predictions discussed in the text. 

transition the crystal is highly ionized, [H30+]=0.063, and 
there is a discontinuous jump in [H30+] by a factor of ap­
proximately 2.1. Nevertheless, one does not have a complete 
ionization catastrophe as predicted by the simple mean field 
theory.5 The protons are not randomly distributed on either 
side of the bond (this would correspond to [H30+] = 0.25) 
but still prefer to arrange themselves in such a way as to form 
intact water molecules. Just below the transition the concen­
tration ofintact water molecules is approximately 0.87. Con­
sequently, there is still a significant amount of short range 
proton order at the transition. 

In the strongly ordered regime (polarization >0.98), the 
dependence of the ion concentration on tunnel splitting is 
particularly simple: 

[H30 +] cr.K2. (3.3) 

Such behavior is expected from first order perturbation the­
ory mixing of ionic configurations into the neutral water 
molecule ground state. The constant of proportionality is a 
decreasing function of EJ and E2• 

It is clear from our calculations that the physical mech­
anism for destruction of the ordered phase is the dramatic 
increase in ionic configurations due to quantum mechanical 
tunneling. Strictly speaking, the theory applies only to the 
zero temperature case or at best to the very low temperature 
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regime. The question then arises as to whether our results 
have any significance at the more readily accessible elevated 
temperatures, e.g., 75<T<300 K. This question can be un­
ambiguously answered only if we can generalize the present 
theory to finite temperatures. This problem is under study 
but has not been fully resolved. However, one can gain a 
qualitative feeling for the importance of thermal fluctuations 
by asking the following question: If one turns off the quan­
tum tunneling (K = 0), how does the thermally generated ion 
concentration increase with pressure? This question can be 
answered by applying the finite temperature classical cluster 
theory discussed previously in regard to the determination of 
the parameter J for the ice VIII/VII transition. The results 
of such a calculation for three temperatures is shown in Fig. 
5. At high pressures, the over-the-barrier thermal fluctu­
ation mechanism for ion creation is clearly insignificant 
compared with the quantum tunneling process for the 75 
and 150 K cases. At 300 K, the classical thermal fluctuation 
mechanism is important, but near the transition pressure the 
quantum process again becomes more efficient. The reason 
for this behavior is that although the ion formation energy 
decreases with pressure (see Fig. 4), it is still large compared 
to the thermal energy scale. Therefore, since the classical ion 
concentration is roughly proportional to exp( - €/kB T), 
this mechanism is still relatively inefficient. These results 
suggest that thermal fluctuations at finite T may not serious­
ly modify the predictions we have made using the ground 
state quantum theory. One conclusion that can be emphati­
cally drawn is that finite temperature effects can only desta­
bilize the ordered phase, thereby lowering our predicted 
transition pressure. 

Another interesting question involves the nature of the 
proton density along a bond at the transition. This has been 
computed using Eq. (2.13) and the result is displayed in Fig. 
7. Because the transition is strongly first order, there is a 
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FIG. 7. Normalized proton density along the bond plotted as a function of 
the displacement (in angstroms) from the bond midpoint. The proton den­
sity at a pressure just below (long-dashed curve) and just above (short­
dashed curve) the first order phase transition is shown. The single bond 
Morse potential and the corresponding pair of tunnel-split energy levels are 
also displayed with the energy scale indicated by the vertical arrow. 
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FIG. 8. Ground state average of the kinetic energy or tunneling operator as 
a function of oxygen separation (angstroms) and pressure (kbar). 

dramatic discontinuous expansion of the proton density 
along the bond at the transition. However, the disordered 
phase proton density is still strongly bimodal thereby indi­
cating the presence of a significant degree of short range 
proton order even though the material is highly ionized. 
Clearly, further compression is required to reach the point 
where the hydrogen bond becomes symmetrized (unimo­
dal). 

Another property related to the proton density along 
the bond is the average kinetic energy operator (S > which is 
a measure of the effective tunnel splitting Keff in the con­
densed phase.6 At zero temperature this relationship can be 
made precise by defining 

Keff =K (S >. (3.4) 

In general, (S > < 1 due to the localizing influence of the 
short and long range proton-proton interactions. Figure 8 
vividly demonstrates the importance of the short range cor­
relations even above the transition. 

2. Hydrogen-bond symmetrization 

We now tum to the question of hydrogen-bond symme­
trization. Experimentally, one can detect this crossover 
phenomenon directly by neutron diffraction. These experi­
ments are difficult, however, and recent workers2 have taken 
the indirect approach of Raman scattering measurements in 
the O-H stretching frequency regime. The idea is that as 
Roo decreases, the O-H bond length rOH stretches and this 
leads to the well known decrease of the O-H force constant 
and corresponding shift of the O-H stretching frequency to 
the red. Eventually, when the proton has moved to the bond 
center on the average (rOH = R 0012). further compression 
of R 00 will increase the force constant and lead to an in-
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crease in frequency of the Raman peak. Therefore, the hy­
drogen-bond symmetrization point should be detectable as a 
minimum in the Raman peak position as a function of pres­
sure. Walrafen et aU have searched for this phenomenon in 
ice VII at room temperature up to 320 kbar but found no 
such minimum. We have applied our theory to this question 
by calculating the pressure at which the single bond proton 
density becomes peaked at the bond midpoint. A rigorous 
equivalence of this criterion for hydrogen-bond symmetriza­
tion and the Raman peak minimum is not obvious but on 
intuitive physical grounds one expects the two criteria to be 
very closely related. The result of our calculation is shown in 
Fig. 9 where we conclude that the hydrogen bond symme­
trizes at -450 kbar. This pressure is within the capabilities 
ofthe diamond anvil pressure cell method. We also suggest 
that the vibrational spectrum due to proton dynamics will be 
considerably different at 450 kbar as compared to the results 
found at 320 kbar. At the lower pressure, the spectrum still 
resembled what one expects for perturbed molecular O-H 
oscillators. However, once the hydrogen bond symmetrizes, 
the differentiation between covalent and hydrogen bonds no 
longer applies. Therefore a more appropriate description of 
the protonic vibrational spectrum is in terms of optical phon­
ons with four distinct branches in the case of ice VII.5 

Finally, one may question whether the use of a two­
state approximation in the pressure regime relevant to the 
hydrogen-bond symmetrization phenomenon is valid. In 
this pressure region, the barrier associated with the single 
bond Morse potential is so small that the energy separation 
between the lowest two "tunnel split" states is comparable to 
the energy differences of the higher"vibrational" states. In­
deed, the lowest energy state is very close in energy to the 
barrier height, and once it drifts above the barrier the single 
bond ground state eigenfunction becomes peaked at the 
bond center. This suggests an alternative lattice dynamical 
approach to the hydrogen-bond symmetrization question 
which we now briefly consider. 
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Fig. 9. Proton density in the disordered phase corresponding to the oxygen 
separation at which the crossover to symmetrical hydrogen bonds occurs. 
As in Fig. 7 the single bond Morse potential and the tunnel-split energy 
levels are also displayed. 

sonable to replace the double Morse bond potential by an 
appropriately chosen harmonic oscillator potential. The 
curvature keff of the effective harmonic potential is varia­
tionally chosen by introducing a trial ground state wave 
function·ofthe harmonic oscillator form: 

(3.5) 
(3.6) 

where m is the proton mass and Wo is a parameter determined 
by requiring the single bond ground state energy for the true 
double Morse potential V M (r) be a minimum when calculat­
ed using the trial harmonic oscillator state, i.e., 

(3.7) 

Equation (3.7) precisely defines keff = mw~ for any value of 
oxygen separation Roo. With the effective harmonic oscilla­
tor bond potential in hand, we can perform lattice dynamical 
calculations as described in paper I. For ice VII one obtains a 
set of eigenfrequencies corresponding to the four optical 
phonon branches which are labeled by the appropriate reci­
procal lattice vectors and are parametric functions of a di­
mensionless coupling constant5 

A =q2/a3keffEoo. (3.8) 

Here a is the unit cell length parameter, q an effective proton 
charge, and E 00 the optical dielectric constant. In paper I we 
showed that aSA was continuously increased (corresponding 
to continuous decompression of the oxygen lattice), there 
was a protonic lattice instability signified by the appearance 
of a soft mode. This instability occurred at a precisely de­
fined value of A (denoted by Ac ) which was =0.08 for ice VII. 
Since the instability is associated only with the quadratic 
terms in the proton potential energy, it is natural to interpret 
it as the lattice dynamical analog of the hydrogen-bond sym­
metrization point. Therefore the relation 

A = q2/Eoo a3k eff (R g<',)==Ac = 0.08 (3.9) 

represents a closed equation for the oxygen separation R g<'" 
where the hydrogen bond symmetrizes. A quantitative im­
plementation of Eq. (3.9) requires the calculation of keff 
(Roo) via Eq. (3.7), a=2Roo/31/2 for ice VII, and q2/ 
E 00 =0.85e. (The latter result follows from finite cluster cal­
culations of the singly charged ion formation energy for cu­
bic ice within the context of bond point dipole interactions 
between protons. 19 The specific value of q2 / E 00 adopted 
above follows from requiring that these cluster calculations 
reproduce the experimental value for ion formation, i.e., 11 
kcallmol.) The result of such a calculation is the prediction 
of hydrogen-bond symmetrization at R 00 =2.45 A. This is 
very close to the value of 2.46 A obtained from the two-state 
theory. The nearly exact agreement may be fortuitous but 
the result does give us confidence in our prediction of hydro­
gen-bond symmetrization in the neighborhood of 450 kbar, 
using the two-state formalism. 

C. Cubic ice 

Our prediction for the pressure needed to form symmet­
rical hydrogen bonds (::::::450 kbar) in the dense ices is very 
high but should be attainable with modem experimental 
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methods. Nevertheless, the experiment will be difficult and 
it is therefore of interest to consider whether other forms of 
ice may be better candidates in the search for symmetrical 
hydrogen bonds. A possibility is cubic ice. While it is known 
to form only at low pressure it may be possible that if cooled 
to very low temperature, this form of ice could be com­
pressed to the regime of interest without undergoing oxygen­
lattice restructuring (ordinary hexagonal ice should be more 
susceptible to restructuring). Because of the much lower 
density of cubic ice compared to the ices VII and VIII, much 
less pressure should be needed to symmetrize the hydrogen 
bonds than that required for the dense ices. 

With this motivation, we have performed calculations 
of p(r) for cubic ice using the Morse potential parameters in 
Table I and El = 11 kcallmol, E2 = 4E1, J = 0 (cubic ice is 
disordered so x = ! or equivalently J = 0). We find that the 
hydrogen bond symmetrizes at an oxygen separation of 
Roo =2.505 A. Equation of state measurements for cubic 
ice under pressure do not exist. However, because of the 
structural similarity of cubic and hexagonal ice one expects 
they will exhibit nearly identical pressure - Roo behavior. 
For hexagonal ice, the initial pressure derivative is reported 
to be l7 JR oo/Jp = 3.8 A/Mbar. Also, direct measurement 
of Roo (p) for the dense ices2

•
16 reveals a nearly linear rela­

tionship between Roo and pressure up to about 100 kbar. 
Therefore, if we assume such behavior applies for hexagonal 
ice, then the above pressure derivative can be used to esti­
mate the pressure needed to compress hexagonal ice (and by 
implication cubic ice also) from its atmospheric value of 
Roo =2.76 A to the point where our calculation predicts 
hydrogen-bond symmetrization, R 00 =2.505 A. The neces­
sary pressure is found to be 67 kbar. This value is far less than 
the 450 kbar needed for the dense ices and suggests cubic (or 
possibly even hexagonal) ice quenched to low temperature 
may be an easier system to investigate in the search for sym­
metrically hydrogen-bonded ices. 

IV. DISCUSSION 

Our prediction for the high pressure phase diagram of 
ice is shown in Fig. 10. Since we have not performed a finite 
temperature calculation, the precise nature of the high pres­
sure ice VIII/VII phase boundary is somewhat uncertain. 
However, we believe the picture presented in Fig. 10 is qual­
itatively correct, i.e., a nearly horizontal phase boundary 
between the ordered and disordered dense ices. 

The crossover boundary to the symmetrized hydrogen 
bond regime is indicated by the dashed line. Within the con­
text of our theory, this does not represent a thermodynamic 
phase change but rather a gradual destruction of short range 
order. However, one may question whether this conclusion 
will survive a more exact theoretical analysis. In particular, 
one can imagine defining a set of =(3/2)N order parameters 
corresponding to the full set of canonical neutral water mole­
cule structures. These are nearly degenerate and at finite 
temperatures contribute entropically to the free energy of 
the crystal. As the applied pressure is increased, quantum 
fluctuations will tend to destroy the proton order associated 
with each neutral state lying low in energy. One can then 
imagine a "mini" order-disorder transition occurring for 
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FIG. 10. Predicted high pressure phase diagram for H20. 

100 

each neutral water molecule state at some specific high pres­
sure. However, because the neutral molecule states do exhib­
it a small but finite energy dispersion, these symmetry break­
ing transitions will in principle occur sequentially, i.e., one at 
a time. One therefore does not expect a macroscopic thermo­
dynamic anomaly to be precipitated by such a phenomenon, 
and hence the gradual crossover picture should remain valid 
even for an exact theory. 

At pressures not too far above the hydrogen-bond sym­
metrization point one expects the proton dynamics to be de­
scribable in optical phonon terms. The detailed nature of the 
excitations could be probed via inelastic neutron scattering 
experiments and the results interpreted with the aid oflattice 
dynamical calculations such as those performed in paper I. 

Finally, we have argued that finite temperature effects 
due to classical fluctuations are probably not important for 
the very high pressure regime of interest. There remains the 
question of the nature of the low lying quantum excited 
states. For three-dimensional magnetic systems which can 
be described by Heisenberg type spin models, it is well 
known that there are low lying spin wave excitations. These 
correspond to small oscillations of the spin direction about 
the preferred alignment direction. However, for the hydro­
gen-bonded crystal problem, the proton motion is confined 
to the linear hydrogen bonds and is therefore of a one-dimen­
sional character. Consequently the analog of an easy axis of 
magnetization does not seem to exist. One alternative possi­
bility is an excitation spectrum that is particle-like with a 
finite energy gap separating the ground and first excited 
states. If the gap is large compared to the thermal energy 
then our ground state theory should be applicable. Support 
for this picture is found from the nature of the excitation 
spectrum of the exactly solvable20 one-dimensional trans­
verse Ising model. However, a careful study of these ques­
tions is needed for the three-dimensional crystals of interest. 
We are presently studying these matters by attempting to 
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construct the finite temperature analog of our ground state 
theory. The fundamental object is the diagonal density ma­
trix (as opposed to the ground state wave function) and the 
theoretical approach has focused on deriving a closed equa­
tion of motion for this function. We hope to return to this 
aspect in a future publication. 

APPENDIX 

The purpose of this Appendix is to describe in detail the 
Morse bond potential and our calculation of the tunnel split­
ting parameter K. The double Morse bond potential function 
is defined by 

(AI) 

where r is proton distance from the bond midpoint, R 00 the oxygen-oxygen separation, rOH the O-H covalent bond length, 
and the last term in Eq. (AI) simply sets the bond potential energy to zero at the bond midpoint (r = 0). The function UM(Y) is 
the Morse potential: 

UM(Y)=V OH [I - exp( -- aOH ylf, (A2) 

and V OH is the sum of the zero point and bond dissociation energies. The corresponding single proton Schr6dinger equation is 

[ 
fiZ d

2 
] - -- + VM(r) l/I(r)=EI/I(r), 

2m dr (A3) 

where m is the proton (or deuteron) mass and fz is Planck's constant divided by 21T. As discussed in the text we require only the 
two lowest eigenstates and energies ofEq. (A3). For simplicity, we adopt a variational approach by taking trial wave functions 
for the lowest two states of the form 

1/1 ± (r) = C ± (a ± ,d ± )) exp [ - a ± (r + d ± )2] ± exp [ - a ± (r - d ± n J, 
C 2± ==al~2(21T)-1/2 [ 1 ± exp( - 2a ± d 2± )]. 

(A4) 

(A5) 

That is, we have chosen as trial states a symmetric and antisymmetric linear combination of displaced Gaussians. By symme­
try, these trial states are orthogonal and we can therefore determine the parameters (a+,d+) and (a_,d_) by independent 
variational energy minimization. Direct calculation of the energy expectation value using the trial wave functions yields 

E (a,d) = (fiZal2mlll + [4ad 2/( ± 1 + exp(2ad 2) J I + { V OH I[ 1 ± exp( - 2ad 2)] I 
x ( [exp(2aOH d ) ± 2 exp( - 2ad 2) + exp( - 2aOH d )] 

XexplaOH [aoH(2a)-1 + 2rOH - Roo] 1- 2[exp(aOH d) ± 2 exp( - 2ad 2
) + exp( - aoHd)] 

Xexp!aOH[aOH(8a)-I+rOH -Rooll), (A6) 

where (a,d ) = (a + ,d +) for the ground state and (a _ ,d _) for the first excited state. Minimization ofEq. (A6) with respect to the 
two parameters for the two cases yields explicit results for a ± and d ± as functions of V OH, rOH ' Roo, and aOH' From these 
one can calculate the corresponding energies Eo and E I, and thereby compute the tunnel splitting 

K =(EI - Eo)/2. (A 7) 

One also has explicit forms for the ground and first excited state wave functions. In terms of the notation employed in the text: 

<l>o(r)-I/I +(r), 

<l>1(r) I/I_(r). (A8) 

Finally, another quantity of importance is the dipole matrix element 

MOI-(<I>olrl<l>I)' (A9) 

Straightforward manipulations yield the explicit result: 

MOl = 21/2[a +a j(a + + a _)2] 1/4.(a + + a _)-11 [I + exp( - 2a +d 2+ )] [1 - exp( - 2a _d ~ )] )112 

X [[a+d+ + a _d_] exp[(a+d+ + a_d_)2/(a+ + a _I] - [a +d+ - a _d_] exp[(a+d+ - a_d_)2/(a+ + a_)]). 
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