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This paper is dedicated to the proposition that liquids possess an inherent packing structure which 
is determined by their collection of potential energy minima. To reveal the inherent structure in a 
given thermodynamic state, it is necessary to subject the dynamical system to steepest-descent 
"quenches" that remove thermal motion and distortion and leave the system in the nearest 
mechanically stable arrangement. Such a program has been carried out via molecular dynamics 
simulation on an argon-like system containing 108 atoms. Two thermodynamic states at the same 
reduced density 1;0* = 1.0) were considered, one just above the melting temperature T! and one 
at approximately 3.5 T!. Although the pair correlation functions gIrl in these thermodynamic 
states differed considerably, those produced by the corresponding sets of quenches gq (r) were 
virtually identical. The implied inherent structure common to both states appears to be best 
described in terms of highly defective face-centered-cubic crystalline configurations. 

I. INTRODUCTION 

Understanding liquids is a formidable problem. In an 
effort to introduce some simplification we have proposed 
and pursued an approach which isolates static packing prop­
erties of the atoms or molecules involved from effects attrib­
utable to thermal excitation. 1-6 The static packings are sim­
ply those particle arrangements for which all forces vanish, 
i.e., minima of the potential energy <P. Barring exceptional 
cases of zero measure, any N-particle configuration repre­
sented by the multidimensional vector r can uniquely be as­
signed to a nearby potential minimum; the connection is es­
tablished by solving the steepest-descent equation 

r = - V<P (1.1) 

with r as an initial condition. Equation (1.1) moves the sys­
tem monotonically downward on the <P hypersurface to­
ward the relevant minimum. 

If classical dynamics is an appropriate description, the 
time evolution of the many-particle system will be given by a 
continuous vector r(t ). Equation (1.1) provides a mapping of 
r(t) onto a piecewise constant vector rq (t), the configurations 
of mechanically stable packing relevant to the given dynami­
cal motion at each instant of time. If the conserved total 
energy is high (as in the thermodynamically stable liquid 
phase), rq will display frequent jump discontinuities as the 
system explores the configuration space diffusively. By con­
trast, r q could be invariant if the temperature were so low 
that the system were trapped in the neighborhood of a single 
minimum. 

Our purpose in the present study has been to examine 
the effect of steepest-descent quenching from r(t) to rq (t) on 
the pair correlation function for a simple argon-like model. 
The pair correlation function is a natural object for attention 
because of its relationship with x-ray and neutron diffraction 
experiments on the one hand, and because it vividly shows 
the structure-revealing effect of the quenching on the other 
hand. 

Modelistic details and the computational procedure are 
outlined in Sec. II. Results appear in Sec. III. We discuss the 
implications of those results in a final Sec. IV. 

II. COMPUTATIONAL PROCEDURE 

Our dynamical system and the numerical details in­
volved in integrating its classical equations of motion have 
been discussed in prior publications.5

•
6 We employ N = 108 

structureless particles in a cubical unit cell with periodic 
boundary conditions. The potential energy <P consists of cen­
tral pair components: 

N 

<P = L vo(rij)' (2.1) 
i<j= 1 

Pair potential Vo has the following functional form: 

voIr) = A (r- 12 
- 1 )exp [ 1/(r - a)] (0 < r < a), (2.2) 

= 0 (a<r), 

with 

A = 8.805 977, a = 1.652 194. (2.3) 

In spite of the fact that Vo changes functional form across 
r = a, derivatives of all orders remain continuous at that 
point. 

The numerical values (2.3) selected for A and a cause Vo 

to share three basic properties with the reduced Lennard­
Jones function 

VLJ (r) = 4(r- 12 - r- 6 ); (2.4) 

specifically we have for both functions (a = O,LJ) 

va (l)=O, Va (21/6) = -1, V~(21/6)=O. (2.5) 

Therefore we can regard Vo as a smoothly cut-off version of 
VLJ' a feature which provides substantial numerical advan­
tage. In the present application the cutoff distance a is suffi­
ciently small so that with the given periodic boundary condi­
tions particle i can only interact with the nearest image of 
particlej. 

In order to represent interactions in real substances the 
interaction potential requires energy (E) and length (0") rescal­
ing 

(2.6) 

Values of these parameters appropriate for argon (originally 
selected for use with VLJ) are: 
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E = kB X 120 K = 1.6565 X 10- 14 erg, 0' = 0.34 nm. 
(2.7) 

When these are supplemented by m, the mass of one argon 
atom (6.6423 X 10-23 g), the fundamental time unit turns out 
to be 

T = u(mIE)I/2 = 2.1530 ps. (2.8) 

Needless to say, our numerical work has been carried out in 
reduced units for which E, 0', m, and T all have numerical 
value unity. 

The present study has been restricted to reduced den-
sity 

p. = 1.0. (2.9) 

At this density the absolute minimum of potential energy <P 
is achieved when the 108 particles are arranged in a face­
centered cubic (fcc) crystal whose principal directions are 
aligned with the sides of the cubical box. The value of <P at 
this perfect-crystal absolute minimum varies withp·, but the 
choice (2.9) yields the lowest possible value; it therefore cor­
responds to the crystal at zero pressure and temperature. In 
this condition the potential energy per particle is 

(2.10) 

indicative of the fact that atp· = 1.0 only nearest neighbors 
have interactions with significant magnitude. 

Molecular dynamics runs were created at two distinct 
reduced temperatures, 

T· = 2.110, 6.453. (2.11) 

Both of these states are fluid. The former is only slightly 
above the melting temperature that was previously deter­
mined for this model at the given density 

T:'P· = 1.0)=1.85. (2.12) 

The latter is clearly in a very hot, compressed state. 
Numerical integration of the Newtonian equations of 

motion utilized the fifth-order Gear algorithm 7 with a time 
step in reduced units 

.dt = 0.001 25. (2.13) 

Each of the two runs spanned 104 time steps (equivalent to 27 
ps for argon), and represented extensions ofwell-equilibrat­
ed previous runs at virtually the same temperatures. Total 
energy remained constant to high accuracy during each run 
without the need for momentum scaling adjustments. 

Without actually disturbing the dynamical integration 
routine, each molecular dynamics run was "quenched" ev­
ery l00.d t to locate the configuration of the nearest <P mini­
mum. This was accomplished using a combination of New­
ton's method and the conjugate-gradient method5•6 to 
produce the relevant asymptotic solution to Eq. (1.1). By 
including the initial and final states of the dynamical se­
quence this procedure created 101 minima per state on 
which the analysis of the following Sec. III was based. 

Location of the configurations of relative <P minima is 
by far the most demanding part of the numerical task. It is 
this feature which has limited our study to systems with only 
108 particles. 

TABLE I. Properties of the lOS-particle argon-like system at p* = 1.0. 

T* 2.110 6.453 
(t/J ) - 2.1638 1.8833 
R, 1.04 0.98 
g(R,) 2.69 2.09 
r, 1.47 1.45 
g(r,) 0.58 0.74 
R2 1.95 1.96 
g(R2) 1.27 1.15 
n(rd 13.0 12.3 

III. RESULTS 
Table I lists several properties that have been deter­

mined as averages for the two dense fluid states studied. In­
cluded are the thermal mean values (f/J ) of the potential ener­
gy per particle for those two thermodynamic conditions; 
these latter fall accurately on the fluid branch of the corre­
spondingp· = 1.0 curve that was determined earlier for the 
temperature dependence of this property. 

Figures I and 2 show the pair correlation functions g(r) 
for the two temperatures. On account of the small size of the 
system, it is only feasible to show these functions for reduced 
distances less than about 2.45, for otherwise the periodic 
imaging would intrude. Nevertheless, enough detail is pres­
ent to establish the existence of reasonably well-defined first 
and second peaks. The curves shown in Figs. 1 and 2 have 
just the expected shapes for an argon-like model, with in­
creasing temperature causing a reduction in amplitude of 
oscillations about the random-distribution value unity. 

Table I provides the distances R I' rl , and R 2 , respective­
ly, at which g(r) attains its first maximum, first minimum, 
and second maximum. The corresponding values of g at 
these extremal points also appear in the table. 
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FIG. 1. Pair correlation function for the lOS-particle system at p* = 1.0, 
T* = 2.110. 
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FIG. 2. Pair correlation function for the I~S-particle system at p* = 1.0, 
T* = 6.453. 

The running coordination number n(r) is defined by the 
equation 

n(r) = 41Tp· fS2g(S)dS. (3.1) 

A frequently used definition of the average number of near­
est neighbors in a monatomic liquid is n(r\), for which values 
are listed in Table I. 

The rate at which the lOS-particle system undergoes 
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FIG. 3. Pair correlation function for stable packings generated by quench­
ing the T* = 2.110 liquid. 
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FIG. 4. Pair correlation function for stable packings generated by quench­
ing the T* = 6.453 hot fluid. 

transitions between regions belonging to distinct minima is 
known to be strongly temperature dependent.s Neverthe­
less, the 0.27 ps interval between successive quenches is ex­
pected to be sufficient at both temperatures to permit many 
intervening transitions. Indeed this was found to be the case; 
by monitoring the values t/Jq of t/J after each quench it was 
observed that the same minimum was never encountered 
twice in a row during either molecular dynamics run. The 
absolute minimum t/Jq value - 6.0000 [Eq. (2.10)] never ap­
peared during either case, although previous experienceM 

indicates that it can occur very infrequently in quenching 
from stable fluid states. The distributions of t/Jq values for the 
two cases were similar to one another and to previous deter­
minations. The most probable values cluster near - 5.35, 
and the distributions are skewed to the low (more negative) 
direction.5

,6 This last observation is consistent with proper 
uniform sampling of the available collection of particle pack­
ings. 

Figure 3 (for the T· = 2.110 state) and Fig. 4 (for the 
T· = 6.453 state) present radial distribution functions gq (r) 
for the two sets of quenches. Each curve represents an aver­
age over the 101 configurations generated for that case. Two 
striking observations emerge. First, the quenching produces 
a remarkable enhancement of structure. Second, the results 

TABLE II. Properties of quenches prepared from the fluid at p* = 1.0. 

T*(initial) 2.110 6.453 
(¢Jq) - 5.3693 - 5.3563 
R lq 1.09 1.09 
gq(R lq ) 5.93 5.94 
rlq 1.43 1.44 
gq(rlq ) 0.22 0.23 
nq(rlq ) 12.S1 12.S6 
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are virtually identical to one another in contrast to the sub­
stantially different prequench functions gIrl in Figs. 1 and 2. 
Table II contains values of (,pq), as well as 
R Iq,rlq,gq{R Iq),gq{rlq ), and the quench-state coordination 
number nq (r lq ) that is defined as in Eq. (3.1). 

IV. DISCUSSION 

Rahman, Mandell, and McTague8 have utilized the 
molecular dynamics simulation method to study a 500-parti­
cle amorphous system of Lennard-Jones particles. It is 
worth remarking that their pair correlation function closely 
resembles those appearing here in Figs. 3 and 4. In particular 
they also observe a "split second peak" whose two compo­
nents flank reduced distance 2.0, an attribute which has oc­
casionally been regarded as a hallmark of the amorphous 
state for monatomic materials.9

,10 Differences between their 
result and ours, while small, probably stem from a combina­
tion of the following: 

(i) VLJ differs from the pair interaction Va employed in 
our work, particularly at long range; 

(ii) a low but nonvanishing temperature prevailed in the 
Rahman, Mandell, and McTague study (T* = 0.108), while 
their reduced density was slightly smaller than ours (0.95 vs 
1.00 here); 

(iii) only a single amorphous sample was considered 
(possibly vibrating around a single potential energy mini­
mum), whereas we have averaged over many distinct mini­
ma; and 

(iv) their system (N = 5(0) was considerably larger than 
ours (N = 108). 

It should be mentioned that Wendt and Abraham II 
have also generated amorphous-state Lennard-Jones pair 
correlation functions, by the Monte Carlo simulation tech­
nique. Their low-temperature results likewise display a split 
second peak. 

The first four coordination shells in the fcc crystal have 
relative distances (coordination numbers) given by 1 (12), 
21/2 (6),3 1/2 (24), 2 (12). These magnitudes correlate rather 
well with the positions and sizes of the first peak, the shoul­
der, and the two parts of the split second peak shown in both 
Figs. 3 and 4. This strongly suggests that the majority of the 
relative potential minima contributing to our quenched 
amorphous states can be described as defective fcc struc­
tures. The widths (and resultant overlappings) ofthe peaks in 
gq (r) would then be explained as frozen-in strains induced by 
the defects. This presumption has been directly supported by 
examining stereo photographs of selected packings generat­
ed during this work which in fact show defect-containing fcc 
structures. It is also supported by the fact that rlq = 1.09 in 
Table II is slightly less than the expected 21/16 = 1.1224 ... for 
a perfect fcc lattice at p* = 1.0; the mean density of amor-

phous packings at zero pressure has been determined to be 
p* = 0.97 for the present mode16 implying that nearest 
neighbors would be forced into slightly closer contact when 
compressed to the given density 1.0. We also take note of 
Abraham's claim 12 that amorphous states of the Lennard­
Jones model resemble "distorted fcc packing." 

That Rahman, Mandell, and McTague failed to identi­
fy a shoulder on the small-r side of their split second peakS 
may be due primarily to their use of nonzero temperature. 

An important unsolved problem is whether all poten­
tial energy minima can uniquely be described as defect-con­
taining crystals. If the answer were affirmative, this would 
simplify enormously the enumeration task for those minima. 

Comparison of entries in Tables I and II shows the pos­
sible danger ofinterpreting experimental (or simulation) pair 
correlation functions in structural terms. The mean numbers 
of nearest neighbors n(rl ) for the two temperatures are sub­
stantially different in Table I, perhaps inducing the viewer to 
conclude that the "structures" of the cool and of the hot 
fluids were rather distinct. Yet both appear to quench to 
essentially the same collection of inherent structures. The 
differences are due primarily to the degree of vibrational 
excitation within the regions around relative minima, not to 
thermally induced population shifts between those regions. 

It is this latter point which constitutes our major con­
clusion. It suggests that understanding of, and theory for, 
the liquid state of simple monatomic substances could profi­
tably be based on the existence and relevance of underlying 
inherent structures as we have defined them. In particular 
this may lead to a new approach to predicting pair correla­
tion functions at arbitrary temperatures. Transport theory 
might also benefit from this viewpoint, and indeed Zwanzig 
has begun exploratory investigations along these lines. 13 To 
strengthen the case it is desirable to carry out the same type 
of study as that reported here for a variety of interaction 
potentials. 
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