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Structures corresponding to various potential energy minima have been examined for a classical 
model whose pair interactions produce a body-centered-cubic crystalline ground state. The 
method used is molecular dynamics computer simulation for 128 particles with frequent steepest­
descent mapping onto nearby minima. The elementary structural excitation out of the crystalline 
absolute minimum is creation of a vacancy, split-interstitial defect pair. This excitation process 
upon repetition shows a defect softening of the medium. Transition states (saddle points) have 
been located for some pairs of neighboring minima, and vibrational modes have been calculated 
for minima and for transition states. A simple melting theory based on these observations is 
proposed which satisfactorily describes the model's first-order melting behavior. 

I. INTRODUCTION 

Locating, enumerating, and classifying potential ener­
gy minima in many-body systems proves to be a valuable 
technique for understanding condensed-phase properties. In 
combination with standard molecular dynamics simulation 
of classical systems this approach has been applied both to 
monatomic substances 1-3 and to polyatomic molecular me­
dia.4 It has produced valuable insights concerning the nature 
of short-range order in liquids and the behavior of amor­
phous solids? 

The preceding paper5 introduces a specific many-body 
system for which the low-temperature stable structure is a 
bcc crystal. In this respect it behaves qualitatively like many 
of the elements, most notably the alkali metals.6 The major 
focus of that paper was study of the pair distribution func­
tion and its behavior under the mapping that locates relevant 
potential energy minima. The present paper reconsiders the 
same model. The objective now is (i) a more complete charac­
terization of the mechanically stable particle packings (po­
tential energy minima); (ii) a study of saddle points connect­
ing pairs of those minima; and (iii) an application of the 
information thus achieved to a rudimentary theory of the 
first-order melting transition in the model. 

The general approach of mapping onto local potential 
minima and details of the specific model used is outlined in 
the next Sec. II. Section III concentrates on the band oflow­
est-lying configurational excitations identified for this sys­
tem, namely that produced by creation of a vacancy, split­
interstitial defect pair in the perfect bcc structure. Section IV 
discusses the identification and analysis of transition states 
(potential energy saddle points) that connect pairs of poten­
tial minima, a topic obviously central to understanding ki­
netic properties. That insertion of defects into an initially 
crystalline medium causes "softening," thereby easing 
further defect insertions, is established in Sec. V. The various 
properties identified are then assembled in Sec. VI into a 
melting theory analogous (but not entirely isomorphous) to 
one proposed earlier for melting in the two-dimensional 
Gaussian core model. 1 Conclusions are summarized in the 
final Sec. VII. 

II. MAPPING AND MODEL 

Let r denote the 3N-dimensional configuration-space 
vector for a set of mutually interacting point particles. The 
potential energy function <P (r) generates a natural mapping 
of the continuum set of r's onto a discrete set of configura­
tions Ra (a = 1, .. ·,n ) which are the local minima of <P. Spe­
cifically this mapping is constructed by means of the steep­
est-descent equation 

arias = - V<P (r) (2.1) 

with the given r as an initial condition (s = 0). The resulting 
solution r(s) to Eq. (2.1) will have the property 

lim r(s) = Ra (2.2) 
s_+ 00 

for some a determined by the initial condition; this defines a 
mapping 

M[r(O)] = a. (2.3) 
By this means the fu1l3N-dimensional configuration space is 
divided exhaustively into connected nonoverlapping re­
gions, each of which contains precisely one Ra . Because the 
Ra are <P minima they correspond to mechanically stable 
arrangements of the N particles. Deviations from the fiducial 
set (Ra l constitute (generally anharmonic) vibrations. 
Hence the mapping M effects a separation of the many-body 
problem into a purely geometric packing part (identification 
of the Ra) and a vibrational part (displacement from Ra 
within the surrounding connected region). 

The preceding paper introduced and examined several 
features of a model in which <P was pairwise additive: 

N 

<P (r) = L v(rij)' (2.4) 
i<j= 1 

where the specific form of v is 

v(r) = A (r- 6 
- r) exp[(r - a)-I] (O<r<a), 

= 0 (a <;;;r), (2.5) 

with 

A = 3.809 745 436, a = 2.0. (2.6) 

This central pair potential has depth - 1 and passes through 
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zero when r is + 1. -6,--------.,.---------, 
As in the preceding paper we shall be concerned with a 

system of N = 128 particles in a cubic cell, subject to period­
ic boundary conditions. This number of particles can form a 
perfect body-centered cubic (bcc) array in the given cell, 
meshing perfectly with its periodic images. The reduced den­
sity p* = 0.73051 is that which minimizes the lattice energy 
at the value 

<P = - 841.985 87, <P IN = - 6.578015 

(perfect bcc). (2.7) 

The reduced melting and freezing temperatures at this den­
sity (which we continue to employ below) are 

n:" Tj~0.43 (2.8) 

By carrying out the mapping Eqs. (2.1 )-(2. 3) at frequent 
regularly spaced intervals during the course of molecular 
dynamics numerical simulation, it is possible to establish 
which portions of the configuration space dominate the sys­
tem's statistical properties. At low energy (low temperature 
crystal) the mapping places the system at one of the permuta­
tion-equivalent absolute minima as expected. When the con­
served total energy is high, by contrast, the mapping typical­
ly yields a rapidly changing sequence of Ra's that 
predominantly corrospond to amorphous random packings. 
These latter are the inherent structures which underline the 
stable liquid phase. 

The mapping onto potential energy minima produces 
particularly vivid and informative patterns while the system 
is undergoing a phase transition. Figure 1 provides an excel­
lent example, wherein values of 

<P = <P (Ra ) IN, (2.9) 
the potential per particle at the relevant minima, are given 

-6~----------~--------------_, 

....... 
~ -6.5 

-7L---------------~--------------~ a 5000 10000 

step number 

FIG. 1. Potential energy per particle (t/J ) at minima located by steepest-des­
cent mapping during the course of a molecular dynamics run. Mapping is 
carried out every 100 time steps (i.e., every 0.125 time units). The system 
initially was a supercooled liquid at reduced temperature 0.34. Nucleation 
of the bec crystal phase begins after about 4000 steps have elapsed. 

~ -6.5 

... _--.. _------------1 

-70~----------------~50~O~0--------------~10000 

step number 

FIG. 2. Potential energy per particle (t/J ) at minima located by steepest-des­
cent mapping during extension of the sequence shown in Fig. I. The result 
on every occasion after step 2000 is the absolute minimum, indicating that 
the I 28-particle system resides near a perfect bcc crystalline arrangement. 

every Ll t = 0.125 (every 100 time steps) for a sequence during 
which freezing spontaneously initiated in a slightly super­
cooled liquid. At first (up to about step number 4000) the 
mapping sampled primarily the high-<P manifold of amor­
phous states previously identified for this system.s Subse­
quently a set of low <P values appeared, with a nonuniform 
distribution exhibiting substantial banding. Figure 2 shows 
the extension of the same dynamical sequence. Only the ab­
solute minium <P value given in Eq. (2.7) emerges from the 

-6~----------------~--------------~ 

S. 6.5 

_7L-________ ~ ________ ~ 
o 5000 10000 

step number 

FIG. 3. Sequence oflocal minima in potential energy (on a per particle basis) 
resulting from steepest-descent mapping during melting of the bec crystal. 
The initial reduced temperature is 0.50. 
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-6.---------....,---------, 

"- -65 .... ....... ., 

-7L---_____ ~ ________ ~ 

a 5000 10000 

step number 

FIG. 4. Continuation ofthe mapping sequence for the melting event in Fig. 
3. 

mapping after 2000 time steps indicating that freezing was 
complete. 

Figures 3-5 display cP values for the mapping during 
the inverse process, namely melting of the perfect bcc crys­
tal. Once again the system is observed to traverse a portion of 
its multidimensional configuration space that has bands of 
relatively low-lying potential energy minima. 

III. FIRST EXCITATION BAND 

The narrow and isolated band of states seen in Figs. 1-4 
near cP = 6.50 are the lowest-lying configurational excita-

-6.---------~--------~ 

.+ ..... 

"- -6.5 

-70~--------5~OO-O--------I-JOOOO 

step number 

FIG. 5. Continuation of the mapping sequence in Figs. 3 and 4. The final 
temperature in the liquid is 0.41. 
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FIG. 6. "Line spectrum" of packing energies (local potential minima) in the 
first excitation band. In spite of the expanded scale, four pairs and one tri­
plet of distinct energies as indicated remain unresolved graphically. 

tions that have been encountered for the system under inves­
tigation. During our extensive numerical studies we have 
uncovered, all told, 46 distinct cP values in this band. These 
are presented in Fig. 6. in "line spectrum" form with an 
expanded cP scale to enhance visibility. It should be re­
marked that most of these stable packings have been encoun­
tered many times, often during examination of thermody­
namic states at very different temperatures. Although some 
distinct cP values in the first excitation band may have been 
missed, it seems to us likely that most have been observed 
and recorded. 

No obviously simple pattern suggests itself in the pack­
ing energies displayed in Fig. 6 that might provide a clue 
about the nature of these configuration states. However, pic­
tures of the stable packings provide the necessary clarifica­
tion. Figure 7 gives a set of stereoscopic pairs for three mutu­
ally perpendicular views of the lowest-energy packing in this 
first excitation band. The potential energy of this lowest ex­
cited state is 

cP = - 832.355 25. (3.1) 

Examination of the stereo pictures reveals that this state is a 
bcc crystal with a close pair of point defects, namely a va­
cancy and a "split interstitial."? The latter consists of two 
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E = -6.502775 

FIG. 7. Stereoscopic picture pairs for the lowest state in the first excitation 
band. 

particles symmetrically disposed about the site where only 
one should be present in the defect-free crystal. The split 
interstitial in this instance is oriented parallel to a cube edge; 
both it and the vacancy lie in the same plane of atoms parallel 
to a cube face as indicated schematically in Fig. 8. 

As a result of their closeness, the vacancy and split in­
terstitial doubtless interact strongly. One effect of this inter-

o 

VACANCY 

o 

o 

o o o 

000 

SPLIT 
INTERSTITIAL 

o 

000 

FIG. 8. Schematic diagram showing formation of a coplanar vacancy, split­
interstitial defect pair in the lowest state of the first excitation band. 

action is quite unexpected. Nominally the plane of atoms 
shown in Fig. 8 would seem to be a reflection symmetry 
plane, with atoms above and below in symmetric pairs. How­
ever that turns out not to be the case upon careful study of 
the stereo pairs in Fig. 7. Instead, atoms flanking the va­
cancy in planes directly above and below that containing 
both defects manifest a spontaneous chiral distortion that 
destroys the reflection symmetry of the configuration. This 
chiral distortion can occur in either of two equivalent senses 
of course and its presence converts what would have been a 
single potential minimum into two. 

Stereo pictures have also been examined for several oth­
er pac kings selected at random from the first excitation 
band. They all display a vacancy, split-interstitial pair in an 
otherwise perfect bcc crystal, however the relative separa­
tion of the defects varies from case to case. In particular the 
configuration shown in Figs. 7 and 8 has the smallest ob­
served separation and this helps to explain the fact that it 
yields the lowest-energy state in the band. Evidently any 
smaller separation (see Fig. 8 for instance) would be unstable: 
The vacancy and split interstitial would have no barrier to 
prevent spontaneous recombination and annihilation. 

The visual sampling of states uncovers two further 
facts. First, the split interstitial can have a second orienta­
tion, namely along a cube diagonal. Second, when the va­
cancy is farther from the split interstitial than it is in the 
lowest excited state (Figs. 7 and 8), no perceptible chiral dis­
tortion of its flanking particles is observed. 

Taking the two orientations of the split interstitial into 
account, and the fact that the two defects cannot be too close, 
46 seems to be a reasonable approximation to the number of 
distinct packings expected in the first excitation band. 

Having thus established that at fixed density the funda­
mental structural excitation is creation of a vacancy, split­
interstitial pair, it is natural to expect another band of excit­
ed states to appear at about twice the previous potential 
energy increment over the ground state, containing two such 
defect pairs. Indeed such a double excitation band does exist, 
some components of which are visible in Fig. 1. One of these 
double-excitation structures, for which 

<P = - 823.21792, (3.2) 

is presented as stereo pairs in Fig. 9. The alignment of the 
crystalline medium with the cubic periodic cell sides (the 
viewing directions) is still clear. 

Perhaps triple-excitation states exist as well, but we 
have not specifically identified any. They would be expected 
to occur in a range of <P overlapping and likely indistinguish­
able from the large family of more-or-less amorphous pack­
ings. 5 Any such band would probably be rather wide in com­
parison with the single and double excitation bands. 

With periodic boundary conditions, particles can pack 
into largely crystalline arrays that are rotated with respect to 
the cubic cell edge directions. These rotated configurations 
fit next to, and are locked into position by, their surrounding 
periodic images. Figure 10 provides stereo pairs for such a 
rotated crystal, whose potential energy is 

<P = - 827.641 92 (3.3) 

That this lies well above the absolute minimum value shown 
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E -6.431390 

FIG. 9. Stereoscopic picture pairs for a double excitation structure. The 
potential energy <I> is - 823.217 92. 

E -6465953 

o 0 

o o o o 

FIG. 10. Stereoscopic picture pairs for a rotated crystal structure. The po­
tential energy <I> is - 827.641 92. 

in Eq. (2.7) is due to the anisotropic strain that must be pres­
ent to accommodate the locking onto images. The existence 
of these rotated crystals and their own excitation bands sub­
stantially complicates the task of classifying potential energy 
mlmma. 

IV. TRANSITION STATES 

It is important to identify and characterize "saddle 
points" on the lP hypersurface in order fully to understand 
dynamics of transition between regions surrounding mini­
ma. These saddle points are extrema with one or more nega­
tive curvatures (imaginary frequencies). Greatest interest 
perhaps centers about those "simple saddle points" or "tran­
sition states" that have just a single negative principal curva­
ture, the direction of which is locally the reaction coordinate 
direction for the transition. The boundary separating the 
two regions connected by the reaction coordinate of course 
must pass through the simple saddle point. 

Locating these saddle points is a more demanding task 
than locating local lP minima. However, it helps to observe 
that each saddle point (in addition to each lP minimum) is a 
point at which the quantity 

(4.1) 

achieves its absolute minimum, namely zero. Therefore the 
same general types of numerical procedures can be used as 
before, provided a reasonably close approximation to the 
saddle point is first in hand. Such an approximation can 
sometimes be found by the following procedure: 

(i) select a pair of lP minima which the mapping indi­
cates to occur in direct succession during dynamical evolu­
tion of the system; 

(ii) calculate lP along a linear path in the 3N-dimension­
al space between the two minima; 

(iii) identify the configuration along that path, between 
the minima, at which lP passes through a maximum. This 
configuration is then used as a starting point in searching for 
a nearby '/I absolute minimum (equal to zero). At times this 
procedure locks onto local '/I minima greater that zero, or 
onto lP saddle points of higher order. 

In this event it is necessary to augment the preceding 
three steps by the following: 

(iv) diagonalize the matrix of second lP derivatives at the 
given configuration; 

(v) if more than one negative eigenvalue appears, move 
along the direction of the eigenvector corresponding to the 
most negative of these to an apparent minimum of lP. 

(vi) rediagonalize. Often this will serve to eliminate one 
(or more) negative eigenvalues and can be repeated if neces­
sary. Eventually a configuration with just a single negative 
eigenvalue should be obtained. That configuration is the de­
sired approximation to the saddle point. 

Once a transition state has been accurately located, 
small displacements are made along positive and negative 
directions for the reaction coordinate (eigenvector for the 
negative eigenvalue). These displaced confgurations are then 
subjected to the mapping operation to verify which two 
minima are indeed connected by the transition state. 

U sing this strategy we have located a few representative 
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transition states. Probably the most obvious candidate for 
examination is the transition state separating the absolute cP 
minimum (actually 127! distinct configurations in the pres­
ence of periodic boundary conditions) from the lowest level 
in the first excitation band. This transition state has in fact 
been produced using steps (i)-(vi) above, followed by minimi­
zation of the quantity IJI in Eq. (4.1). The results for this 
transition state and its flanking cP minima are indicated in 
Fig. 11. We find that the barrier to return from the upper to 
the lower level is only about 0.51, suggesting that the excited 
state can decay readily if the system is near its melting point. 
Indeed we have observed the stable crystal just below T;:-' 
occasionally to flicker into the first excitation band as a re­
sult of thermal fluctuations, but such behavior is transitory. 
Evidently the rapid formation and annihilation of point de­
fects is an important component of crystal anharmonicity 
for the model under consideration. 

Figure 11 also reports some aspects of the normal mode 
frequency spectrum for the two minima and the transition 
state. Vibrational free energy (in the harmonic approxima­
tion) is determined by the sum oflogarithms of positive fre­
quencies. There are 381 such frequencies for the minima, one 
fewer at the transition state, and the respective sums are 
shown in the figure. 

The maximum frequency for the perfect crystal is six­
fold degenerate. Deforming the system configuration to-

090 
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Q. 
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r' Inwj =782.245 
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<:> =-84~. 98587 
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.. 
REACTION COORDINATE 

FIG. II. Characteristics of the absolute tP minimum, the lowest excitation 
level, and the transition state between them. 
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FIG. 12. Stereoscopic picture pairs showing the structure of the transition 
that appears in Fig. II. 

ward and through the transition state causes one of these six 
modes to split off and rise dramatically in frequency, as indi­
cated in Fig. 11. This isolated mode is localized at the split 
interstitial, with the two crowded particles vibrating out of 
phase essentially toward and away from each other. 

Figure 12 offers stereo views of the transition state. 
Consistent with the prior Fig. 8, it requires only a set of 
displacements localized on a small number of particles to be 
reached from either minimum. 

For the lowest excitation level: (a) there are 128 crystal 
sites at which the split interstitial could be located; (b) there 
are three orientations for the split interstitial; (c) there are 
eight equivalent vacancy sites near the split interstitial; and 
(d) two chiral distortions are possible about the vacancy. We 
conclude that each absolute-minimum region possesses 

128X3X8X2 = 6144 (4.2) 

equivalent transition states on its bounding hypersurface. 
Table I summarizes properties computed for seven 

transition states (all are simple saddle points). Case A listed 
there has just been discussed. Cases Band C also involve 
direct transitions from the absolute minimum to higher lev­
els in the first excitation band. Cases D and E entail transi­
tions within the first excitation band, which move the pair of 
defects around. Cases F and G represent transitions between 
pairs of minima in the high-CP amorphous packing group. It 
is probably no accident that these last two cases have the 
lowest barriers ..::1 cP for transition from upper to lower level. 
This would be expected if the amorphous packing configura-
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TABLE I. Transition state properties. 

Case t/J(min)" .I In (J}j b t/J (tsj< 

A - 841.985 87 788.097 - 831.845 93 
- 832.355 25 786.305 

B - 841.985 87 788.097 - 832.04134 
- 832.13409 786.349 

C - 841.985 87 788.097 - 831.459 54 
- 832.Q33 98 784.111 

D - 831.915 31 783.447 - 831.276 30 
- 831.717 91 786.642 

E - 831.823 55 787.264 - 831.036 85 
- 831.781 91 783.372 

F -796.90284 756.190 -796.88290 
- 796.911 61 753.924 

G - 802.25006 761.102 - 802.201 71 
- 803.336 54 762.433 

• Potential energy of flanking minima. 
bVibrational free energy for flanking minima (381 modes). 
C Potential energy of transition state. 
d Vibrational free energy of transition state (380 modes). 
e Barrier to transition from upper to lower minimum. 

tions were clustered more closely together in the 3N-dimen­
sional configuration space than were the low-(/) states. 

In each of the cases presented in Table I the reaction 
coordinates at the transition states entail displacements pri­
marily localized on a small subset of particles. Thus it ap­
pears that transition states are not uniformly distributed in 
all directions about minima in 3N space. Instead, they tend 
to concentrate along directions near small numbers of coor­
dinate axes. This is consistent with our extensive observa­
tions on this and other models2 about overall displacements 
from minimum to successive minimum during dynamical 
evolution of the system, namely that these are likewise con­
centrated on a small subset of the particles. 

v. DEFECT SOFTENING 

The average increase in potential energy required to ele­
vate the system from its absolute minimum to one of the 46 
local minima in the first excitation band is to.O. Subsequent 
elevation to the second excitation band for the unrotated 
crystal appears on average to require somewhat less of an 
increase, namely 9.4. This reduction can be explained as a 
mean attraction between point defects. Alternatively it 
could be described as a defect-softening phenomenon in the 
crystalline medium, whereby insertion of a few defects 
makes it easier to insert yet others, at least up to a point. This 
property had previously been noticed in computations on a 
two-dimensional system. I Furthermore it is consistent with 
the observation that bulk and shear elastic moduli are less for 
substances in amorphous compared to crystalline forms. 8 

Defect softening also affects, and is reflected by, the 
normal modes of vibration at the local (/) minima. To some 
extent this is illustrated by results listed in Table I. Values of 
~ In UJj listed under amorphous-region cases F and G are 

.I'ln(J)/ .1<P 

782.245 0.509 32 

782.880 0.09275 

780.893 0.57444 

780.757 0.441 61 

781.276 0.74506 

753.964 0.01994 

759.600 0.04835 

significantly less than all the others, which pertain to lower­
lying (and thus more crystalline) minima. A more complete 
comparison appears in Fig. 13, which plots~ InUJj vs (/) for a 
wide collection of packings. This figure shows the trend just 
mentioned quite clearly, at least as point defects are inserted 
into crystals aligned with the box sides (states indicated by 
solid circles). The same trend is present though less vividly 
for states identified as misoriented crystals (open circles). In 
any case fully amorphous states tend to be grouped together 
with lowest ~ In UJj and highest (/). 

In the large-system limit, boundary conditions should 
play no role in system properties when examined on a per 
particle basis. In this respect we believe that the displace­
ment seen in Fig. 13 for the misoriented crystals (that doubt­
less arises from their substantial anisotropic strain) is a 
small-system anomaly. The curve drawn in the figure 

-780 Bee, N= 128, p"= 0.73051 

-790 

-800 

-810 

-820 

-830 

-840 

750 790 

FIG. 13. Plot of potential energy t/J vs vibrational free energy sums.I lll(J)j 

for various packings. Misoriented-crystal cases are shown as open circles. 

J. Chern. Phys., Vol. 81, No. 11, 1 December 1984 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.112.66.66 On: Wed, 26 Feb 2014 21:46:06



5102 F. H. Stillinger and T. A. Weber: Point defects in bcc crystals 

through the points for properly oriented crystals then is tak­
en to be more indicative of the large-system behavior. Should 
it become feasible eventually to carry out these calculations 
on significantly larger systems, and systems with different 
boundary conditions, this presumption could be checked di­
rectly. 

The small transition-state barriers L11/> observed 
between amorphous state pairs (Table I) compared to those 
between lower-lying state pairs can also be interpreted as a 
symptom of defect softening. They indicate that the amor­
phous medium is relatively easy to rearrange by mechanical 
means in comparison with the crystal. 

VI. SIMPLE MELTING THEORY 

Two principal conclusions have thus far emerged, 
namely that the elementary configurational excitations are 
vacancy, split-interstitial pairs, and that the medium exhib­
its defect softening (mean attraction between defects). These 
ingredients suffice to create a simple melting theory wherein 
the phase transition is associated with condensation of the 
gas of defects. The notion that melting should be described 
by a defect mechanism is hardly new,9-12 but the specific 
implementation now to be offered has apparently not ap­
peared in print before. We do not claim universal applicabi­
lity for the theory, but it seems to be the most appropriate 
way to describe crystal-liquid transitions in the specific 
three-dimensional model studied in this paper. 

First we note that any packing configuration Ra can 
formally be described as a bcc crystal containing some num­
ber of vacancies and split interstitials. The description is 
achieved as follows: 

(i) Erect a properly oriented bcc reference lattice of N 
sites within the box, whereNis the number of particles in the 
system. Denote the position of these sites by Si (i = 1 ,.··,N ); 

(ii) connect each particlej in the packing (at Raj) to one 
of the reference sites, say Scj' This connection c is to be car­
ried out so that no reference site eventually has more than 
two particles attached to it. Obviously there are many differ­
ent possible connections which satisfy this restriction; 

(iii) calculate the total connection distance D (c) accord­
ing to the formula 

N 

D 2(C) = L (Raj - Scj )2; 
j~ I 

(6.1 ) 

(iv) minimize D (c) with respect to all permissible con­
nections c and all relative translations of the packing and 
reference lattice 

Do(co) = min D (c). (6.2) 

The minimizing connection scheme Co assigns 0, 1, or 2 
particles (respectively, vacancies, single particles, split inter­
stitials) to each bcc site, thereby formally accomplishing the 
classification task. 

Against this background we can now produce an ap­
proximate canonical partition function Z N for the model 
system. This will be done in two easy stages. The first incor­
porates defects but disregards defect softening. The second 
reintroduces defect softening. 

Let 1/>0 represent the absolute potential minimum given 

by Eq. (2.7) above and let L1 > 0 be the energy necessary to 
create a (noninteracting) vacancy, split-interstitial pair in the 
system. It is obvious that the presence of one defect in the 
crystal excludes another from occupying several sites near 
its position; we will suppose that each inserted vacancy, 
split-interstitial pair consumes a sites. Assuming that once 
their positions are fixed each pair can have n distinct config­
urations, the partition function will be (V = volume, {3 = 1/ 
kBT): 

/lilA 

ZN =exp( -{3l/>o)VZ~~b L [n'exp( -1{3L1 )/(/!)2] 
,~() 

, 
IT [N - (k - l)a]2. (6.3) 
k~ 1 

Here I stands for the number of defect pairs in the system. 
The last set of factors, indexed by k, enumerates the ways 
that defect pairs can be sequentially sited within the system. 
The vibrational partition function has been denoted by Z ~~b, 
and in the classical harmonic approximation it will have a 
product form over independent normal modes 

Z ~~6 = IT [{3(UjO)] - 1 (6.4) 
j 

Because we disregard defect softening for the moment, it is 
consistent to assume that the product of angular frequencies 
(UjO) is unaffected by the presence of defects. 

In the large system limit In Z N will be dominated by the 
maximum term in the I sum in Eq. (6.3), Imax' This is easy to 
locate by the standard procedure which leads to the expres­
sion 

almaxlN = an 1/2 exp( - Jj3L1 )/[ 1 + an l/2 exp( - Jj3L1 )] 
(6.5) 

The implication is that Imax vanishes at absolute zero and 
rises smoothly (without a singularity) as temperature rises. 
In the high temperature limit the system is predicted to con­
tain defects in amount: 

lim Imax = Nnl/2/( 1 + an 1
/
2

). 
/3 .0 

(6.6) 

This first stage of description is unacceptable because it 
fails to yield a melting transition at which Imax is singular. 
Defect softening eliminates this failure. The form of the par­
tition function modified to take this phenomenon into ac­
count is the following: 

,vIa 

Z/Ii = exp( - {31/>0) VZeib L [n'l (l!) 2] 
'~O 

X exp [ - 1{3L1 + 12 (Tf + {3€) 1 (2N ) ] , 
X IT [N- (k-l)a]2. (6.7) 
k~l 

The parameter Tf measures the effect of defect softening on 
the normal-mode spectrum, while € represents the strength 
of a mean-field attraction between defects. Notice that both 
of these are assumed to be quadratic in I. 

The maximum term for Eq. (6.7) in the large system 
limit is a real positive root of the transcendental equation 

(almaxlN )/[1 - (alma.!N)] (6.8) 

= an 1 /2 exp{ - Jj3L1 + Halma.! N ) (Tf + {3€) 1 a}. 
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FIG. 14. Defect concentrations obtained from Eq. (6.8). Solid lines corre­
spond to stable equilibrium values, dotted lines to metastable and unstable 
branches. 

To see that this modified version can yield a discontinuous 
Imax as a function of temperature, we have carried out a nu­
merical calculation for the following choice of parameters: 

..::1 = 10, 1] = 200, n = 6, € = 160, a = 20. (6.9) 

The first of these..::1 is the excitation energy discussed in Sec. 
III. The choice for n considers the possible orientations for a 
split interstitial. The a value seems to be roughly correct 
considering the closest approach of defects illustrated in Fig. 
8. Finally, 1] and € were selected to accommodate the data 
shown in Fig. 13. 

A very simple calculation for the parameter set (6.9) 
yields Imax results shown in Fig. 14. The upper and lower 
branches are analytically connected by a portion that locates 
"/min ", a physically irrelevant solution to Eq. (6.8) that corre­
sponds to a local free energy minimum. The physically rel­
evant Imax undergoes a jump discontinuity at 

T! = l//3m = 0.469. (6.10) 

This melting point agrees reasonably well with the observed 
value 0.43 [Eq. (2.8)]. The upper and lower endpoints of the 
discontinuity are found to be 

almaxlN = 0.001 17 

= 0.998 82 
(T*=IT! -0), 

(T*=T!+O), 

(6.11) 

which indicate, respectively, that coexisting solid and liquid 
are close to defect free and almost maximally defective. 

The approximate method just employed for enumerat­
ing defect configurations can be used to estimate the total 

number n of potential energy minima available to the sys­
tem. This simply requires calculating the packing configura­
tion entropy in the high temperature limit. For large N it is 
found that asymptotically 

n-N!exp(0.3912N). (6.12) 

VII_ CONCLUSIONS 

The classical many-body system investigated here and 
in the preceding paper has the bcc crystal as its lowest-poten­
tial-energy structure. Molecular dynamics simulation cou­
pled with frequent configuration mapping onto local poten­
tial minima reveals that the elementary structural 
excitations are vacancy, split-interstitial pairs. The system 
exhibits a defect-softening phenomenon, or mean attraction 
between defects, which influences the spectrum of normal 
mode frequencies at the local minima. A simple melting the­
ory incorporating these ideas was constructed which shows 
that the defect softening is basic to the fact that the solid­
liquid phase transition is thermodynamically first order. 

In the future it will be desirable to apply the approach 
followed here to models with other interactions. Also, con­
stant-pressure rather than constant-volume conditions 
should be explored, particularly since they can create an im­
balance between vacancy and interstitial concentrations. It 
will be interesting to see how the concepts used in this paper 
will have to be generalized or modified to describe materials 
with solid-solid phase transitions which precede melting, 
and materials which first melt into liquid-crystalline phases 
before becoming isotropic liquids at higher temperature. 
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