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Local order and structural transitions in amorphous metal-metalloid alloys

Thomas A. Weber and Frank H. Stillinger
AT&T Bell Laboratories, Murray’ Hill, New Jersey 07974

(Received 25 October 1984)

The NiBoPUl alloy system has been investigated in both liquid and amorphous solid forms using
molecular-dynamics computer simulation. Atomic interactions were modeled by central pair poten-
tials selected to represent roughly the atomic sizes and relative bond strengths. Self-diffusion con-
stants and pair-correlation functions have been determined as a function of temperature. By means
of a mass-weighted steepest descent on the potential-energy hypersurface, dynamical configurations
at various temperatures have been mapped onto nearby potential-energy minima (stable atomic
packings). This  establishes that the liquid phase for the alloy has a temperature-independent in-
herent structure. Comparison with diffraction data on real Ni-P alloys suggests (and we verify) that
improved molecular-dynamics modeling is possible.

.  I .  INTRODUCTION

Materials science has several preparative methods at its
disposal which frustrate the natural tendency of sub-
stances to crystallize at low temperature, producing in-
stead amorphous solids. These techniques include splat
quenching,’ vapor condensation onto cold surfaces,2
chemical deposition,3
tion.4

and electrodeposition from solu-
In particular, many binary alloys have thus been

produced in an amorphous solid form. Several examples
of these binaries whose properties have been experimental-
ly studied are Pd-Si,’ Au-Si,6  Ag-Cu,’  Ni-P,778 Ni-B?  and
cu-zig

Alloys containing both metals and metalloids (B, Si, P)
present interesting characteristics that require explanation
at the atomic level. The presence of metalloid atoms ap-
pears to disrupt short-range order of the type necessary
for the formation of crystal nuclei. In part, this seems to
be due to the small size of metalloid atoms compared with
the metal atoms among which they are mixed. It is also
related to the strong bonds that evidently form between
neighboring metal-m&alloid  atom pairs,7F8  with the result
that pairs of metalloid atoms tend statistically to avoid
each other.

A substantial body of experimental data has been pub-
lished on the binary metal-metalloid systems in the amor-
phous solid state. This includes extensive thermodynamic
studies,” as well as x-ray-diffraction analysis of short-
range order, 7111 for‘ various composition ranges. Spurred
on by this accumulating data, several attempts have been
implemented to simulate the atomic-packing structures in
several of these amorphous binary alloys.8p  12-14

The primary goal of the present project has been to ap-
ply, apparently for the first time, the molecular-dynamics
method of computer simulation t& binary metal-metalloid
systems. By doing so we have attempted to gain some
quantitative insight into the types of atomic interactions
necessary to describe these materials. We have also
striven to develop somewhat unconventional theoretical
probes and techniques to explain structures and kinetic
properties.
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The Ni-P system has been selected as the principal
focus of our study. Its phase diagram” shows the pres-
ence of a deep eutectic for a composition of 19 at. % P, at
88O”C, in comparison with the pure Ni melting point
1425 “C. No doubt the existence of this deep eutectic is re-
lated to the relative ease with which amorphous Ni-P al-
loys with near-eutectic composition can be produced. In
line with this observation, our molecular-dynamics simu-
lation has utilized a system comprising 120 Ni atoms and
30 P atoms (conventional COmpOSitiOn notation: NigOPul).

The Ni-P system is also a particularly favorable candi-
date for simulation on account of Cargill’s extensive x-ray
studies’ on many samples with varying compositions, pro-
duced both by chemical deposition and by electrodeposi-
tion. We also note that Dixmier et aZ.,8 and Harris and
Lewis 13,  I4 have reported computer-constructed models
for th; Ni-P alloy and have compared the resulting struc-
ture factors with those from x-ray-diffraction experi-
ments.

The present molecular-dynamics study has been con-
fined to fixed overall density and composition. Although
&ch dynamical run conserves energy, we are able to vary
that energy (and thus the temperature) between runs. In
this way it is possible to study structure and dynamics at
various temperatures in the amorphous solid region, as
well as the equilibrium liquid at considerably higher tem-
perature. In principle, this approach also permits sys-
tematic study of cooling-rate effects in production of
amorphous solids from the liquid, an option not available
in the prior, purely constructive modeling.

During the course of some of our molecular-dynamics
runs, atomic configurations were periodically mapped
onto nearby potential-energy minima. This mapping is
accomplished by a “quenching” proceclure’5-24  which re-
moves all kinetic energy and then continuously deforms
the system’s configuration via a mass-weighted steepest
descent on the potential-energy hypersurface. The
Newtonian dynamics is not perturbed by this process,
which merely proceeds in parallel. We have found from

~ufids~~~lous studies on single-component simple
that this configurational mapping markedly
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enhances structural features which are otherwise largely
obscured by thermal motions. It has also revealed the ex-
istence of a temperature-independent inherent structure in
the liquid phase at constant density; one of our secondary
objectives in the present project has been to see if binary
mixtures had a similar property.

In Sec. II we discuss our initial choice for pair poten-
tials acting between metal and metalloid atoms. In this
section we also outline the specifics of the molecular
dynamics and of the periodically applied “quenching”
procedure. In Sec. III we present global properties calcu-
lated for the system at various temperatures, including
average potential energy, and separate diffusion constants
for metal and metalloid atoms.

In Sec. IV we discuss characteristics of the potential-
energy minima that were generated by the quenching
(napping) procedure. Especially noteworthy among these
are the distribution of minima by depth, and the way their
harmonic vibrational partition functions correlate with
depth. In Sec. V we describe short-range order in the
NisoP2,-,  system produced by our molecular-dynamics
simulation, viewed both from the conventional pair-
correlation function, as well as fro:m those extracted from
the corresponding sets of quenched configurations. Once
again, we find that a tem.perature-independent  inherent
structure exists for the liquid phase. In Sec. VI we con-
sider the transition states (saddle points on the potential-
energy hypersurface)  that connect neighboring minima,
and provide evidence concerning localization of atomic
motions along reaction coordinates that link those mini-
ma.

This paper ends with a discussion, Sec. VII, of how our
initial choice of interactions mig’ht be modified to im-
prove agreement with experiments on Ni-P alloys.

II. MODEL POTENTIAL
AND SIMULATION PROTOCOL

In a recent series of molecular-dynamics computer stud-
ies 18*20-24  we have found it convenient to represent pair>
interactions using the following family of functions:

1*(r)=
1

A[(ar)-P-r-q]ex~)[(ay  - a ) - ‘ ] ,  O<czrja
0 ,  arka (2.ij

where A, (Y, p, and a are all positive. The computational
advantage of this form is that it has strictly limited range,
but no discontinuities exist in the function itself or in <any
of its r derivatives. Sufficient flexibility is present to
model substances which freieze into close-packed fee cays-
tals  (such as the noble gases) or into bee crystals (such as
the alkali metals).

In the present study we have found it convenient to use
+ reduced units which cause the metal-metal pair interac-

tion to have unit depth, and to have a zero at Y = 1. The
corresponding reduced potential energy then may be writ-
ten

N
Wrl,  . . - , rN  ) = 2, vdi)fdf)( rij  ) P (2.2)

i<j

where I  = Ni,P indicates’ the species of atom i. The fol-
lowing choice of parameters applied to tour  simulation:

b) For all intUYiCtiClnS  (VNi-Ni, ~Ni-p,  srpmp),

~=12, q=O,  a=1.652194.

/b) For the metal-m’etal  interaction (YNi-Ni),

(2.3)

A =8.805  977, a= 1.0 .

lb) For the metal-metalloid interactio:n  (‘VNi-p),

(2.4)

A =13.208965  5, a=2.49/2.00=  1.245 . ( 2 . 5 )

(d)  For the metalloid-metalloid interaction (~r-n),

A =4.4029885,  a=2.49/2.20=1.1318.. .  . (2.6)

This choice yields the correct crystal structure (fee)  for
the major constituent, Ni, in its pure ‘form, and it pro-
duces bond lengths for pu;e Ni and pure P that have the
proper ratio (2.49 vs 2.20 A).25

IFigure  1 shows plots of the three types of pair potential.
It illustrates our working assumption that Ni-P pairs
form the strongest, and thus the shortest, bonds. The rel-
ative depths are 1.0, 1.5, and 0.5 for Ni-Ni, Ni-P, and P-P
pairs at the respective potential minima.

All of our molecnlar-dynamics  simulations have in-
volved 150 atoms, comprising 120 Ni’s and 30 P’s. These
atoms were placed initially at random in a cube for which
periodic boundary conditions applied. We have supposed
that the atoms present were the stable isotopes, 62Ni  and
31F’ , so that in our reduced units the masses could be tak-
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FIG. 1. Pair interaction potentials (in units of E, the metal-
metal interaction energy) as a fwu.xion of interatomic separation
distance (in units of 0, the metal-metal ch:aracteristic  distance).
Ni. and P are the ‘pr~3tbtYPiCal  metal and metalloid atoms,
respectively.
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en, respectively, as 1.0 and 0.5. L =5.3407a
The Newtonian equations of motion for the 150-atom

system are

mf(d2ri/dt2)=-Vi@  , (2.7)

where mi  is the mass of the ith atom. They were solved
numerically using a fifth-order Gear algorithm26  and re-
duced time increment At = 5 X 10m4. Classical dynamical
trajectories of lo4 time steps were generated to determine
properties of the alloy at each temperature. Momentum
scaling was used to vary system energy and thus the tem-
perature; after each such scaling, relaxation runs of at
least 2x lo3 time steps were interposed before calculating
properties.

=11.8475 A . (2.13)

With the 120 62Ni  and 30 31P atoms in this volume, the
mass density is 8.348 g/cm3.  Although experimentally
prepared amorphous Ni-P alloys have lower mass densi-
ties in this composition range due to their different isoto-
pic composition, our atomic-number density agrees with
experiment.’

During the course of the molecular-dynamics simula-
tion, instantaneous configurations of the 150 atoms were
sampled (typically every 100 time steps) and subjected to a
mass-weighted steepest-descent “quench” to lo&e  the
structurally relevant potential-energy minimum. The set
of differential equations which determine this mapping
onto minima is a first-order analog of the Newtonian
dynamical equations, namely

The fundamental time unit for these calculations is

T=CT(mNi/&)*n

=6.2721x lo-l3  s  . (2.14)

Consequently, each molecular-dynamics run of lo4 time
steps used for calculating averages spanned 57=3.1361
PS.

III. GLOBAL PROPERTIES

mi(dri/ds)=-Vi@  . (2.8)

The inclusion of particle masses (unnecessary for the
single-component cases considered before’g,21*23)  ensures
concordance with the usual definition of reaction coordi-
nates crossing potential-energy saddle points. The
s--t+  CO  solutions to Eq. (2.8) were constructed using a
combination of conjugate-gradient and Newton’s
methods2’

Figure 2 shows a plot of average potential energy per
atom, p, as a function of temperature, T, both shown in
reduced units. Each data point represents the mean value
extracted from a dynamical trajectory of length 3.1361 ps.
The points were generated both during heating and cool-
ing stages of the study.

In order to compare results with measurements on real
Ni-P alloys, it is necessary to redimension the dimension-
less data which emerge from the molecular-dynamics
simulation. We have already noted that the 62Ni  atom
provides the mass unit:

mNi = 1.0284~ 10wz2  g  . (2.9)

Energy and length units, E and (T,  respectively, are intro-
duced so that the redimensioned potential energy is

aQ(orr,  . . . ,orN)  . (2.10)

By choosing

a=2.2183  A, (2.11)

The scat ter  exhibited by the results  at  the low-
temperature extreme ( TN 0.2) reflects the different
thermal histories involved. Depending on cooling rate
from high temperature and the vagaries of the specific
trajectories executed in the 450-dimensional configuration
space, the system can be trapped in any one of many re-
gions surrounding potential minima. In any case, the sys-

the minimum in vNi-Ni occurs at the observed nearest-
neighbor distance of the Ni, namely 2.49 A. Furthermore,
if

E = 1.8546 kcal/mol

= 1.2879 X lo-l3  erg/atom , (2.12)

then the known reduced melting-point temperature (1.85)
for the pl.Ke model system with ~Ni-Ni interactions” will
agree with the measured melting temperature (1453 “C)  for
pure Ni. On this basis, the observed eutectic temperature
(880°C) corresponds to reduced temperature 1.2358.

The edge length L for the cubic box is
FIG. 2. Average potential energy per atom as a function of

temperature in reduced units .
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tern has consistently failed to discover crystalline minima.
The low-temperature cases shown all correspond to rigid
amorphous packings of the Ni and P atoms.

Mean-square displacements of the atoms of a given
species K=Ni,P asymptotically increase at a rate deter-
mined by the corresponding self-diffusion consta‘nt  D,:

D.-+(d/dt)( 1 q(t)-q(O)  1 ‘I),  . (3.1)

We have evaluated DNi an,d  Dp by this means, with the
results shown in Fig. 3. Although some scatter is evident
over the medium- to high-temperature range, two impor-
tant features are clearly Ievident.  First, the metalloid
atoms diffuse faster than the metal atoms at all tempera-
tures, as might have been expected due to their smaller
size and mass. Second, the diffusion rate for both species
drops dramatically to essentially ;!ero  when the reduced
temperature declines below about 0.45. This is the same
temperature region where the potential energy per atom
shown in Fig. 1 changes most rapidly with temperature.
Although the time scale of our simulation is necessarily
very short by conventional experimental standards, it is
still reasonable for this small  system to identify this “tran-
sition region” as that leading to formation of a glasslike
amorphous solid.

IV. POTENTIAL-ENERGY MINIMA

Figure 4 indicates time variation of potentisil  energy per
atom rp  along a 104-time-step  dynamical trajectory. The
average kinetic energy alon,g  this trajectory correspond,s  to
reduced temperature 1.3111, slightly above the eutcctic
temperature. In principle, tp(  t) is continuous and differen-
tiable for such a case; Fig. 4, however, consists of

P++ x

x+
+ x N i

++  x

I

5 0 0 0

s tep number
0 0

FIG. 4. Plot of potential energy per atom as a function of
time step. The average temperature (in reduced units) for the
run was T=1.311.

straight-line segments connecting discrete samplings taken
every 100 time steps. This suffices to convey roughly the
range and rate of fluctuations involved.

At each of the 101 sampling instants the system config-
uration was mapped onto the relevant potential-energy
&nimum by the mass-weighted steepest-descent pro-
cedure discussed ablove.  The resulting values of the
ccquench”  potential per atom appear in Fig. 5. It is obvi-
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FIG. 3. Diffusion constants (in units of lo-’ cm’/sec)  vs FIG. 5. Plot of potential energy per atom of the quenched
temperature (reduced units). The pluses mark the metalloid
data. The X’S mark the metal data.

configurations as a function of time step. The average pre-
- quench temperature was T = 1.3 11.
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ous that these must all be more negative than the corre-
sponding initial Q) values along the dynamical trajectory.
Less obvious is the conclusion that the minima encoun-
tered upon quenching floctuate considerably less in depth
than do the initial p(f)  values.

Substantially the same distribution (in depth) of
potential-energy minima has been observed when the
mapping procedure was carried out in the same fashion,
but from trajectories at the higher reduced temperatures
of 1.67, 5.50, 7.38, and 24.93. Consequently, all five cases
were combined to produce the histogram shown in Fig. 6.
We believe that this constitutes a reasonably good deter-
mination of the a priori distribution, by depth, of all
potential-energy minima available to our NisoPzo  system.

The distribution in Fig. 6 appears to be unimodal and
substantially symmetrical. This pattern differs from
those previously observed for single-component systems
that could readily crystallize,‘8~24  where, instead, the dis-
tributions tend to be skewed markedly in the negative-q,
direction. Furthermore, those crystallizable cases, at the
most negative extreme, show nonmonotonic “banding”
that is associated with crystal defects in varying numbers.

The character of packing structures for the potential
minima, and local environment of atoms in those pack-
ings, may be probed by the vibrational normal modes at
the minima. The corresponding classical vibrational par-
tition function (in that harmonic approximation) has the
following product form:

(4.1)

where /3=(  kgT)-I, and WI is the angular frequency for
mode 1. In the present circumstance with periodic boun-

dary conditions, there are 3 N - 3 positive frequencies, and
the product in Eq. (4.1) is restricted just to those.

The spectrum of normal modes varies from one +
minimum to the next in a manner which can be examined
numerically with no great difficulty for our 150-atom  sys-
tem. The angular frequencies WI are determined by the
eigenvalues of the secular equation

p&-w*1  1 =o  , (4.2)

where I is the unit matrix. The elements of K are given
by

~~,~,=(m~m~)-~'*(a*~/a~~~ax~~), (4.3)

where xia  denotes the ath component of the position vec-
tor ri for atom i and where the derivative indicated is to
be evaluated at the minimum of interest.

The nontrivial part of the harmonic vibrational free en-
ergy is given by the quantity

2 lnwi = -ln[(@+i)3N-3Z$i]  . (4.4)
i

Figure 7 provides a correlation diagram for many exam-
ples of this quantity plotted against the respective Cp
values at those minima. These data were extracted from
selected molecular-dynamics runs that span virtually the
entire temperature range covered in this study.

Although Fig. 7 displays considerable scatter, it also re-
veals obvious statistical correlation: Large values of
I;: lnoj  tend to be associated with the most negative Cp’s.
In other words, the deepest minima tend to be vibrational-
ly  the stiffest. This kind of correlation has been recog-

-5 .6 - 5 3 -5 .4

cp(wench)

FIG. 6. Plot of the distributidn of the energies of the quench
configurations.

FIG. 7. Plot of 2) lnoi vs the total potential energy for
quench configurations.
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nized before in models for single-component systems that
can crystallize. 24 It should be pointed out that the two
clusters of states in the upper left.hand comer of Fig. 7
emerged from two runs carried out at very low ,reduced-
temperatures (0.1862 and 0.2217).

V. PAIR-CORRELATION FUNCTIONS

Three radial pair-COlTelatiOn flmCtiOnS gNi-Ni,  gNi-r,
and gpSp convey basic geometric information about atom
arrangements in the Ni-P system. These are defined by
the requirement that two volume elements, dV, and dV2,
separated by distance R12, will, respectively, be occupied
by species fi and K (Ni or P) with probability

(5.1)

where the number densities have been denoted by pp  and
pK,  and where averaging over directions is implicit. In an
infinite system the normalization imposed by Eq. (5.1)
causes the g,, to approach 1 at large R 12.

Figures 8-10 present examples of these three pair-
correlation functions from the mokcular-dynamics  simu-
lation. Each figure contrasts one of the gpK  (with vertical
offset) evaluated at two reduced temperatures, namely
1.3 1 and 24.93. Using the redimensioning scheme dis-
cussed earlier, these reduced temperatures convert, respec-
tively, to 928 “C  and 22 990 “C. The former is only slightly
above the eutectic temperature (880°C) and well within
reasonable experimental limits. Obviously, the latter is
outside of the experimental regime, but we find it, theoret-
ically, to be an illuminating extreme case to include, and,
in fact, it was the highest temperature examined in ‘our
constant-density simulation.

The curves in Figs. 8-1~0 show, as expected, that rais-
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FIG. 8. Metal-metal pair-correlation functions. The zero of
the high-temperature case has been offset.
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FIG. 9. Metal-metalloid pair-correlation functions.

ing the temperature diminishes the magnitude of short-
range order. It should be remarked that we have also ex-
amined intermediate-temperature cases and find results
that interpolate simply between those shown. Not only
does higher temperature cause amplitude reduction in
correlation peaks and valleys, but it also permits a greater
extent of repulsive core interpenetration, as revealed, for
example, by the inward shift of the first peak.

The results presented in Fig. 10 for gpsp  are rather
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T* =  2 4 . 9 3

FIG. 10. Metalloid-metalloid pair-correlation functions.
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noisy due to the smaller number of atom pairs of this
type, compared with the other two types. However, it is
clear that, aside from a very small distance exclusion, the
P-P pairs are largely uncorrelated, even at the lower tem-
perature. This contrasts sharply with the substantial
short-range order displayed for Ni-Ni and Ni-P pairs.

We have also calculated “quench” pair-correlation
funct ions gpK,q for the two thermodynamic states
represented in Figs. 8-10. These were obtained from the
configurations at potential minima resulting from the
mapping procedure discussed above. For both initial tem-
peratures, 101 mappings, equally spaced in time by
0.031361 ps along the initial trajectory, were created for
this purpose. In Figs. II- 13 we present the results.

It is immediately obvious by comparing Figs. 1 l- 13,
respectively, with Figs. 8-10, that the mapping produces
a significant “image enhancement” with respect to short-
range order present iri the system. Evidently, the thermal-
ly excited vibrational displacements away from potential
minima obscure the perception of short-range order
present in this condensed-matter system.

The pairs of g,,, results in Figs. i l-13 stemmed from
widely different temperatures, yet these pairs are virtually
superimposable, with any discrepancy of the order of ex-

’ petted  statistical error for our finite sampling. We find
essentially identical results at intermediate temperatures.
This observation verifies the existence of a temperature-
independent inherent structure for the thermodynamically
stable liquid region of the Ni-P system, and thus extends
similar observations we previously made for single-
component models.2*p23

We expect that the temperature-independent inherent
structure must eventually become irrelevant as the system

Ni - Ni *

.

FIG. 11. Metal-metal pair-corr&ation  functions determined
from the quenched configurations.

P - Ni

r

FIG. 12. Metal-metalloid pair-correlation functions deter-
mined from the quenched configurat ions.

is cooled into the very-low-temperature glassy regime. In
that case, the results both before and after mapping would
reflect essential nonergodicity of trapping into special
phase-space regions, and would be explicitly dependent on
cooling history.

On account of the remarkable structural enhancement

P - P

T*  = 24.93A

1 2
r

FIG. 13. Metalloid-metalloid pair-correlation functions
determined from the quenched configurations.
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produced by mapping to minima, interpretation is simpli-
fied. Note, in particular, that assigning a mean coordina-
tion number for P’s by Ni% on the basis of conventional
radial pair-correlation functions (g’Ni-p  in Fig. 9)  is Some-

what equivocal due to the breadth and shallowness of the
minimum beyond the first peak, and this is especially vex-
ing at high temperature. However, the common “quench”
function in Fig. 12 resolves this difficulty fully because
&Ni-P,  4 is identically zero over a small range, and leads to
an unambiguous mean coordination number of 7.1 Ni’s
around each P.

VI. FUNDAMENTAL TRANSITIONS ’

As the dynamical trajectory in phase space takes the
system forward in time, it visits a sequence of regions
each of which is associated. with a potential minimum by
the mapping. If the total system e:nergy is low, the transi-
tions between successively ,visited  regions can be expected
to pass near simple saddle points, “transition states” in
the parlance of chemical-rate theory. It is valuable to
study these saddle points and the associated barrier-
crossing “reaction coordinates” to ,gain  insight into relaxa-
tion processes.

Each simple saddle point (as well as each minimum) is
an extremum of Q satisfying

Ys(v@)2=o. (6.1)

Using this basic property, we previously utilized an
heuristic procedure2” to l.ocate saddle-point configura-
tions. This procedure begins by identifying two @-
minimum configurations, say A and B, whose mapping
regions are successively visited by a dynamical trajectory.
Then Cp is evaluated along a linear path in the multidi-
mensional configurational space between points A and B.
Next, starting from the point of maximal Q> along this
path (as a rough estimate of the saddle-point position), a
steepest descent on the \I,  hypersurface  is (approximately)
followed until Eq. (6.1) is satisfied. The matrix of second
<P  derivatives at the endpoint is then diagonalized to veri-
fy that one and only one n.egative  eigenvalue exists th’ere,
corresponding to the reaction coordinate. The direction
of the reaction coordinate can also be identified by initiat-
ing a Q-hypersurface  steepest descent from the simple
saddle point.

It is important to determine the extent to which the
fundamental transitions involve strictly localized rear-
rangements of just a small subset of the atoms, or whether
the entire system typically .transforms  its  packing
geometry in such a transition. One way to clarify this is-
sue is to examine the collection of three-dimensional dis- _
placement vectors

q. =r!A)-@l-s1 , (6.2)

which relate the coordinat.es  of each atom i in the two
minima. In this expression, s is a translation’ vector that
brings the centroids of A and B into coincidence. The
distributions of the Ui’S can separately be examined for
the Ni and P atoms for any given transition. If a global
geometry change were involved for the entire system, it is
reasonable to assume that (roughly) a three-dimensional

Gaussian distribution of displacements would obtain, and
in that event, for either species,

( 1 Ui 1 4>,/((  1 Ui 1 2),)2=5/3  * (6.3)

In contrast, transitions localized on a small set of atoms
would have distinctly higher values of this characteristic
moment ratio.

We find that the fundamental transitions are substan-
tially more localized than would be represented by Gauss-
ian distributions. A specific example s#uffices  to illustrate
this point, involving a fundamental transition during
molecular dynamics at reduced temperature 0.186. The
initial (A), final (B),  and transition-state or saddle-point
(ts) values of the potential were

QZ+)= -858.172 126 ,

dB)= -858 . 370 557 , (6.4)

C@)‘= - 858.144 859 .

Displacement averages for the 30 P atoms for this transi-
tion are

(2.+0.001  535a2  )

( ~~)~=0.00002~6 56~7~  ,

(~~)~,‘((u~)~)~:=11.273  .

(6.5)

The corresponding results for Ni are

( &!2)Ni=o.~l  3;!5a2  3

( u4)Ni=om~ol[344~4  , (6.6)

( u4)Ni/((U2)Ni)2=7-663  e

This localization (compared to the Gaussian case) qualita-
tively applies at all temperatures, but tends to be most ob-
vious in the low-temperature limit.

We note that trans:ition  localization appears to be quite
general, having, in fact, been previously observed in
single-component models. I8 We have .also  found that the
present binary mixture shares another attribute with the
single-component case, namely that fundamental transi-
tions are very rare between regions surrounding minima
th,at differ only by permutation of identical particles.

VII. DISCUSSION

Each region in configuration space whose points map
onto a common Cp minimum has a size and shape that de-
pends on atomic-mass ratios. This arises through the
m:ass weighting in the steepest-descent equations (2.7). At
first sight, it would then seem that the inherent structure
that we have identified for the binary M-P  liquid ought to
be mass dependent. In fact, this appears not to be the
case. To test this point we reversed the mass ratio, so that
P’s temporarily were twice as massive as the Ni’s. The
conventional pair-correlation functions, of course, were
unchanged by this switch (no mass dependence of equi-
librium properties in classical statistical mechanics), but,
lik:ewise,  the “quench” pair-correlation functions were un-
changed within statistical error. Evidently, inherent
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structure as defined in this paper is insensitive to the de-
tails of the mapping operation’s mass weighting.

Admittedly, the atomic pair potentials used in our
simulations were only a rough first estimate of the true in-
teractions operative in real Ni-P alloys. Comparing our
predictions for short-range order with that actually ob-
served provides the opportunity to refine that first esti-
mate.

Cargill  has measured the x-ray interference function
I(k) for amorphous Ni-P deposits in the composition
range 73.8-81.4 at. % Ni, thus spanning the case exam-
ined here. The interference function is given by the
Fourier transform of the radial density function p(r):

I(k)=  1+(4r/k)  Jgrn [p(r)---p&  sin(kr)dr . (7.1)

The radial density function is given by’the  expression

fdr)‘pO[  C~itf~i/(f)2)gNi-Ni(r) ;

+2CNiCptfNifp/(f  )2)gNi.p(r)

+C3f$/(f)2kdr)l  , (7.2)

where the CK’s  are atomic mole fractions, p. is the aver-
age atomic-number density, and

(f)2=(CNifNi+CPfP)2  f (7.3)

Following Cargill,  we can assume that the atomic scatter-
ing factors f, are independent of k, and that

2CNifNifp/(f)2=0-93  7 t7.4j

Cpf;/(f)2=0.055  .

Hence we’ can proceed to calculate I(k) using the
molecular-dynamics pair-correlation functions g,(r).

Curve (a)  in Fig. 14 shows the x-ray interference func-
tion for our model NigoPu) alloy in its amorphous solid
form near 300  K, which may be directly compared with
Cargill’s experiments. The shape of the curve for ka < 5
is artifactual due to finite-system truncation errors, and
should be disregarded in this range. It should be noted,
however, that in the significant range, the second peak
near ka=  12 does not contain the prominent shoulder
that is so evident in its experimental counterpart.

Figure 15, curve (a), shows the radial distribution func-
tion

rdf(r)=47v2p(r)/p0 (7.5)

for the same simulation run at approximately 300 K. The
existence of the first small peak and the relative separa-
tion of the broad peaks around r =2 also do not agree
with experimental findings. While our initial choice of in-
teractions serves as a useful prototype, it obviously re-
quires modification.

We have tested a modified interaction with encouraging
results. Referring to Fig. 1, we simply increased the
length scale of ?$Ji-p  to coincide with that of YP.~,  i.e., we
set a=2.49/2.20  for the metal-metalloid pair potential.
All other attributes of the interactions remained unal-

10 ‘20
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FIG. 14. X-ray scattering function of the metal-metalloid al-
loy near 300 K. Curve (a) is calculated with interaction poten-
tial given by Eqs. (2.1) and (2.2). Curve (b) is calculated with a
modified interaction potential given by Eqs. (2.1) and (2.2)
where the metal-metalloid interaction parameter has been
changed to cz=2.49/2.20.
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FIG. 15. Radial distribution functions [Eq. (7.511 of the
metal-metalloid alloy near 300 K calculated from the interfer-
ence functions of Fig. 14.
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tered, including relative depths.
Curves (b) in Figs. 14 and 15 show comparative results

for 300 K that arise from ;this  conservative modificati’on.
The new interference function and radial distribution
function now agree far better with Cargill’s experimental
measurements. This is especially striking since the differ-
ences between the simulated and measured radial distribu-
tion functions are within differences noted by Cargill  for
amorphous deposits produced alternatively by chemical
deposition or by electrodeposition.

We do not believe that the bulk of the qualitative con-
clusions reached for the initial version of the interactions
would be changed by the: modification introduced for
?‘N&p.  Specifically, a temperature-independent inherent
structure (albeit a somewhalt  different one) should contin-
ue to exist for the liquid. Likewise, we expect an essen-
tially symmetrical distribution (as :n Fig. 6)  of minima by

depth, and a normal-mode-depth correlation (Fig. 7)  to
sm-vive the modification. However, these matters are sub-
ject to later precise verification.

In applying our technique previously to low-
temperature amorphous materials, we have occasionally
observed localized bistable (“two-level”) structures.”
Harris and Lewisi  have suggested that these states exist
in amorphous alloys in concentrations that decline with
the degree of annealing to which the salmple has been sub-
jected. Although we have not specifically focused on this
feature in the present binary-alloy simulation, it is possi-
bb  to identify and characterize collective bistable degrees
of freedom in great dietail, determining, for instance, how
many atoms of each type move, by how much, and what
the potential-energy variation is along the reaction coordi-
narte. This is a subject to which we shall return in future
studies of amorphous alloys.
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