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We have previously shown that diffusion and fluid flow within a liquid may be interpreted as 
transitions between mechanically stable arrangements of the molecules, i.e., local minima in the 
potential energy for the system as a whole. In addition, our previous work has shown that the 
equilibrium thermodynamic properties of the liquid and solid can be rigorously and usefully 
explained in terms of vibrational excitations within, and shifting equilibrium between, these stable 
molecular packings. Previously, we have determined transition rates between various packings as 
a function of temperature, system size, and extent of supercooling. In the present work, we study 
the effect of density on both the number and distribution of packing structures. Molecular 
dynamics simulations were carried out for systems of 32 and 108 argon-like particles at three 
densities. The primary observations and conclusions are: (1) as the density decreases the total 
number of different amorphous packing structures increases; (2) the density at which the 
amorphous material has its minimal average energy is about 3% lower than the density at which 
the crystalline material has its minimal energy; (3) the activation energy to self-diffusion is found 
to increase with increasing density. 

I. INTRODUCTION 

In a series of recent papers 1-4 we have advanced a new 
approach to understanding the liquid state and the melting 
process by separating the statistical mechanics problem of 
constructing a partition function into two parts. In the first 
instance we focus on all of the inherent mechanically stable 
packing configurations. In the second instance we account 
for the vibrational motion, usually anharmonic, about these 
stable points. In the previous work,4 we looked at both the 
static properties such as different packing structures and 
also looked at the transitions between regions belonging to 
different stable configurations. In the present work, we 
study the effect of density variation on the packing struc­
tures and dynamical properties. 

An N particle system in D dimensions subject to period­
ic boundary conditions has a configuration at any time t 

represented by aDN-dimensional vector r(t). If the potential 
energy ofinteraction is given by ifJ (r), assumed to be differen­
tiable, then the stable packing configurations are a subset of 
the solutions to 

VifJ(r) = 0. (Ll) 
The lowest energy solution ofEq. (1.1) yields the stable pack­
ing configuration of maximal crystallinity. Other solutions 
of Eq. (1.1) yield packing configurations which are relative 
minima. 

All of configuration space, with the exception of a few 
configurations of vanishing measure, may be uniquely as­
signed to a particular ifJ minimum by a steepest-descent 
"quench" connection. As the Newtonian equations of mo­
tion evolve in time, r(t) would in principle quench to a se­
quence of different packing configurations presuming that 
the system has sufficient energy to traverse the barriers se­
parating the regions belonging to the various minima. 

One expects4 that the number of local minima n for 
large N will vary with N as follows: 

n;::;N! exp(vN). (1.2) 

The first factor accounts for all the possible permutations of 
particles within a given configuration which yield identical 
energies. The second factor estimates the number of distinct 
ways of arranging stable packings. Rough estimates for v as a 
function of density are provided below for our model poten­
tial. 

In Sec. II we discuss the simple model potential used in 
the present study and also the numerical techniques used to 
generate both the trajectories and the quench configura­
tions. In Sec. III the equation of state for the system at three 
reduced densitiesp = 0.9, 1.0, and 1.1 is presented. In addi­
tion radial distribution functions, hereafter rdrs, are shown 
for both the crystal and the fluid. 

Section IV details the effect of density on the different 
packing states and shows the dramatic way in which both the 
number and distribution of the amorphous. configurations 
change with density. Section V discusses the effect of density 
upon the self-diffusion of particles. The final Sec. VI sum­
marizes the conclusions and points to directions for future 
work. 

II. COMPUTATIONAL PROCEDURE 

The Lennard-Jones 12-6 potential has been used exten­
sively to simulate noble gases such as argon.5

-
7 In reduced 

units this potential has the form 

vu(r) = 4(,-12 - r- 6 ), (2.1) 

which has the following properties: 

vu (l) = 0, 

VU (21/6) = - 1, 

vi.J(2 1/6) = O. 

(2.2) 

A numerical disadvantage of the Lennard-Jones potential is 
that the interactions only go to zero at infinity; it has become 
frequent practice to use a potential cutoff which ignores all 
contributions beyond some fixed distance. The choice of this 
cutoff distance is arbitrary, but produces discontinuities in 
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time derivatives of the forces. Instead of using such an arbi­
trary cutoff we have chosen a potential of the form 

v(r)=A [r-P-r- q
] exp [(r-a)-I] (O<r<a) 

= 0 (a<r) (2.3) 

This potential automatically satisfies the first equation of 
Eq. (2.2) and can be made to satisfy the other two equations 
by an appropriate choice of A and a. In addition vIr) and all of 
its derivatives go to zero at a. When p = 12 and q--6 - , vIr) 
ofEq. (2.3) becomes the 12-6 Lennard-Jones potential. In the 
present study,p = 12 and q = 0 which determines the values 
of A = 8.805 977 and of a = 1.652 194. All force derivatives 
relevant to the dynamics are rendered continuous by the 
form (2.3) 

Molecular dynamics studies of the melting of perfect 
face-centered cubic crystals were performed at three re­
duced densities p = 0.9, 1.0, and 1.1. The melting was ac­
complished by heating perfect crystals which had the normal 
periodic boundary conditions with 4n3 particles in the basic 
cubical cell. Some simulations were performed using 32 par­
ticle cells which allowed the direct counting of all (or nearly 
all) packing structures while the majority of computations 
were performed using 108 particle systems. The classical 
equations of motion were integrated using a fifth-order Gear 
algorithm. 8 

The simulations were carried out in reduced units 
where particle mass was unity, and where the depth and 
range ofv(r) as shown in Eqs. (2.2)-(2.3) fix the units of ener­
gy and distance. Comparison to argon properties may be 
made by recalling that the unit of distance for that substance 
is 3.4 A and the unit of energy is 120 K. The integration time 
step was 

Lit = 0.001 25, (2.4) 
which corresponds to 2.7 X 10-3 ps for Ar. After the system 
was heated or cooled to a new temperature by uniformly 
scaling the momenta, relaxation runs of at least 2 X 103 Li t 
were performed. Runs of at least 104 Lit were carried out to 
measure properties such as diffusion constants, average po­
tential energy, and radial distribution functions. In order to 
study the inherent packing structures which underlie the liq­
uid at time t in a given trajectory, the instantaneous system 
configuration r(t ) is quenched (typically every ten Lit ) to lo­
cate the relevant minimum. This quenching operation re­
quires extensive amounts of computer time and is executed 
using a combination of a conjugate-gradient and a quasi­
Newton method.9 For the 32 particle system it is possible to 
estimate the number of distinct minimum energy states for 
all three densities. Since the number of states grows expon­
entially with system size, the overwhelming numbers of dis­
tinct potential minima which exist for N = 108 can at best 
only be sampled in a representative rather than an exhaus­
tive manner. 

III. EQUATION OF STATE 

The potential energy per particle is given by 

¢ =N-Icp = N-Irv(rij)' (3.1) 
i<j 
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FIG. I. Lattice energies per particle for the diamond, simple cubic, face­
centered cubic, and body-centered cubic lattices as a function of density. 

This energy as a function of density is shown in Fig. 1 for the 
diamond, simple cubic, body-centered cubic, and face-cen­
tered cubic lattices. The hexagonal close-packed lattice has 
an energy nearly identical to that of the fcc lattice in the 
density range shown on the plots. Above a density of 
p = 0.64 the fcc lattice is found to be the lattice with mini­
mum energy. The absolute minimum in energy is found to 
occur at a density near p = 1.0. The energy for the fcc lattice 
at the three densitiesp = 0.9, 1.0, 1.1 are listed in Table I as 

CPmin' 

The pressure as a function of temperature determined 
by the molecular dynamics simulation is shown in Fig. 2 for 
the three densities. Pressure is determined from the virial 
equation 

1 { 1-} p= V (N - I)T+ "3 + Fiori' (3.2) 

where Fi is the force on the ith particle and ri is its position. 
A factor of N - 1 is used because the center of mass is held 
fixed. A pressure of 10 in our reduced units corresponds to 
4.2 kbar for Ar. 

TABLE I. System properties vs density. 

p 0.9 1.0 1.I 

¢lmin - 5.729 292 00 - 6.000 005 22 - 5.707 28442 
Tm 1.2 1.9 2.8 
1132/32! 629 146 52 
v 0.20 0.16 0.12 
t/JD - 5.218 - 5.349 - 4.862 
i1t/Jme"ITm 0.463 0.466 0.463 
Ad 0.06066 0.07387 0.04604 
i1Ed 2.3413 4.1261 4.7518 
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FIG. 2. Pressure vs temperature melting curves for three densities. All runs 
were made with 108 particles starting from the perfect fcc lattice at T = O. 

The melting temperature T m is estimated from the 
break in the curve of pressure vs temperature. Table I lists 
the melting temperature for the three densities studied. 

From a plot ofthe potential energy per particle vs tem­
perature the latent heat of melting may be estimated. The 
liquid and solid branches of the melting curve were fitted 
with straight lines using linear least squares. Points in the 
coexistence region of the curves are excluded from the fits. 
The difference of these two functions each evaluated at the 
melting point yields the approximate latent heat of melting 
AtPmelt' which is found to go as 

AtPmelt :::::0.46T m' 

Figure 3 shows the radial distribution functions of the 
unmelted crystal at T::::: O. 8 T m for the three densities studied. 
The first peak of the rdf corresponds to the 12 nearest neigh­
bors of the fcc lattice. The second peak at -1.6 corresponds 
to the six second neighbors. The third peak corresponding to 
the 24 third neighbors appears at a distance just below 2. 
Figure 4 shows the rdrs of the liquid at T::::: 1.4 T m for the 
three different densities. Notice that the maxima of both the 
first and second peaks shift to larger r values as p decreases, 
as would be expected. 

IV. DENSITY OF STATES 

When the system is at low temperatures prior to melt­
ing, a quench of any configuration at any time during the 
trajectory invariably reproduces the perfect fcc lattice. That 
is, the quenching simply removes phonon displacements. 
However once melting has occurred, quenches at various 
times along the trajectory will produce a diverse set of differ­
ent energies each corresponding to different stable but non­
crystalline arrangements of particles. Previously4 we at­
tempted to enumerate all such stable configurations for the 
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FIG. 3. Radial distribution functions for crystal structures (T-O.8 Tml at 
three densities. 

32 particle system at density p = 1.0 by cataloging all of the 
distinct quench energies produced in a series of runs of 10" 
steps each created· at 13 different temperatures in the fluid. 
In this manner 151 distinct stable packings were discovered. 
Most of the higher energy, less stable configurations (i.e., 
those configuratioDS of far less than optimal packing geome­
tries) were only d~overed in the higher temperature runs 
and were found to1tave a very low probability of occurrence. 

To map out the most important stable packing configu­
rations for the 32 particle systems at the three densities of 
present interest a consistent and identical approach was used 
for each. Trajectories of 3 X 104 steps were produced at each 
density with quenching every 10 time steps. The nominal 
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FIG. 4. Radial distribution functions for the liquid (T - 1.4 T m) at three 
densities. 
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reduced temperature for each density was approximately 
6.5, well above T m' The number of stable packing states 
identified in this manner was found to depend dramatically 
on density: 

{

659 {0.9 
!J32/32! = 146 for p = 1.0. 

52 1.1 

(4.1) 

A comparison of the state energies generated in the current 
study with our previous enumeration4 shows that the dis­
crepancy in the p = 1.0 determination is" due to a failure in 
the present restricted study to discover some of the higher 
energy, less probable packings. A more accurate cataloging 
could be accomplished by running much lon'ger trajectories; 
however the few extra states that would be so discovered 
would not justify the added expense. In addition since each 
density is treated in the same manner this would almost cer­
tainly not affect the conclusions regarding the dramatic den­
sity dependence. The v parameter ofEq. (1.2) is found to vary 
with p, thus, 

v = 0.16 + 4.0(1.0 - p) (4.2) 

over the density range studied, where the two significant 
figures given are consistent with our counting accuracy. 

As the system size is increased from 32 to 108 particles 
it becomes obviously impossible to detetmine all the stable 
packing structures. Even at the highest density where 52 
states were found for the 32 particle system, approximately 
0.5 X 106 distinct states are expected for the 108 particle sys­
tem. Figure 5 shows quench energy trajectory plots for 108 
particle runs for the three densities at T - 6.5. Each run is 104 

time steps with quenching every ten time steps. Ev~ at the 
elevated temperature of the runs it is evident that quenches 
to the lowest energy crystal structure are found. The gap 
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FIG. 5. Trajectory plots of the quench energy per particle for runs at 
T - 6.5. The density isp = 0.9 for the.l.ower plot.p = 1.0 for tlie midd~ plot. 
and p = 1.1 for the upper plot. 

between the crystal state and the first state in the excited 
(amorphous) manifold, and also the width of the distribu­
tion, both decrease with decreasing density. 

Figure 6 shows the distribution of different states in the 
108-particle system as a function of potential energy for the 
three densities. The energy per particle of the low energy 
crystal state <P min and of the most probable energy state in 
the amorphous manifold tPD (the maximum of the distribu­
tion) are listed in the table. 

The amorphous-state, distribution-maximum energy 
tP D is found by quadratic interpolation to have its minimum 
value at a density of 0.97. This amounts to a 3% shift in 
density between the most stable crystal structure (p e; 1.0) 
and the amorphous packings (pe;0.97). Thus at constant 
pressure the amorphous state would be less dense than the 
perfect crystal. 

v. SELF-DIFFUSION 

Recently Zwanzig lO has developed a theory to predict 
the relationship between the self-diffusion constant of a liq­
uid and its shear viscosity. Just as in the present work, in that 
theory the liquid is pictured as (instantaneOusly) localized 
near and vibrating around the potential minimum associated 
with a specific packing structure. After a certain time, speci­
fied by a jump frequency, the system makes a transition to 
another region and vibrates around this new packing mini­
mum. Within one such region the oscillations are described 
by the Debye approximation and thus are characterized by 
the longitudinal and transverse sound velocities. 

In our study we have undertaken the direct measure­
ment of the self-diffusion constant as a function of both tem­
perature and density. The self-diffusion constant is given by 
the well-known Einstein relationship 
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FIG. 6. Quench energy distribution functions for the runs at T -6.5. The 
lowest curve refers top = 0.9. while the uppermost curve is thep = 1.1 plot. 
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D = lim _1_ <Ir(t) - r(OW) , 
I~oo 6tN 

(5.1) 

where r(t) is the configuration ofallN particles of the fluid at 
time t. Figure 7 shows the measured self-diffusion constants 
for various temperatures and densities. These quantities 
have been determined by linear least-squares fits of the 
mean-squared displacement, Ir(t) - r(OW from steps 2500 
to 10 000 for well-equilibrated runs. The scatter in the data is 
primarily due to the fact that only one trajectory was run at a 
given temperature to calculate the mean-squared displace­
ment. 

The self-diffusion constants were then fitted by least 
squares to 

D= TI/2AD exp[ -.:1ED/T]. (5.2) 

The parameters AD and .:1ED are listed in Table I for the 
three densities. The straight lines in Fig. 7 show the best fit 
we have obtained to the self-diffusion constant data. In each 
case the line was plotted from the melting point for that 
density to a high temperature. The values of D obtained be­
low the melting points were not used in the fits because the 
trajectories were probably not run long enough to determine 
self-diffusion constants accurately. 

For the 32 particle system at density p = 1.0 we had 
found that the rate for making transitions from one amor­
phous packing to another varied with temperature approxi­
mately 

KTI/2 exp[ - 2.16/T]. (5.3) 

The limited transition rate data available for the 108 particle 
system atp = 1.0 also fits on the same curve after appropri­
ately scaling the prefactor K. The activation energy for self­
diffusion however is nearly twice that for transition between 
amorphous packing structures: 4.13 compared with 2.16. 

VI. DISCUSSION 

As shown in this work the number and distribution of 
amorphous packing structures strongly depends on density. 
As the density increases the number of available states de­
creases. In addition the particle mobility as measured by the 
self-diffusion constant is observed to decrease. The activa­
tion energy for particle self-diffusion increases with increas­
ing density. 

The amorphous packing structures are found to have 
their minimum energy, as measured by t/J D' at a lower density 
than the maximal crystal packings. Thus the amorphous 
structures are inherently less dense than the crystalline 
structures. 

At each density the distribution of packing states is 
asymmetrically skewed toward lower energy. The total 
number of available states within the amorphous manifold 
increases dramatically as the density is decreased. In addi­
tion the width of the distribution decreases with decreasing 
density, implying that less energy is required to incorporate 
defect structures at the lower density. 
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FIG. 7. Self-diffusion constant plots as a function of temperature. The open 
figures are the simulation data as determined from the mean-squared dis­
placement. The solid lines are the best fit to the data using Eq. (5.2). 

The activation energy for self-diffusion has been found 
to increase with increasing density. However this activation 
energy may not be attributed solely to the activation energy 
required to move from one packing configuration to another 
since they differ roughly by a factor of 2. 

A natural extension of the work reported here would 
focus on those other solutions to Eq. (1.1) which are saddle 
points of <P. These other extrema need to be carefully charac­
terized both as to their height above flanking minima and as 
to curvatures of <P. Such information is vital to understand­
ing transition rates along the lines established by absolute 
reaction rate theory in chemical dynamics. II It would also 
help to elaborate substantially the Zwanzig view of flow in 
liquids mentioned earlier. 
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