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The collection of potential energy minima in a condensed phase determines its inherent packing 
structures. We have examined these inherent structures for a simple model substance which (like 
Na) freezes into a bcc crystal. Molecular dynamics trajectories at several different temperatures 
were periodically sampled, and each of the configurations was "quenched" by a steepest-descent 
construction into a nearby potential energy minimum. The resulting collections of inherent 
structures possess quenched pair correlation functions that are nearly independent of the initial­
state temperature, provided the latter correspond to fluid states. Attempts to reconstitute the 
equilibrium pair correlation functions by thermally broadening the quenched versions, using 
harmonic Einstein or Debye vibrational approximations, were clear failures. Evidently the true 
broadening phenomenon entails substantial anharmonicity. 

I. INTRODUCTION 

Understanding liquids remains a formidable challenge. 
Their structural diversity at the molecular level, the depen­
dence of that diversity on interaction details, and how these 
features determine kinetics in liquids will doubtless remain 
active topics for at least the near future. 

In order to simplify somewhat the theoretical problems 
posed by the liquid state we have introduced a viewpoint 
which formally separates geometric packing considerations 
from thermal excitations. 1-5 The molecular packings are de­
fined to be local minima in the relevant potential energy 
function. By means of a steepest-descent connection on the 
multidimensional potential energy hypersurface any config­
uration of the molecules cari uniquely be mapped onto a 
nearby potential minimum. Indeed we view this mapping 
simply as an operation for removing thermal excitation from 
any initial molecular configuration. 

By definition the steepest-descent mapping permits no 
structural annealing to occur; potential energy barriers are 
never surmounted. In this sense it corresponds to an infinite­
ly rapid quenching of the initial state, and for convenience 
we will refer below to the mapping as "quenching." 

One of our earlier studies6 focussed on the effect that 
steepest-descent quenching created in the pair correlation 
function g(2). The specific model investigated was that of a 
monatomic substance (such as the noble gases beyond heli­
um) whose stable crystal form is face-centered cubic. Not 
surprisingly the constant-density quench procedure caused 
the pair correlation function g(2)(r) to change to a much more 
structured function til(r). However, it was surprising to dis­
~over that at constant density the til(r) was substantially 
mdependent of the temperature prevailing in the thermody­
namically stable liquid before quenching. As a result it ap­
peared that the liquid phase statistically possessed a tem­
perature-independent inherent structure and that the 
temperature dependence of t2l reflected only a variable ex­
tent of thermal excitation in the inherent packing structure. 

The present project was undertaken in an effort to see if 
the previous observations had wider applicability. Specifi-

cally we have elected to examine another important class of 
monatomic models which, like many metallic elements such 
as Na, have the bcc crystal as their stable form at low tem­
perature. The principal object has been to evaluate g(2l and 
g~l for this new case and to see as before if the latter is sub­
stantially independent of the prequench temperature (at con­
stant density). 

Section II discusses the pair potential utilized, contrast­
ing it with the previous case examined, and provides details 
of the classical molecular dynamics and numerical quench­
ing procedures employed to study the liquid. Section III pro­
vides some results on the distribution in potential energy of 
the packing structures sampled in the liquid phase. Pair cor­
relation functions before and after quench also appear in this 
section. Section IV establishes the importance of anharmon­
icity in the thermal excitation process that reconstitutes g(2l 
fromg~l. The discussion contained in Sec. V anticipates sev­
eral future applications. 

The reader may wish to consult a companion paper7 
which discusses details of packing structures and their inter­
conversions for the same model studied here. 

II. MODEL SYSTEM 

In a series of recent studies4-8 we have chosen to use a 
pair potential of the form 

vir) =A (r- P - r- q)exp[(r - a) -I] (0 <r<a) 
= 0 (a.,;;r). (2.1) 

The chief advantage of this potential is that vir) and all its 
derivatives go to zero at a. Previously the parametersA,p, q, 
and a were chosen so that the fcc lattice was the most stable 0 
K crystal form. Therefore it was possible to simulate the 
noble gases such as argon.4 Other choices of parameters will 
lead to other lattice structures being stabilized. In particular 
the choice 

A = 3.809 745 436, P = 6, q = - 1, a = 2 (2.2) 

has the bcc lattice as the most stable crystal. Figure 1 shows a 
plot of the pair-interaction potential as a function of separa-

J. Chern. Phys. 81 (11). 1 December 1984 0021-9606/84/235089-06$02.10 @ 1984 American Institute of Physics 5089 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.112.66.66 On: Tue, 25 Feb 2014 06:21:46



5090 T. A. Weber and F. H. Stillinger: Structures for liquids that freeze into bce 

4r-----~--_r~------~----~----_, 

2 

> 

o 

-20~----~------~----~------2~----~ 

r 

FIG. I. Pair-interaction potential as a function of separation distance as 
given by Eqs. (2.1) and (2.2). 

tion distance for this choice of parameters. The minimum in 
v occurs at 

r = 1.28228354 (2.3) 

and A has been chosen to yield a potential of - 1 at the 
minimum. In order to represent a real substance this interac­
tion potential will require that both the energy (E) and length 
(u) be rescaled: 

Ev(rlu). (2.4) 

Values appropriate for Na, e.g., are 

E = 1.19144x 10- 14 erg, u = 0.289 33 nm, (2.5) 

to yield the observed lattice spacing and melting tempera­
ture. The fundamental time unit, taking the mass of one Na 
atom as 3.8193X 10- 23 g, is 

T = oim1E)1/2 = 1.6384 ps. (2.6) 

Figure 2 shows for v a plot of the energy per particle for 
the bce, fcc, and simple cubic lattices as a function of density. 
The simulations described below were performed at reduced 
density 

p*=0.73051 (2.7) 

corresponding to the minimum in the bcc curve in Fig. 2 
which would be the zero pressure and zero temperature crys­
tal structure. The absolute minimum in the total potential 
energy 

(2.8) 

for N = 128 particles corresponds to the perfect bcc lattice 
aligned with the sides of a cubical box; this has been our 
choice of system size and shape for molecular dynamics. The 
usual periodic boundary conditions have been applied so as 
to simulate the bulk phase. The potential energy per particle 
at the absolute minimum is 
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FIG. 2. Lattice energies per particle for the bce (solid line), the fcc (dashed 
line), and simple cubic (dash-dot line) lattices. 

t/J = <P IN = - 6.578 015. (2.9) 

Notice that for our previous simulation of the fcc system that 
¢ = - 6.000 00 indicative of the fact that only nearest 
neighbor interactions were important, whereas with this po­
tential (2.2) the contributions from second neighbor interac­
tions are substantial. It should also be noted that as the den­
sity is increased there will be a transition from bcc to fcc and 
then from fcc to sc. Eventually the fcc structure will domi­
nate at the highest densities. 

Molecular dynamics runs were created at various tem­
peratures in both the fluid and crystalline (frozen) states. The 
details of the melting and freezing processes will be reported 
in a companion paper. 8 

The Newtonian equations of motion were integrated 
using a fifth-order Gear algorithm9 with a time step in re­
duced units of 

Llt = 0.001 25. (2.10) 

Each run was first equilibrated for at least 2 X 103 time steps 
and runs were typically 104 time steps long (20.48 ps for Na). 
No momentum scaling was necessary because the total ener­
gy was conserved to high accuracy during the run. While the 
trajectory was being generated, usually the configurations at 
every 100Llt were quenched to locate the nearest <P-mini­
mum packing structure. The trajectory configurations 
themselves wereleft undisturbed, serving only as initial con­
ditions for locating the minima. The quenching procedure, 
which has been previously described,5 was used to find the 
stable packing configurations of the system by solving 

"'Y<P (r) = O. (2.11) 

A combination of a Newton's method and a conjugate-gradi­
ent method 10 was used to produce the relevant solutions of 
Eq. (2.11). 

The simulations were initiated from the perfect bcc 
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crystal by slow heating. The crystal was melted and the tem­
perature raised stepwise to T* = 1.9. The fluid was then 
cooled in stages and allowed to recrystallize. The melting 
and freezing curves were traversed several times. Using this 
procedure at our fixed density we estimate the melting tem­
perature to be 

T:' ~0.43 
in reduced units. 

III. QUENCH ENERGY AND STRUCTURE 

(2.12) 

In our previous studies of argon5 it was shown that the 
rate at which particles undergo transitions between regions 
of different packing structures is a strong function of both 
the density and the temperature of the system. Figure 3 
shows a plot ofthe quench energy per particle for a 140 step 
run which was quenched every time step. The system, in a 
slightly supercooled liquid state, had an average tempera­
ture T * = 0.40 which was close to the melting point 
(T:' ~ 0.43). There were 65 transitions between the packings 
that were observed and a total of 39 different packings were 
sampled. The absolute minimum energy configuration how­
ever was not observed although configurations in two low 
lying bands were observed. These bands are due to the single 
and double vacancy/split-interstitial pair defects which are 
discussed in greater detail in the companion paper.7 The ma­
jority of quench structures observed are amorphous pack­
ings of much higher energy. 

Figure 4 shows a plot of quench energy for a liquid 
sample at T * = 0.41 which was run 104 time steps. The 
quenching procedure was performed every 100 steps. Many 
transitions have undoubtedly occurred between successive 
sample quenches. Notice also that the absolute-minimum-
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FIG. ~. Sequence of local minima in the potential (on a per particle basis) 
resulting from steepest-descent mapping. The initial reduced temperature 
was 0.396. The quenching was performed every step of this 140 time step 
run. 
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FIG. 4. Sequence oflocal minima for a run whose prequench reduced tem­
perature was 0.41. The system was quenched 101 times during the 104 time 
step run. 

energy packing structure has been observed twice in this run. 
A similar plot is shown in Fig. 5 where the trajectory average 
temperature was T* = 1.90. The chief difference between 
Figs. 4 and 5 is that the low-energy inherent structures are 
encountered more frequently at the lower temperature. 

Figures 6 and 7 show the liquid-state pair correlation 
function g(21(r) for the two temperatures 0.41 and 1.90, re­
spectively. The small system size (periodic box length is 
5.596 in reduced units) makes it impossible to measureg<21(r) 
past reduced distance 2.75 because of the intrusion of the 
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FIG. 5. Sequence oflocal minima for a run whose prequench reduced tem­
perature was 1.90. 
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FIG. 6. Pair correlation function for the bcc fluid with prequench reduced 
temperature of 0.41. 

periodic image. However a well resolved first and second 
peak are observed. The amplitude of the first peak clearly 
decreases with increasing temperature, as expected, due to 
thermal broadening. 

Pair correlation functions have been constructed from 
the 101 quench configurations which were generated during 
the two preceding long trajectory calculations. Figures 8 and 
9 present pair correlation functions g~21(r) for the prequench 
temperatures T* = 0.41 and T* = 1.90, respectively. Con­
trasting Figs. 6 and 7 with Figs. 8 and 9 respectively shows 
the great extent to which the quenching procedure has en-
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FIG. 7. Pair correlation function for the bcc fluid with prequench reduced 
temperature of I. 90. 
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FIG. 8. Pair correlation constructed from the 101 quench configurations 
generated from the trajectory whose prequench reduced temperature was 
0.41. 

hanced the structure of the pair correlation functions. 
Examination of the til(r) in Figs. 8 and 9 for the two 

prequench temperatures shows that in both curves the first 
peaks are nearly identical and that the broad based second 
peak from 2 to 2.5 overall is also nearly the same. The differ­
ences between the two reside in the height of the little peaks 
on the underlying broadened second peak. These small and 
narrow peaks are attributable to the perfect (or nearly per­
fect) crystalline configuration. Thus their amplitudes de­
pend strongly on the number of times the minimum energy 
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FIG. 9. Pair correlation constructed from the 101 quench configurations 
generated from the trajectory whose prequench reduced temperature was 
1.90. 
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configuration and the configurations in the two low lying 
bands due to vacancy/split-interstitial pair defects are sam­
pled. It is worth noting that these peaks are subject to large 
statistical uncertainty since only a very small number < 10% 
of these states are found at any given prequench temperature 
in the fluid. Our other quenching results for this model bear 
out that premise and suggest that suitable extended averag­
ing over quench structures would indeed yield a tempera­
ture-independentti'(r) intermediate between those in Figs. 8 
and 9. 

IV. THERMAL BROADENING 

Since the removal of vibrational motion produces pair 
correlation functions which are nearly temperature indepen­
dent it is tempting to try to reverse this process, i.e. to ther­
mally broaden the quench pair correlation functions til(r) to 
produce the temperature dependent pair correlation func­
tionstzl(r, /3). The simplest way to attempt this broadening is 
to use an Einstein approximation. A slightly more sophisti­
cated approach which incorporates both longitudinal and 
transverse phonon modes is the Debye approximation. A 
simple generic formula which may be used to accomplish 
this broadening using either the Einstein or Debye approxi­
mations is 

I (00 
g(ZI(R, /3) = "TTl /2 R)o dr r ti'(r)[Pa(r)] 1/2 

x{exp[ -pa(r)(R _r)2] -exp[ -pa(r)(R +r)2]}, (4.1) 

where/3 = l/kB T, ti'(r) is the quench pair correlation func­
tion as before, and aIr) is a broadening function. The Ein­
stein model takes aIr) as a constant. In the Debye approxi­
mation l/a(r) is a constant at large r and starts off at least 
quadratically at small r. 

A generic broadening function of the form 

l/a(r) = Arj /(1 + Brj
) (4.2) 

has been used to attempt to reproduce the observed thermal 
broadening behavior of g(21(r, P). The temperature-indepen­
dent pair correlation function tq21(r) as determined from the 
simulations was used in Eq. (4.1) and the parameters A, B, 
and} ( = 1,2, or 3) were chosen to give the best possible fit to 
the pair correlation function g(21(r) at a given temperature. 
The criterion used for best fit was to pick the parameters so 
as most closely to match the height and position of the first 
peak in g(21 and also to minimize the discrepancy between the 
predicted and calculated values of the first valley and second 
peak of the pair correlation function. This optimal choice of 
A, B, and} was then used to predict the thermally broadened 
pair correlation function at the other temperature. 

It was not possible to obtain good fits between the pre­
dicted and calculated pair correlation functions by simply 
adjusting the parameters of Eqs. (4.1) and (4.2). In addition, 
whether the parameters were chosen from the best fit to the 
high temperature pair correlation function (T * = 1.90) or to 
the low temperature pair correlation function (T* = 0.41) 
the predictions at the other temperature were unsatisfactory. 
Furthermore no reasonable extension of form (4.2) rectifies 
matters. 

In each case the predicted pair correlation function 
g(21(r, P) was more correlated than was observed from the 
simulations. This difficulty may stem from the quadratic ap­
proximation used in the exponentials ofEq. (4.1). At present 
simple attempts to thermally broaden the temperature inde­
pendent pair correlation functions do not produce the ob­
served g(21(r, P ). 

V. DISCUSSION 

The procedure of quenching trajectory configurations 
to reveal the underlying packing structures has again proven 
to be useful. As was the case with the "fcc" fluid, 6 a tempera­
ture-independent pair correlation function was discovered 
for the bcc potential. For that prior case it was possible to 
relate the quench pair correlation function to that of a struc­
turally disordered perfect crystal. No such simple explana­
tion is at first glance possible for the bcc system probably due 
to the fact that the bcc potential is much softer than its fcc 
counterpart and therefore permits a larger density of defects 
in the packing structures underlying its liquid phase. 

The running coordination number n(r) is defined by the 
equation 

(5.1) 

It is common practice to define the number of nearest neigh­
bors in simple atomic fluids as n(rtl, where r l is the position 
of the first minimum in the pair correlation function. Using 
this convention the number of nearest neighbors is found to 
be 15.0and 16.3 for T* = 0.41 and T* = 1.90, respectively. 
If instead the number of nearest neighbors is determined 
from the quench pair correlation function, then nq(r l ) is 
found to be 15.4 for both temperatures. Thus once thermal 
motion is removed the number of nearest neighbors in the 
fluid is nearly temperature independent. This suggests that 
structural interpretations of liquids based solely on their 
g(2)·s can be somewhat misleading. 

It was not possible to reconstitute the temperature de­
pendence of the pair correlation functions by thermally 
broadening the temperature-independent quench pair corre­
lation function ti'(r). Since both the Einstein and Debye ap­
proximations rely on a Gaussian convolution to thermally 
broaden the pair correlation functions, the lack of success is 
a strong indication of the importance of local anharmonic 
effects. It may be necessary to replace the functional form of 
Eq. (4.1) with a more general functional form to meet with 
success. Possibly replacing exp[ - a(r)(R ± r)2] with 
exp[ - a(r)(R ± r1'] would account for the anharmonicity 
and represent a simple way to introduce thermal broaden­
ing. However we feel that a purely empirical search of this 
kind would be inappropriate at this stage. 

That both the fcc and "bcc" fluids possess temperature­
independent quench radial distribution functions lends 
further credence to our approach of separating the partition 
function into a part related to the packing structures and a 
vibrational component. This approach is quite general and 
has been successfully applied to more complex systems such 
as the binary alloy NisoP 20. 11 As long as the prequench tem­
perature is sufficiently high so that any trajectory can effec-
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tively sample the entire phase space, the quench pair correla­
tion functions show little temperature dependence, quite 
independently of interaction details. 
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