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We show that the Hartree approximation cannot predict that H- has a bound state, i.e., the 
Hartree energy is greater than - 0.5. We also show that the Hartree approximation cannot 
predict binding for the Coulomb model of a two-electron atom unless the nuclear charge Z is 
greater than 1.03 and we compute accurate upper and lower bounds to the Hartree energy for H­
and He. 

PACS numbers: 31.10. + z 

I. INTRODUCTION 

It is well known'-4 that H- has a single bound state of 
even spatial parity, i.e., the Hamiltonian (in reduced units) 

lIZ Z 1 
H(Z)= --..:1,--..:12 ----+- (1.1) 

2 2 r, rz r12 

has exactly one eigenvalue below -! when Z = 1. Al­
though it is easy to produce trial functions which establish 
that H (1) < -!, we are not aware of any such functions 
which have the form of a single-determinant Hartree-Fock 
function. In this paper we show that, in fact, one cannot 
predict binding in H- by using a spin-restricted form of the 
Hartree-Fock approximation which, for two electrons, is 
equivalent to the Hartree approximation. 

Because confusion regarding terminology exists in the 
literature, we find it prudent to review some elementary defi­
nitions, so that we can state our results unambiguously. In 
the Hartree-Fock (HF) approximation, the exact ground 
state function IJI for an N-particle Hamiltonian H N is re­
placed by a trial function IJIHF consisting of a single Slater 
determinant, i.e., an antisymmetrized product of N single­
particle functions, 1 tPj }j"~ , . The Hartree-Fock energy is 
then given by 

E
' . f (IJI HF ,H N IJI HF ) 
HF = In , 

"'HF ( IJI HF' IJI HF ) 

(1.2) 

which leads to a set of equations for 1 tPj }, In practice, the 
minimization in (1.2) is carried out using only a finite and 
restricted set of 1 tPj }. One common restriction, particularly 
when N = 2n is even, which we shall call the spin-restricted 
HF (SRHF) approximation, is to require that 

tPZk-' = udr)a; tP2k = uk(r}/3 (1.3) 

(where a,/3 are the usual spin eigenfunctions) and to choose 
1 Uj }j~, so as to minimize (1.2). If N = 2, IJISRHF has the 
exceedingly simple form (a/3 - /3a)Xu(r,)u(rz). The equa­
tion for u obtained from minimizing (1.2) is equivalent to 
that obtained from the so-called Hartree approximation, 
which we discuss below. Therefore, our results on the Har­
tree approximation for two-electron Hamiltonians of the 
form (1.1), also apply to the SRHF approximation. 

In principle, no restrictions on the {tPj J are necessary. 
Indeed tPj need not even have the form (space function) 

a) On leave from Department of Mathematics, University of Lowell, Lowell, 
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X (spin function), but could conceivably be something like tPj 
=.t;(r)a + gj(r}/3. When the restrictions (1.3) are dropped, 
one sometimes emphasizes this by applying the term unres­
tricted HF (UHF) approximation. For two electrons one can 
make EUHF (Z ) arbitrarily close to - ~Z Z by choosing 
tP, = I,(r)a; tP2 = In (r}/3, wherelk is any hydrogenic function 
satisfying ( - !L1 - Z I rlfk = - (Z Z 12k Zlfk' and making n 
large. Therefore, either the UHF approximation predicts 
binding for H- or EUHF = -! exactly. No approximate 
lower bound procedure can prove absence of binding for H­
in the UHF approximation. However, we know of no trial 
function which actually demonstrates that EUHF (1) < -!. 

Because single determinants, particularly those which 
minimize (1.2), need not be eigenfunctions of spin or orbital 
angular momentum operators, the HF approximation is 
sometimes generalized5 to allow IJI to be a linear combina­
tion of the minimal number of Slater determinants needed to 
make IJI an eigenfunction of some specified set of angular 
momentum operators. An example for two electrons is the 
function 

IJI = [f(rdg(rz) + g(r,lf(rz)] [a(l}/3 (2) - /3 (1)a(2)]. 

It has been shown that functions ofthis form do predict 
binding in H - .4.6 If one takes I = e - ar, g = e - br with 
a = 1.03925, b = 0.2831 one finds that 
H(l).;;; - 0.5133 < - 0.5. Although this "spatial perma­
nent" is reminiscent of a HF function, the I and g do not 
satisfy the HF equations and IJI is not a single Slater determi­
nant; it is actually a linear combination of two Slater deter­
minants, one from tP, = I(r)a, tP2 = g(r}/3 and the other from 
tP3 = g(r)a, tP4 = l(r}/3. 

In this paper we study the Hartree, or equivalently the 
SRHF, approximation for two-electron Hamiltonians of the 
form (1.1). The Hartree energy is given by 

EH (Z) = 2 inf cf> (u), 
lIuli ~, 

(1.4) 

where 

(1.5) 

It is well-known that the continuous spectrum for 
H(Z) = [- Z ZI2, 00 )(see Ref. 7). We will say that the Har­
tree approximation predicts binding if EH (Z ) < - Z 2/2. We 
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will show that the Hartree approximation does not predict 
binding for H- or for any H (Z) with Z< 1.0268. We define 
ZH by EH (ZH ) = - Z ~ /2 and show that 

1.0268 < ZH < 1.0312. 

The analogous quantity for the exact ground state energy, 
Eo(Z) of H(Z) is defined by - Z~/2 = - Eo(Ze). Stil­
linger6

•
8 calculatedZe :::::;0.9112. Both the exact and the Har­

tree problems have the unusual feature that they have solu­
tions at the crossing point, i.e., H (Z) does have a 
square-integrable ground state for Z = Ze,9 and (1.5) has a 
minimizing u for Z = ZH . 10 

The question of whether or not the infimum in (1.4) is 
actually a minimum has been studied extensively. 10-17 By 
making the transformation 

p(x) = [u(X/Z)/Z2]2, 

one can consider the Hartree functional <I> (u) to be a special 
case of the Thomas-Fermi-von Weizsacker (TFW) func­
tional for which the constant r is 0 in the term 
rfp5/3 = rfu lO/3. Then one can use results of Benguria and 
Lieb 18.19 to show that there is a Z M satisfying (1) for Z < Z M' 

(1.4) has no minimizing u and EH(Z) = - Z 3A for some 
A> 0; (2) for Z-~ZM' (1.4) has a minimizing u and EH(Z) 
;;;, - Z 3A with equality only for Z = ZM; and (3)! <ZM < 1. 
Recently Baumgartner20 has shown that ZM :::::;0.828. It is 
interesting to note that, since Z M < 1 < 1.0268 < ZH' there is 
a nontrivial range of Z, i.e., (ZM' ZH)' within which the Har­
tree functional <I> (u) has a minimizing u yet the Hartree ener­
gy lies in the continuum for H (Z). The region (Z M' ZH) in­
cludes the physically interesting case ofH- for which Z = 1. 

Figure 1 schematically indicates the behavior of the en­
ergy curves Eo(Z) and EH (Z), with approximate placement 
of the distinguished points ZM' Ze, and ZH' 

We compute lower bounds to both EH (Z ) and ZH by 
using a modification of the Bazley and Seydel method21 as 
described in Sec. II. Excellent upper bounds to both EH (Z) 
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FIG. I. Schematic diagram of Z-dependent energies for the two-electron 
problem. 
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and ZH were obtained by approximating the Hartree trial 
function u by a linear combination of simple exponentials; 
this is discussed in Sec. III. In Sec. IV, we summarize our 
results for H- (Z = 1) and He (Z = 2) which are generally 
better than results reported previously in the literature. 

II. LOWER BOUNDS 

To obtain a lower bound to EH (Z), we use the method 
of Bazley and Seydefl which is based upon the inequality 

II 
u2(r)u2(s) d 3

r 
d 3

S 
Ir - sl 

;;;'2II u
2
(r)w2(s) d 3r d 3S - II w2(r)w2(s) d 3r d 3

S
• 

Ir - sl Ir - sl 
(2.1) 

Substituting (2.1) into (1.5) one finds 

<I> (u);;;,kwu - ~ II w2(r)w2(s) d 3r d 3S , (2.2) 
2 Ir - sl 

where 

kw = -!.::i -Z/r+qw(r), 

and 

qw(r) = I W2(S) d 3s. 
Ir-sl 

(2.3) 

(2.4) 

(2.5) 

where A is a lower bound to kw' In previous applications of 
the Bazley-Seydel method,22 attention was restricted to w 
for which qw could be calculated from w by doing the inte­
gration in (2.4) exactly, after which one was still faced with 
the problem of finding a good lower bound to kw' 

Therefore, instead of selecting a trial w, we will choose 
qw so that the lowest eigenvalue to kw can be determined 
exactly; this eigenvalue will then serve as our lower bound A 
in (2.5). We then use the electrostatic equality 

II 
w2(r)w2(s) d 3rd 3s = -l-IIVqw 12 d 3r 

Ir - sl 41T 
to conclude that 

EH(Z);;;'U --1-IIVqwI2d3r. 
41T 

We now choose qw as follows. Let 
N 

'" A - ak
r 

U = £.. ke , 
k~1 

whereA k >0, ak + 1 >ak >0, and 

Let 

M. B. Ruskai and F. H. Stillinger 

(2.6) 

(2.7) 

(2.8) 

(2.9) 
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Then kw U = AU with A = - a7v 12. The constraint A k > 0 
insures23 that u(r) is strictly positive so that A is the lowest 
eigenvalue of kw' and q w has no singularities, except possibly 
at r = O. Condition (2.8) guarantees that u satisfies the nu­
clear cusp condition24 and consequently that qw has no pole 
at r = O. Although we need not compute w explicitly, it can 

be verified that w = ~ - ..1qw is square-integrable, so that qw 
can be obtained from an acceptable Hartree trial function. 
Since qw is spherically symmetric, 

EH(Z» -a7v - i"'r1q;.,(rWdr. 

If one now makes the substitutions 

r=yIEZ, 

ak = Z (1 - YkE) (k = 1...N), 

(2.10) 

and lets Y I = - 1 so that a I = Z (1 + E) defines E, one finds 

EZ
2 

(EU" A, E A') = -A - -- - u + - u + const, 
u 2 y 

where u(y) = ~kAkeYkY. Then 

i '" i'" 1 rlq'(rW dr = EZ 3 ~ [ES(y) + yT(y)f dy, 
o 0 u (y) 

(2.11) 

where 

T(y) = (U')2 - UU" 

and 

Sty) + T(y) = L (uu'" _ u'u") _ uu' 
2 y 

-" "A A (rfy ( ) YI) (n+Y,)Y - L L k I - YI - Yk - - e . 
k I 2 Y 

Thus EH(Z»F(Z), where 

F(Z)= -(I-YNEfZ2-EZ3(Ac+BE+C), 

A = (OO( Sty) )2 dy 
Jo u2(y) , 

B = ('" yS(y)T(y) dy 
Jo u4(y) , 

C= i"'( y;~) r dy. (2.12) 

The quantity F (Z ) gives a lower bound to EH (Z) for all 
choices ofAI,,·AN_ I' E, and Y2'''YN' [HereAN is determined 
by (2.8) and YI = 1.] SinceF(Z) is independent of norma liz a­
tion, we can set A I = 1 without loss of generality. We now 
search for values of the remaining parameters which opti­
mize F(Z). For each fixed choice of A2,,·AN _ I' and 
Y2"'YN _ l' the optimal E must satisfy 

- 2YN + 2r7.,E + Z(3Ac + 2BE + C) = O. (2.13) 

It can be shown that only one of the roots of(2.13) is positive 
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and this positive root maximizes F (Z). A simple linear vari­
ation of A2·"AN _ I and Y2"'YN _ I can then be used to maxi­
mizeF (Z ) to obtain the best possible lower bound of the form 
(2.7) for fixed Nand Z. 

Although one could bound ZH by comparing F (Z ) with 
- Z 2/2, we used the following direct approach. Suppose 

F (Z) = - Z 2/2 then EH (Z» - Z 2/2, which implies 
Z < ZH' To find Z we note that 

+ 1- (1 - YNE)2 = ZE(Ac + BE + C). (2.14) 

One can eliminate Z from (2.13) and (2.14) to see that the 
optimal E for Z must satisfy the quartic equation 

r7.,AE4 - 4yNAc 

+ (3A 12 - 2YNB - r7.,C)c + BE + C 12 = O. (2.15) 

Although (2.15) can have four roots, we found that, in prac­
tice, it has only one real root in the acceptable range 1> YNE 
> I - 1Iv1 > 0.29 [where the second inequality follows 
from the condition - Z 2/2 < F (Z) < - (I - Y NE)Z 2]. Once 
E is fixed, Z can be found from either (2.13) or (2.14). A 
simple variation of A 2,,·A N _ I and Y 2"'Y N _ I can then be 
used to maximize Z. 

Our results are summarized in Table I. Three exponen­
tials suffice to show that ZH > 1.0 which implies that the 
Hartree approximation cannot predict binding in H-. Four 
exponentials give ZH > 1.02683 which is remarkably close to 
the upper bound (next section) of 1.031 18. In calculating Z, 
no attempt was made to estimate numerical errors during 
the variation process itself. Instead, a double precision lower 
bound was computed for EH (1.026831) with careful error 
estimates. These results, namely EH > - 0.527 190 945 
> - 0.527 190 951 = - (1.026 831)2/2, verify that ZH 
> 1.026 831 is indeed a valid bound. 

III. UPPER BOUNDS 

To obtain upper bounds to EH , we again approximate u 
by a finite linear combination of exponentials. Thus EH 
<.2<P (u) with u given by (2.7) except that theA k are required 
to satisfy the normalization condition, ~k~/AkAJ(ak 
+ a If = I, rather than the cusp condition (2.8). If we make 

the substitutions t = air, aj = yja l (j = 1,,·N) and let a de­
note ai' then 2<P (u) can be written in the form 

2<P(u) = G(a,Z) =a2p_ 2aZQ+aR. (3.1) 

Here P, Q, and R are elementary integrals of exponentials 
which can be evaluated exactly as algebraic combinations of 
theAk's and Yk'S. For fixed Z, G(a,Z) has its minimum at 
a = (ZQ - R 12)1P, so that 

EH <. G (am in ,Z ) 
= - (ZQ - R 12)2IP. (3.2) 

A linear variation of A2",AN, and Y2"'YN was used to opti­
mize (3.2). Results are summarized in Table II. The quantity 
C = 2 kakAk/(Z 2kAk) was calculated as a measure of how 
closely the cusp condition (2.8) was satisfied. 

An upper bound, Z ~, to ZH can be obtained from the 
condition 

- (Z~f/2 = - (Z~Q - R 12)2IP. (3.3) 

This has solutions 
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TABLE I. Bounds on Z H . 

N Type ZH EH(ZH) Cusp 

up 1.066942 - 0.569182 0.707 
I" 10 0.0 0.0 1.0 

2 up 1.031403 - 0.531896 0.970 
2 10 0.951550 - 0.452 724 1.0 

3 up 1.031 178 - 0.531664 1.006 
3 10 1.016472 - 0.516 608 1.0 

4 up 1.031 178 - 0.531664 1.008 
4 10 1.026831 -0.527191 1.0 

"Lower bounds with N = 1 are included here and in Tables II and IV for 
comparison purposes only. The methods of Sec. II are not strictly valid, 
since formal application of (2.7) to (2.10) implies w = 0 when N = I. 

Z:'! = R /(2Q + .[iP). 
However, the smaller solution gives a negative expression for 
am in which corresponds to a non-square-integrable u. There­
fore, we conclude that 

ZH <,R /(2Q + .[iP). 
Our results are summarized in Table I. A single expo­

nential has no parameters except a and gives the remarkably 
good resultZH < i(1 + IN1) < 1.067. This approximation to 
ZH was then used as the first value of Z in the cycle of two­
exponential calculations, and the predicted value for ZH was 
used for each subsequent variation. This procedure rapidly 
converged to the bound ZH < 1.031 178. When combined 
with our previous lower bound results, we can state with 
confidence that ZH = 1.03 to three significant figures and 
1.0268<,ZH < 1.0312. 

IV.H- AND He 

Upper and lower bounds on the Hartree energy for 
H-(Z = 1), and He(Z = 2), were carried out using the proce­
dures described in Secs. II and III. The results are summar­
ized in Table II. We find - 0.489 651 <,EH (1)<, - 0.487 929 

TABLE II. Bounds on Hartree energy for H - and He. 

Z 

1.0 
1.0 

1.0 
1.0 

1.0 
1.0 

1.0 
1.0 

2.0 
2.0 

2.0 
2.0 

2.0 
2.0 

2.0 
2.0 

2102 

N Type 

2 
2 

3 
3 

4 
4 

2 
2 

3 
3 

4 
4 

up 
10 

up 
10 

up 
10 

up 
10 

up 
10 

up 
10 

up 
10 

up 
10 

Energy 

- 0.472 656 0.687 
- 1.0 1.0 0.3194 

- 0.487824 0.966 
- 0.517 203 1.0 0.0759 

- 0.487 929 3 1.005 
- 0.493 691 1.0 0.0213 

- 0.487 929 6 1.007 
- 0.489 651 1.0 0.0067 

- 2.847 656 0.375 
0.1467 -4.0 1.0 

- 2.861672 1.002 
0.0130 - 2.904 016 1.0 

- 2.861679 1.006 
- 2.870400 1.0 0.0027 

- 2.861679 
- 2.864 674 1.0 0.0007 

J. Math. Phys., Vol. 25, No.6, June 1984 

Overlap 

0.949003 

0.997 116 

0.999773 

0.999978 

0.989246 

0.999915 

0.999996 

0.9999997 

for H-, and - 2.864 674<,EH(2)<, - 2.861679 for He. 
When compared with previously published bounds, 

these results are quite gratifying. The difference between the 
upper and lower bounds for both H- and He is less than 
0.003. We attribute this agreement to the unusually good 
lower bounds we obtain by circumventing the need to find 
first a lower bound to kw' which was constructed instead to 
be exactly solvable. Our lower bound for He represents an 
improvement of over 0.018 from the value of - 2.882 356 
reported by Behling et al. 22 We are surprised at the apparent 
accuracy of upper bounds obtained from a simple linear 
combination of exponentials. Using only three exponentials 
we were able to obtain a better upper bound on the Hartree 
energy for H- than Froese-Fischer25 obtained using a linear 
combination of 11 hydrogenic orbitals. Our upper bound for 
He is also in remarkably close (10- 6

) agreement to that re­
ported by Froese-Fischer. 25 A comparison of our bounds to 
those reported previously is summarized in Table III. 

A few comments about the optimizing functions are in 
order. A list of parameters for the various optimizing func­
tions is given in Table IV. Although the optimal coefficients 
for the upper and lower bound functions for fixed Z and 
given N seem rather different, plots of the actual functions 
indicate that they are pointwise quite close, at least for 
N = 4. A comparison of the norm of the difference between 
the upper- and lower-bound functions shows that they are 
very close for N>3. When comparing the upper- and lower­
bound functions, it should be kept in mind that one is doing 
an apples versus oranges type of comparison. The upper 
bound function is an approximation to the function which 
minimizes (1.5) and therefore solves the Hartree eigenvalue 
problem; the lower bound function solves a different, but 
related, eigenvalue problem, namely kwu = (a;"/2)u. How­
ever, since both approximations can be expected to converge 
to the exact Hartree minimizing function, the observed 
agreement is to be expected. 

Our variational procedure found the energy surface to 
be quite flat; substantial changes in the variation parameters 
produced insignificant changes in the energy. We attribute 
this primarily to the fact that first-order changes in the pa­
rameters will, in general, produce second- or higher-order 

TABLE III. Comparison with other energy bounds. 

Hartree upper bounds 
3-exponential 
4-exponential 
Froese-Fischer" 
Behling et al. b 

Hartree lower bounds 
3-exponential 
4-exponential 
Behling et al. b 

Precise correlated (not HF) 
PekerisC 

"Reference 25. 
b Reference 22. 
c Reference 3. 

Z=1 

- 0.487 929 3 
- 0.487 929 6 
- 0.487 927 

- 0.493691 
- 0.489 651 

- 0.527751 

Z=2 

- 2.861679 
- 2.861679 
- 2.861680 
- 2.86158 

- 2.870400 
- 2.864674 
- 2.882 356 

- 2.903 724 
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TABLE IV. Summary of optimizing parameters. 

UnnormaIized coefficients 

Z N Type Al A2 A, 

1.0699 up 1.0 
0.0 10 1.0 
1.031403 2 up 1.0 0.529438 
0.951550 2 10 1.0 0.368683 
1.031 178 3 up 1.0 1.052094 0.421745 
1.016472 3 10 1.0 0.652611 0.160 813 
1.031 178 4 up 1.0 3.384017 3.415354 
1.026831 4 10 1.0 0.779303 0.242388 

1.0 2 up 1.0 0.492644 
1.0 2 10 1.0 0.401462 
1.0 3 up 1.0 1.034584 0.374117 
1.0 3 10 1.0 0.650161 0.149785 
1.0 4 up 1.0 1.117301 0.508448 
1.0 4 10 1.0 0.780810 0.228671 

2.0 2 up 1.0 1.640 902 
2.0 2 10 1.0 1.224015 
2.0 3 up 1.0 0.730100 1.419830 
2.0 3 10 1.0 0.774050 0.988864 
2.0 4 up 1.0 0.299382 0.875678 
2.0 4 10 1.0 0.761538 0.544 252 

"=Z -li. 
b =Z. 

changes in the energy. The parameters we report should 
probably be regarded as sufficient to prove our results rather 
than optimal. It is curious to note that the cusp factor wor­
sens rather than improves as one increases the number of 
exponentials. Presumably this illustrates the principle that 
one expects to obtain a lower approximating energy if one 
does not impose unnecessary constraints on approximating 
functions, even when the exact solution is known to satisfy 
these constraints. 
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