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by WE in Figure 2. Self-avoiding five-choice walks of 197-1997 
steps were studied on the simple cubic lattice? Linear least-squares 
extrapolation of ( s 2 ) / ( r Z )  vs. l / n  yields an intercept of 0.159, 
corresponding to the a:/a: denoted by KP in Figure 2. Limits 
suggested by the longer chains in the simulations5-’ are somewhat 
lower than those derived from discrete enumeration of shorter 
self-avoiding walks. 

The most pertinent previous study of off-lattice chains was 
performed by Winnik et ala9 They employed a model nearly 
identical with the one used in the present work. Their first- and 
second-order interaction energies were slightly different, causing 
their unperturbed chain to have a slightly greater preference for 
trans states. They also used a larger hard sphere, corresponding 
to r* = 1.751. The greater attrition arising from their larger r* 
prohibited study of chains as long as those used in Figures 1 and 
2. When the temperature was 298 K, a:/a: was found to be 
1.03 for the two longest chains ( n  of 60 and 100). That result 
is only slightly larger than the a:/a: for the shortest chain in 
Figure 2A. Therefore, we find reasonable agreement with the 
dimensions reported in a study that employed a similar off-lattice 
chain, even though our results give smaller a,‘/a: than those found 
earlier with lattice chains. 

The present simulations of perturbed polymethylene chains 
would have led to the prediction of 1.028 f 0.005 as the limit for 
a;/a: at  infinite n if the only chains studied were those of 
100-400 bonds. That result would have been interesting by itself 
because higher limits were obtained in several earlier studies of 
chains in which atoms participating in long-range interactions 
behave as hard  sphere^.^-^ The current results take on added 
interest when the two longest chains, comprised of 500 and 750 
bonds, are included in the analysis. They show that the true limit 
must be smaller than 1.028 because a(a:/a:)/d(l/n) becomes 
positive at  very small 1 /n. Plausible extrapolations might lead 
to a limit for a;/a: that is as small as one. 

Available computational resources do not permit extension of 
sufficiently accurate simulations to chains having n > lo3. 
However, the approximate generator matrix treatment of per- 
turbed polymethylene chains can easily be applied to long chains.I3 
Figure 2C presents the results of such generator matrix calcu- 
lations. Two features reinforce conclusions derived from the 
behavior of the two longest chains considered in the simulations: 

a(a:/a:)/a(l/n) is positive at  very small l/n, and the limit for 
a:/a,2 is smaller than 1.03. Generator matrix calculations suggest 
the limit could conceivably be less than one. The lower limits are 
obtained when the generator matrix calculation is parameterized 
so that the perturbation is felt preferentially by subchains situated 
in the middle of the main chain. 

Emphasis here has been on a:/a> obtained in simulations of 
the behavior of off-lattice chains in which atoms participating in 
long-range interactions behave as hard spheres and the relationship 
of those simulations to the a:/a> obtained by using an approx- 
imate generator matrix scheme. It is pertinent, however, to cite 
two recent estimates for the limiting a:/a: that were obtained 
by other methods. Using a very simple generalization from a one- 
to a three-dimensional system, des Cloizeaux and Noda estimated 
the limit to be 1.01 5.22 The renormalization group approach finds 
a limit of 1 .Ol .23 These two limits could be obtained by reasonable 
extrapolation of the simulations reported in Figure 2A,B, taking 
advantage of the curvature apparent with the chains comprised 
of 500 and 750 bonds. The two limits are only slightly outside 
the range suggested by the generator matrix results depicted in 
Figure 2C. 

Summary 
Simulations described here find the limit for a;/a,Z to be 

smaller than that suggested by several earlier studies of lattice 
and off-lattice chains in which atoms participating in long-range 
interactions behave as hard spheres. An approximate generator 
matrix scheme yields a:/a? compatible with those seen in the 
present simulations. The limit for  CY: is very close to one, 
signifying that the limit for ( r 2 ) / ( s 2 )  is nearly identical with 
Debye’s result for ( r 2 ) o / ( s 2 ) , .  
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This paper examines several aspects of the natural packing structures for molecules in condensed phases, Le., the collection 
of local minima in the many-body potential energy function. Thermal equilibrium at different temperatures populates regions 
surrounding these minima differently. Kinetic processes occur via transitions through saddle point neighborhoods that connect 
neighboring minima. General properties of this representation suggest an approximate mapping of minima and feasible transitions 
respectively onto the vertices and edges of a hypercube. For the purposes of specific calculation this latter picture has been 
projected onto a two-dimensional order-parameter space with an appropriate model potential energy function. The resulting 
statistical-mechanical construct exhibits distinct “crystal” and “liquid” phases, with a first-order melting transition as well 
as metastability. A Fokker-Planck equation has been derived for the model to describe relaxation in the order-parameter 
space. 

I. Introduction 
To a large extent materials science studies geometric patterns 

of atoms and molecules in space, and the kinetics of transition 
between those patterns. Theory is obliged to specify the underlying 
interactions, and then show how they produce the local order that 
obtains under given conditions of temperature, pressure, and 
thermal history. 

It is useful for understanding a condensed-phase material to 
identify the %atural structures” it can exhibit, namely the me- 
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chanically stable arrangements of its constituent atoms or mol- 
ecules. These are configurations corresponding to local minima 
of a, the total interaction potential. This function generally will 
include intramolecular, intermolecular, and wall forces. These 
natural structures or particle packings provide a fiducial set against 
which any arbitrary configuration (not necessarily at mechanical 
equilibrium) can be gauged. It has been demonstrated previously1 

(1) Stillinger, F. H.; Weber, T. A. Phys. Reo. A 1982, 25, 978. 
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that such a strategy uniquely separates the equilibrium statisti- 
cal-mechanical problem into a pure packing part, and a part 
attributable to anharmonic vibrations away from the @ minima. 

This paper continues the theoretical exploration of the natural 
structure formalism. Section I1 summarizes some of the earlier 
conclusions reached both from analytical studies and from com- 
puter simulation of selected (but diverse) classical many-body 
systems.’” A master equation is then introduced in secion I11 
to describe the approach to thermal equilibrium, particularly a t  
low temperature; the “states” kinetically coupled by the master 
equation are precisely those defined by the @ minima. 

In order to confer a modest degree of concreteness on the formal 
theory, a simple solvable model is introduced in section IV. This 
model entails two order parameters and exhibits a first-order 
melting transition. It also illustrates the possibility of metastable 
states, specifically supercooled liquid and superheated solid. 
Section V discusses some aspects of kinetic behavior in this simple 
model, starting with the relevant master equation for transitions 
between its natural structures, and then deriving a Fokker-Planck 
equation for relaxation in the two-dimensional order-parameter 
space. Section VI discusses prospects for developing more realistic 
models and for relating them more closely to experimental studies 
of nucleation rates and of glass formation and relaxation. 

11. Natural Structures 
Suppose that the system of interest comprises N atoms whose 

respective positions and masses are rj and mj (1 I j I N). The 
full configuration space therefore is 3N-dimensional. Any point 
r = (rl,  r2, ..., rN) is this multidimensional space (with exceptions 
having no more than zero measure) can be mapped uniquely onto 
a local minimum of the potential energy function @. The mapping 
is generated by the solution to the set of equations (s L 0): 

mj(drj(s) /ds) = -Vj@[rl (s) .. .rN(s)] (2.1) 

with the given r as initial condition. The solution r(s) to eq 2.1 
describes a mass-weighted descent on the @ hypersurface in the 
multidimensiondl configuration space. In the limit that s ap- 
proaches +m it settles into the relevant @ minimum onto which 
the initial configuration is thereby mapped. 

The set of starting positions r all of which map onto a common 
minimum a define a connected region R, surrounding that 
minimum. These regions exhaustively and without overlap divide 
the configuration space in a natural way into discrete cells. 
Whenever r is in R,, we can simply say that the system possesses 
the natural structure a. 

Let R denote the number of potential energy minima. General 
considerations’ suggest that in the large system limit R has the 
following form: 

R - Qp exp(0N) 

0 > 0, Qp = Nl!N2! ... Nu! (2.2) 

where 

are the numbers of distinguishable atomic species present. R, in 
eq 2.2 accounts for the possibility of permuting identical atoms 
(this creates distinct but equivalent packings), while the expo- 
nential factor indicates how the number of inequivalent packings 
rises with system size. The vast majority of the minima correspond 
to amorphous packings; those with recognizable crystalline order 
are rarer and tend to be lower in energy than the average. 

Classical dynamics specifies r(t), the continuous temporal ev- 
olution of the system’s 3N-dimensional configuration vector. This 

(2) Stillinger, F. H.; Weber, T. A .  Phys. Reu. A 1983, 28, 2408. 
(3) Stillinger, F. H.; Weber, T. A. J .  Phys. Chem. 1983, 87, 2833. 
(4) Weber, T. A.; Stillinger, F. H. J .  Chem. Phys., submitted for publi- 

(5) Stillinger, F. H.; Weber, T. A. J .  Chem. Phys., submitted for publi- 

(6) Weber, T. A.; Stillinger, F. H. Phys. Rev. E, submitted for publication. 
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vector passes through a sequence of regions R,, slowly executing 
transitions at  low total energy, but doing the same much more 
rapidly at  high total energy. Previous studies utilizing the com- 
puter simulation technique2,5,6 have established several general 
attributes of the transition sequence: 

(1) The feasible transitions between contiguous regions occur 
strictly as a result of localized rearrangements of particles; i.e., 
most of the system remains virtually fixed in comparing the 
configurations of the two potential minima involved. A conse- 
quence of this feature is that the difference in potential energy 
between the minima is order unity, not order N,  so that with each 
such fundamental transition the potential energy in a large system 
changes by a small fraction. 

(2) The transition rate between successively visited regions is 
an extensive quantity. This follows from the localization property. 
The number (and thus the net rate) of feasible transitions out of 
a given packing region scales linearly with the system size. 

(3) Only a very small fraction of the direct structural transitions 
occur between equivalent packings and thus merely involve per- 
mutations of identical particles. The great majority instead cause 
the system to shift from one packing structure to another in- 
equivalent one which therefore differs in potential energy. 

(4) The activation energy in the liquid phase for self-diffusion 
significantly exceeds that for structural transitions. The latter 
typically requires the system vector r(t) to cross the boundary 
between neighboring packing regions in the vicinity of a @ saddle 
point embedded in that boundary. Evidently self-diffusion is 
controlled by a relatively small but high set of potential barriers 
that act a bit as kinetic bottlenecks in the entire transition se- 
quence. 

These considerations lead to a qualitative picture of the natural 
packing structures and the kinetically feasible transitions con- 
necting them which will be useful for justifying the simple model 
discussed in section IV. Equation 2.2 shows that a macroscopic 
material system possesses a huge number of alternative packing 
structures, even after discounting all possible permutations among 
identical particles. However, the feasible transitions connect any 
one packing structure only to a number of others of order N ,  a 
tiny fraction of the total. Using the language of graph theory7 
one would say that packing structures (vertices) are very sparsely 
connected by feasible structural transitions (edges connecting the 
vertices). 

111. Master Equation 
Consider a microcanonical ensemble of identically prepared 

systems, all with the same total energy E .  The statistical state 
of this ensemble can in principle be described by the full 6N- 
dimensional phase-space distribution function. But for present 
purposes it suffices to use a more economical coarse-grained 
description in terms of the probabilities p,(t) that any member 
of the ensemble resides in packing region R, at time t .  The obvious 
normalization condition 

01 

applies for all t .  
Time dependence of the regional probabilities p , ( t )  can be 

described adequately for many circumstances by a master 
equation: 

The transition rates in this equation obviously must be nonnegative, 
and through the considerations mentioned in section I1 we know 
that most of them vanish. 

Denote by M,(E) 1 0 the phase-space measure for the system 
when configurationally it lies in packing region R,. A formal 
expression for this measure is the following: 

~ ~ ~ ~~ 

(7 )  Harary, F. “Graph Theory”; Addision-Wesley; Reading, MA, 1969. 
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where p = (p l...pN) comprises all N particle momenta. At 
equilibrium the probabilities p a  must adopt time-independent 
values that are proportional to the respective Ma, and in order 
for this to hold the transition rates must obey conditions of detailed 
balance, namely 

(3.4) 

A,,@) = A,,(E) (3.5) 

K,-,(E) = [ W E )  / M m I  '12A,,(E) 

where A,,(,!?) is symmetric 

This form automatically preserves the normalization condition 
(3.1) a t  all times. 

The relaxation spectrum for approach to equilibrium as de- 
scribed by the master equation (3.2) is determined by the linear 
eigenvalue problem 

Ka = Xa (3.6) 

where K is the D X D matrix whose elements are 

m a ,  =-K ,-a ( E )  (ff + 7 )  

m a  = c K,-,(E) (3.7) 
?(#a) 

Thermal equilibrium corresponds to the smallest eigenvalue (zero) 
and the related eigenvector a is just the equilibrium set of 
packing-region populations. 

If the initial set of probabilities (p,(O)J is symmetric under 
interchange of identical particles (that is, equivalent regions have 
equal probabilities), then the master equation causes the same 
to hold at all subsequent times. In this circumstance a contracted 
description is warranted which lumps together all Dp equivalent 
packings. Hence, we consider the probabilities Pj(t) which refer 
to sums of thep, over these equivalence classes [denoted by C(j)]: 

(3.8) 

The master equation (3.2) can easily be transformed into a 
kinetic equation for the Pj(t): 

dPj/dt = C [Ll+j(E)Pl(t) - Lj-i(E) pj(t)I (3.9) 

where the L's simply comprise all of the previous rates K that act 
between the given equivalence classes. The conditions of detailed 
balance now read 

L j A E )  = [MJE)/Ma(E)I '"Bj/(E) (3.10) 

where CY and y belong to C(j) and C(l) ,  respectively, and where 
Bj/ is symmetric. 

The relaxation spectrum defined by the contracted master 
equation (3.9) is determined by the eigenvalue problem 

LA = AA (3.1 1) 

in the permutation-symmetric subspace of dimension Do = D/D,, 
where matrix L is defined by 

(L)j/ = -L/-j(E) 0' # l )  

(3.12) 

The real eigenvalues A are a subset of the previous set of A's, 
including zero of course. 

For most properties of interest it suffices to use this contracted 
statistical description. 

IV. Two-Order-Parameter Model 
The next goal is to see how the general formalism developed 

above applies to a specific example. For that purpose we now 
introduce an artificial but solvable model for packing structures 
and their kinetic connections in the 3N-dimensional configuration 
space. In some respects this model will prove to be too naive, but 
it does serve to illustrate some important basic aspects of the 
melting transition, of supercooling, and of glass formation. 

We take advantage of the possibility to use the permutation- 
symmetric contracted description embodied in the probabilities 
Pj. The numbers of (contracted) packing states that must be 
considered initially is 

00 - exp(%N) (4.1) 

It follows from remarks contained in section I1 that this very large 
number of states is only sparsely connected by feasible kinetic 
transitions. Each state in fact can transform only to order N 
others, through the nonvanishing rates Lj,,(E) in the contracted 
master equation (3.9). 

The vertices of a hypercube in D dimensions and its edges 
connecting those vertices in pairs offer a convenient geometric 
basis for the model. By selection of D according to 

= exp(8N) 

D = %N/ In 2 (4.2) 

the hypercube vertices will be equal in number to the distin- 
guishable packing states for the problem in hand. Furthermore, 
each hypercube vertex has edge connections to exactly D others, 
which the second of eq 4.2 shows to have the correct order in N.  
Therefore, our simple model will be selected to involve transitions 
in the hypercube vertex-edge network. 

Hypercube vertices in Cartesian D-space can be placed at the 
following vector locations: 

(4.3) u = D - ' / ' ( i l , i l ,  ..., i l )  

Edges connect vertices whose locations differ only by a single sign 
change among the D vector components. This representation 
makes it obvious that transitions are equivalent to flips of Ising 
spins.8 

A second postulate for the model is that the packing regions 
for distinct structures are the same in shape near their respective 
minima, though they can differ in depth. This requires in turn 
that we commit to a specific form for the potential energy function 
at each of the distinct packings. We choose one that involves only 
two orthogonal axes in D space, say those defined by the following 
unit vectors: 

u, = D-1/2(l,l,,..,l) 

uu = D-'/'(l,l, ..., 1,-1,-1, ...,- 1) (4.4) 

Here we have assumed (without essential loss of generality) that 
D is even, and thus that the first D/2 components of uu are positive 
and the rest are negative. These unit vectors point along hypercube 
diagonals, and for any of the vertices we calculate components 
x and y in the obvious way: 

x = U'U, y = U'UY (4.5) 
Potential energy. @ at the minima by assumption will be just a 
function of x and y, which can be interpreted as a pair of order 
parameters for the packings. 

Let n be the number of +l's that occur as components (eq 4.3) 
for a given u, and let nl be the subset of +l's that occur among 
the first D/2 components. Consequently we have 

x = (2n/D) - 1 

y = (4n, - 2n)/D (4.6) 

or equivalently 

n = '/D(x + 1) 

n, = l/qD(x + y + 1) (4.7) 

The projections of the 2O hypercube vertices onto the x,y plane 
fall within the square 

Ix + yl I 1 (4.8) 

( 8 )  Hill, T. L. "Statistical Mechanics"; McGraw-Hill; New York, 1956; 
Chapter 7.  
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Figure 1. Paths in order-parameter space described by free energy 
maxima as temperature varies. The directions shown correspond to 
decreasing temperature (increasing p). Open circles labeled m are the 
positions at the melting point. The “liquid” curve starts at infinite tem- 
perature; the “crystal” curve begins when p N 0.34. 

It is straightforward to evaluate W(n,nl), the number of vertices 
with given n and nl: 

Using Stirlings’ approximation for factorials and then recasting 
the result in terms of x and y ,  this leads to the following expression 
valid for large D (or N): 

In W = Dw(x,y) (4.10) 

w(x,y)  = In 2 - 
‘ / , [ ( l + x + y ) l n ( l  + x + y ) + ( l + x - y ) l n ( l + x -  

y )  + ( 1 - x + y )  In (1 - x + y )  + (1 - x - y )  In ( 1 - x - y ) ]  

The specific form selected for the potential a t  the minima is 
the following: 

W a )  = Dd(x&J) (4.1 1) 

#,(x,y) = + - (x - + 0.212 + o.3qx - + 0.2)3 

This function achieves its absolute minimum in the square defined 
by eq 4.8 at  the vertex x = -1, y = 0: 

+(-l,O) = -1.83456 (4.12) 

This vertex therefore represents the most ordered state of the 
system, namely a “defect-free crystal”. Any movement away from 
this point to the interior of the square therefore would involve 
structural transitions that cause 9 to rise and thus introduce 
“defects” into the “crystal”, and which in the extreme would 
produce amorphous packings. Two order parameters are needed 
to describe the packings not only because the number of defects 
can vary, but also because the way in which they are arranged 
can vary in respect to their mutual interaction. The algebraic 
expression 4.11 gives a reasonable concrete form to the interplay 
of these two independent variables. 

Thermal equilibrium at  @ = l / k B T  involves the free energy 
maximum in the x,y square region, that is 

w(x,y)  - @$(x,y)  = maximum (4.13) 

Locating this maximum for variable @ is numerically an easy task. 
In the small-@ regime the maximum is located near x = 0, y = 
0, and as @ increases (declining temperature) the position of this 
maximum moves continuously to the lowest vertex of the square 
(4.8), a t  x = 0, y = -1. However, a second local free energy 
maximum appears when @ > 0.34; this is the one which contin- 
uously moves to the perfect-crystal vertex at  x = -1, y = 0 in the 
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Figure 2. Packing potential energy per particle (4) vs. T* = l /p  for the 
two free energy maxima. 
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Figure 3. Combinatorial entropy per particle ( w )  vs. T* = 1/p for the 
two free energy maxima. 

low-temperature limit and which therefore supplies the stable 
low-temperature phase. On the basis of the relative heights of 
the two maxima when both exist, it is possible to identify the 
thermodynamic melting point: 

@, = 0.773 (4.14) 

When @ < @,, the former (“liquid state”) maximum dominates, 
but roles interchange when @, < @. 

Figure 1 shows the paths described by the two minima in the 
square (4.8) as @ varies, and shows in particular where the maxima 
reside a t  @,. 

Evidently this simple model yields metastable states by following 
the separate maxima beyond their ranges of dominance. In this 
fashion both supercooled fluid and superheated crystal states can 
be identified. The former extends to absolute zero, while the latter 
disappears when @ < 0.34. The packing potential energy per 
particle in the limiting low-temperature amorphous state is only 
slightly higher than that shown earlier (eq 4.12) for the perfect 
crystal: 

d(O,-l) = -1.78336 (4.15) 

The 9 values for the two branches are presented plotted against 
T* = 8’ in Figure 2, where both stable and metastable ranges 
are shown. 

Figure 3 exhibits the combinational entropy quantity w for the 
two branches, as functions of T* = 8’. Both approach zero as 
T* goes to zero. For the crystal phase this is no surprise since 
only one structure survives in that limit. The model predicts as 
well that the same is true for the low-temperature amorphous 
phase (local quasi-equilibrium in the x,y space is assumed). In 
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Figure 4. Combinatorial entropy per particle (w) vs. potential energy per 
particle (#). Arrows locate the relevant coexisting positions at melting. 

other words, for this model there is in principle just one optimal 
amorphous packing of lowest potential energy that survives as T* 
approaches absolute zero. Such behavior is subject to continuing 
discussion in the theory of g l a s ~ e s . ~  

Figure 4 combines results in Figures 2 and 3, showing w vs. 
4 for the two branches. This type of "density of states" function 
plays a prominent role in the general equilibrium theory of natural 
packing  structure^,^^^^^ and as has been observed b e f ~ r e ~ , ~ ~ ~  it is 
skewed toward the low-4 side of its maximum. 

V. Fokker-Planck Equation 
Just as the potential energy function 3 has been assumed to 

depend only on the two order parameters x and y, we now add 
a corresponding postulate for the symmetric matrix Bjl: 

Bj/(E) = B(xj/,Yj/,E) (5.1) 

Yj/ = Y22cyI + Y / )  xj/ = Yz(xj + XI) 
Because transitions between pairs of states with slightly different 
x and y values are involved, we suppose simply that these coef- 
ficients depend on the mean values of those parameters for the 
two states. 

It can readily be demonstrated that the detailed-balance ex- 
pression 3.10 leads to 

Lj-/(E) = eXP[(@j - @/)/2kBT(E)lBj/(E) (5.2) 

where @j and @/ are the values of 9 at the respective minima. The 
temperature T(E) appearing here is the one appropriate for total 
energy E at thermal equilibrium. The goal now is to use this 
expression to convert the contracted master equation (3.9) 
eventually into a kinetic equation in the two-dimensional x,y 
order-parameter space. 

A given hypercube vertex a t  x,y or equivalently a t  n,nl (see eq 
4.7) is connected to D others only of the types (n-l,nl-l), (n-l,nl), 
(n+l,nl+l), and (n+l,nl) .  After accounting for the respective 
numbers of each type, eq 3.9 simplifies to the following: 

B1(dP(n,nl) /dt) = 
(YzD - nI)(exp [%PA( 1,1 )I P(n+ 1 1) - 

exp[-Y~PA(l,l)IP(n,nl)) + <!@ - n + 
nl)(exp[XPA(l,0)lP(n+ 1 ,nJ  - expt-'/zPA(l,o)lP(n,nl)) + 

n I(exp [ j/,PA(- 1 ,- 1 ) J P( n- 1 ,nl- 1 ) - 
exp [-YZPA(-1 ,-I 11 P(n,nl)J + 

(n - nl)(exp[Y2PA(-l,O)JP(n-l,n1) - ex~[-j/~PA(-l,O)lP(n,n~)J 
(5.3) 

This expression incorporates the potential energy increment symbol 
(5.4) A(k,l) = @(n+k,ni+l) - 3(n,nl) 

for the transitions. Its derivation also supposes that B can be taken 
as locally constant over the D edges emanating from the given 
vertex. 

As it is written, eq 5.3 does not typographically distinguish 
between any of the Wvertices with given n,nl. Under the as- 
sumption that these are all indistinguishable and have equal 
probabilities it suffices to examine the set of quantities 

Q(n,ni) = W(n,ni) P ( n ~ i )  (5.5) 
which are the net probabilities that the system inhabits any one 
of the Wvertices with fixed n and nl. Equation 5.3 can then 
trivially be converted to a Q equation: 

B ' ( d Q ( ~ i ) / d t )  = (ni + 1) ex~['/,PA(1,1)1Q(n+l,ni+l) + 
(n - nl + 1) exp['/zPA(.(l,O)lQ(n+l,nl) + (YzD - nl + 1) 
e~p[~~PA(-l,-l)JQ(n-l,n~-l) + (Y2D - n + nl + 1) 

ex~['/zPA(-l,O)JQ(n-l,ni) - KY2D - n i l  ex~[-'/zPA(l,1)1 + 
(Y2D - n + 4 )  exP[- YzPA(W)l + 

ni  ex~[-Yd34-1,-1)1 + (n - ni) ex~t-'/zPA(-1,0)l)Q(n,ni) 
(5.6) 

The time-independent solution Q, to eq 5.6 will be essentially 
Gaussian and should vary slowly on the n,n, scale near its max- 
imum. This follows from the expectation that fluctuations should 
be proportional to D1/2 in magnitude. Under this circumstance 
it becomes legitimate to pass to a continuum representation in 
x and y, and the finite differences appearing in eq 5.6 can be 
handled by second-order Taylor's expansions. In this manner it 
is possible to show that eq 5.6 is satisfied by 

Qeg(x,~) C exP{-D[Eii(Ax)2 + E12AxAy + Ezz(AY)~I) 
AX = x - xm(P) AY = Y - V m ( P )  (5.7) 

where C is a normalizing constant, x, and y, are the P-dependent 
solutions of the free energy maximum equation (4.13), and where 

These last expressions involve the second partial derivatives of 4 
with respect to the order parameters. 

Time-dependent states not too far displaced from equilibrium 
should also possess Q s  that vary slowly over many contiguous 
vertices. Consequently quadratic Taylor expansions are again 
applicable to the kinetic equation (5.6). A lengthy sequence of 
manipulations then produces the following partial differential 
equation for Q: 

a Q / &  = -V*[(p-F)Q] + P-'V.(pVQ) (5.9) 

where V acts in the x,y space, and where p is a symmetric mobility 
tensor and F is a mean force vector in this space. These latter 
have the following specific forms: 

pxx = pyy = p B 0 - q  1 - (x + y)2]'/* + [ 1 - (x - y)2]'/2) 

pxy = pBD-2( [ 1 - (x + y)Z] - [ 1 - ( x  - y)2] l /2)  (5.10) 

F, = -P-'D(2Ei,Ax + E12Ay) 

F y = -P- 'D(E12Ax + 2E22AY) (5.11) 

Equation 5.9 is a Fokker-Planck equationlo that describes 
probability flow in the x,y space under the combined influence 

(9) DiMarzio, E. A. Ann. N.Y.  Acad. Sci. 1981, 371, 1. (10) Wang, M. C.; Uhlenbeck, G. E. Reu. Mod. Phys.  1945, 17, 323. 
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of a thermodynamic driving force (first term in the right member), 
and diffusion in that order-parameter space (second term in the 
right member). Notice that the force defined by eq 5.11 is 8’ 
times the gradient of the exponent appearing in Qq, eq 5.7; it 
ciearly contains contributions both of combinatorial (entropic) 
origin as well as of interaction potential origin. 

‘The relaxing solutions to Fokker-Planck equation 5.9 can be 
constructed in terms of appropriate combinations of harmonic 
oscillator wave functions (Hermite functions). On account of the 
anisotropy of the mobility tensor this involves technical details 
whose discussion is unnecessary for present purposes. Instead it 
suffices to notice that relaxation rates will essentially be controlled 
by mobility, which eq 5.10 reveals to have two important factors 
in ali components: (1) symmetric transmission coefficient B(x,y); 
( 2 )  hypercube embedding dimension, as D-* or equivalently 8-* 
(see eq 4.2). Any realistic assignment of a form for B as a function 
of x,y, and E (or T)  wmld account for the finite potential barrier 
heights that must be surmounted to effect transitions, and if these 
were to be especially large relative to kBT in the neighborhood 
of the “amorphous” square vertex at  x = 0, y = -1 in Figure 1 
a glass transition with diverging relaxation times would ensue. 
That an inverse power of 8 is involved in mobility merely indicates 
that with fewer packing structures the transitions would tend to 
move the system farther in its configuration space; but of course 
this in turn would influence B as well. 

VI. Discussion 
The simple hypercube model utilizing just a pair x,y of order 

parameters exposes to view some of the basic aspects of equilibrium 
and of structural relaxation toward equilibrium. But it is clearly 
deficient in several ways. Most obvious perhaps is that phase 

coexistence is not properly described. Under constant-pressure 
conditions it should be possible to have (in the usual thermody- 
namic limit) arbitrary amounts of “crystal” and “liquid” simul- 
taneously present. There should correspondingly be a pathway 
in Figure 1 connecting the two points labeled m with essentially 
constant free energy per particle. Conceivably some a posteriori 
modification of the interaction potential +(x,y) exists which would 
effect such a change while leaving the pure-phase branches es- 
sentially as shown. 

The phenomena associated with phase nucleation are closely 
related to this coexistence requirement. In particular classical 
nucleation theory” stresses the importance of localized heterophase 
fluctuations for the kinetics of macroscopic phase change, and 
these would have associated with them corresponding sets ‘of 
natural packing structures. To incorporate such distinguished 
packings into the theory would probably necessitate a larger 
number of order parameters, perhaps even an infinite number. 
In any case it should still be possible to extract a Fokker-Planck 
equation for relaxation in the expanded order-parameter space, 
including relaxation into an alternate, more stable, phase via 
nucleation. 

In the interests of realism it is also desirable to account for local 
variations in transmission rates B,) Specifically this can produce 
a strongly anisotropic mobility tensor M.  Accounting simulta- 
neously for such anisotropy and for a large number of order 
parameters may hold the key to a successful comprehensive theory 
of the glass transition. 

The simple model proposed in this paper is perhaps significant 
less for its own virtues than for the exciting extensions it suggests. 

~ ~ 

(11) Turnbull, D. Solid State Phys. 1956, 3, 225. 
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The quiescent two-phase interface density profile and its capillary wave broadening are obtained heuristically. In two-dimensional 
space, the drumhead model in an arbitrary external field is transformed into a pair of Bloch equations and solved in special 
cases. It is extended to encompass a fixed liquid volume change. The original model is then solved completely and expressed 
as a free energy density functional, which is likewise extended. Finally, the genesis of the singular structure of the free energy 
is discussed. 

1. Introduction connected bv a transition region in which a nonuniform densitv 

Peter Debye’s forte was the recognition of the essentials of a 
physical situation which could be cleanly described and cleanly 
analyzed. It also, of course, implied the selection of an appropriate 
physical situation. I would like to describe here a problem that 
has received increasing attention,’g2 and which I feel falls into the 
above category. 

Two-phase interfaces are an omnipresent aspect of real physical 
systems, and their qualitative characteristics are not hard to 
describe. If a uniform fluid at given temperature and pressure 
can exist at two different densities, two such regions can also be 

is supportedhnder vanishingaverage force. For this purpose, i’t 
suffices for example in mean field (van der Waals) approximation3 
to maintain a balance between the local pressure gradient force 
of a core fluid and the mean force exerted by the accompanying 
attractive tail interaction, a perfectly feasible pursuit. Let us recall 
how this goes. 

If the core fluid equation of state is given by PJn)  and the pair 
interaction tail potential by +(r-r’), then one requires 

( 1 )  Evans, R. Ado. Phys. 1979, 28, 143. 
(2) Percus, J. K. In “Studies in Statistical Mechanics”; Montroll, E. W., (3) Rowlinson, J. S.; Widom, B. “Molecular Theory of Capillarity”; 

Lebowitz, J. L., Eds.; North-Holland Publishing Co.: Amsterdam, 1982. Clarendon Press: Oxford, 1982. 
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