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Current theories successfully predict the equilibrium structure of many simple 
liquids near their triple point from the repulsive molecular for~ alone. We prese~t a 
simple model substance whose liquid structure cannot be predIcted adequatel~ wIth 
only the repulsions. Furthermore, the model's crystal structure changes drasttcally 
upon the removal of the attractions. This failure for our model to conform to the 
accepted picture of simple liquids gives us the opportunity to sharpen the boundary 
between substances which, respectively, may and may not be expected to so conform. 
We conclude that the structure of the corresponding solid deserves more weight than 
is conventionally given by modern theories of liquids. 

I. INTRODUCTION 

One of the central goals of liquid state theory is an 
understanding of the structure of liquids in terms of the 
forces between the interacting molecules. The most suc
cessful theoretical descriptions of dense, one-component, 
nonassociated liquids have the van der Waals picture as 
their basic physical ingredient. I

- 3 In the van der Waals 
picture, the repulsive forces alone determine the structure 
of the liquid, while the attractive forces may be either 
neglected altogether, or incorporated into only the lowest 
order of corrections. 

The justification of the van der Waals picture usually 
begins by considering the force between an isolated pair 
of the atoms or molecules which constitute a dense, 
nonassociated, one-component liquid. I,2 For example, a 
glance at the radial force given by the Lennard-Jo~es 
model, illustrated in Fig. I (b), shows that the repulSIve 
force from the nearest neighbors is much stronger and 
more rapidly varying than the attractive force from all 
the neighbors. At the high densities typical of a liquid at 
or above its triple-point temperature, the average distance 
between the nearest neighbors is small enough for the 
repulsive force to dominate almost completely the attrac
tive force. Although these conclusions are strictly correct 
only in the limit of high density and temperature, in 
practice, theories based upon the van der W aals pictu~e 
have successfully predicted the structure of many atomIC 
and molecular liquids even at their triple point. I The 
same may be said of many solids as well, and in such 
cases, the van der Waals picture provides the basis for 
simple, successful theories of the liquid-solid phase tran
sition.4 

Those who have advanced the van der Waals picture 
for such liquids have also outlined some exceptions. 1,5 

For example, near the critical point, the density is too 
low and the compressibility is too high to regard the 
liquid simply as a collection of repulsive particles. The 
van der Waals picture is also inadequate whenever the 
attractive forces are so strong, directional, and rapidly 
varying that they can be clearly seen to counterbalance 

the repulsive forces in an important way. Associated 
liquids such as water and the alcohols are examples of 
substances where such a balance is clearly visible. Mixtures 
of two or more species, charged or not, can provide 
another example of a liquid where attractive forces can 
balance or offset repulsive forces. Even so, there is a wide 
variety of atomic and molecular liquids which substantially 
conform to the van der Waals picture. A reader of the 
review literature l - 3 is entitled to expect that a simple 
physical atomic liquid is adequately described by the van 
der Waals picture at densities and temperatures at or not 
too far above the triple point. 

The boundary between substances which would, and 
would not, be expected to conform to the van der Waals 
picture is at the moment, however, hazy. We propose to 
sharpen the vision of that boundary with the study of a 
model simple atomic liquid which we call "hexon," (so
called both for the similarity of its potential to those 
which model noble gases, and for the hexagonal symmetry 
of its crystal, which we discuss in succeeding sections.) In 
the next sectiOn we will compare the hexon model to the 
venerable and thoroughly studiedl- 3 Lennard-Jones model, 
since the latter yields both an atomic liquid and solid 
which conform to the van der Waals picture.4 With this 
comparison, we intend to show that, according to con
ventional expectations, the hexon pair potential should 
yield a liquid which also conforms to the van der Waals 
picture. In the succeeding sections we will discuss the 
results of molecular dynamics calculations for liquid and 
solid hexon near its triple point. We will see that the 
structure of both the solid and liquid hexon diverge from 
the van der Waals picture, despite orthodox expectations. 

II. HEXON vs LENNARD-JONES 

The hexon pair potential u(r) belongs to the class of 
potentials described below6

: 

u(r) = A exp[(r - a)-I](r-P - r-q
), r < a, 

= 0, r~ a. 
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FIG. I. (a) The pair potential for the Lennard-Jones model is shown in 
the upper panel and (b) the radial force -u'(r) is shown in the lower 
panel. 

The parameter a fixes the length of the interaction, so 
that the potential is smoothly cut off at r = a. With 
appropriate choices for the parameters, Stillinger and 
Weber made u(r) essentially a smoothly cutoff Lennard
Jones pair potential with l = U = I. For the hexon model 
we (arbitrarily) chose the parameters p = 12, q = -3, 
and a = 2. With these choices, the minimum was found 
at re = 1.348076907. We chose A = 1.914 166098 so 
that at the minimum, u(re) = -1. 

The hexon model is similar in several respects to the 
Lennard-Jones model, for l = U = 1. The pair potentials 
are illustrated in Figs. l(a) and 2(a). Like the Lennard
Jones model, the hexon pair potential is radially sym
metric, and has only one minimum. Since it is important 
to the argument for the van der Waals picture, we discuss 
in detail the repulsive and attractive forces for both of 
the models. The radial force -u'(r) for each of the two 
models is illustrated in Figs. 1 (b) and 2(b). The radial 
force is repulsive where it is positive, and attractive where 
negative. 

In both models, the repulsive part is much stronger 
and more rapidly varying than the attractive part of the 
force. At r = 0.9, (inside roughly 1/10 the diameter of 
either the hexon or the Lennard-Jones atom), the repulsive 
force for either model is at least an order of magnitude 

stronger than the attractive force is at any distance. The 
range of the repulsive force for the hexon is in one respect 
longer than that for the Lennard-Jones model, since the 
minimum of the hexon potential re is farther from the 
origin than is re for the Lennard-Jones model. The 
repulsive force for the hexon model is not nearly so 
strong or rapidly varying as it is for the Lennard-Jones 
model. At r = 0.9 it is about one-third as strong as for 
the Lennard-Jones model. However, we emphasize that 
we are not testing whether or not a hard-sphere model 
would adequately reproduce the liquid structure.? We 
neither expect nor insist that a theory which describes the 
repulsions in terms of hard-sphere repulsions would suc
cessfully calculate the structure of the dense liquid hexon. 
If we accept the van der Waals picture, we should only 
require that the true repulsive forces, not necessarily hard
sphere repulsive forces, will themselves correctly reproduce 
the structure of the dense liquid, as long as they are much 
stronger than the attractive forces. 

As far as the van der Waals picture is concerned, 
the only issue remaining is whether or not the attractive 
force can effectively counterbalance the repulsive force. 
We show only a part of the radial force for both models 
in Fig. 3. We do this because, in Figs. I(b) and 2(b), the 
contrast between the attractive and the repulsive force, in 
both models, is so great, that the difference between the 
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FIG. 2. (a) The pair potential for the hexon model is shown in the 
upper panel and (b) the radial force -u'(r) is shown in the lower panel. 
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FIG. 3. Detail of Figs. I(b) and 2(b). The radial force for the hexon 
model is drawn with the solid curve, and that for the Lennard-Jones 
model is drawn with the dashed curve. 

two attractive forces is difficult to see. According to 
conventional expectations, this is itself a pictorial indica
tion that the hexon, as well as the Lennard-Jones liquid, 
should conform to the van der Waals picture. In Fig. 3, 
it is easier to see that the attractive force for the hexon 
model is scarcely stronger or more rapidly varying than 
it is for the Lennard-Jones model. Perhaps the most 
obvious difference between them is that the attractive 
force for the hexon model is strongest at r = 1.68, while 
for the Lennard-Jones model it is strongest at r = 1.24. 
Yet these differences in shape should not be important if 
the van der Waals picture is appropriate, since the attrac
tive forces in both models are radiafiy symmetric and 
vary only about 2E per unit distance over the range of 
attractions.8 This comparison of only the attractive force 
for the hexon model with that in the Lennard-Jones 
model gives us no reason to suppose that attractive force 
could counterbalance the repulsive force in any significant 
way, for either model. 

We would thus expect that the van der Waals picture 
should provide a reasonably accurate description of the 
liquid hexon, and perhaps of the solid hexon as well. In 
the following sections we test this expectation with the 
results of molecular dynamics calculations for the structure 
of the liquid and solid hexon near its triple point. 

III. A CRITERION FOR CONFORMITY TO THE 
VAN DER WAALS PICTURE 

In the strict van der Waals picture, repulsive forces 
alone determine the structure of a dense solid or liquid. 
The structure of an atomic solid or liquid is usually 
represented9 by the radial distribution function g(r). The 
van der Waals picture therefore may be presentedl,2,4 as 
the assertion that g(r) = go(r), for all temperatures, where 
go(r) is the radial distribution function determined solely 
by the repulsive forces between the atoms. This equality 

will not be exactly obeyed for physically reasonable model 
interactions. lO Weeks and Broughton4 have discussed in 
detail the difference between g(r) and go(r) for both the 
Lennard-Jones liquid and solid near the triple point. 
Although the differences are in each case perceptible, for 
our purposes they are negligible. In the present context, 
we will agree that a solid or liquid indeed conforms to 
the van der Waals picture if, for that solid or liquid near 
the triple point, the equality g(r) = go(r) is maintained as 
well as it is for the Lennard-Jones solid or liquid at 
comparable temperature and density. Of course, we expect 
that any classical liquid at sufficiently high temperatures 
and densities will conform in a trivial fashion to the van 
der Waals picture. We are only concerned with the more 
interesting regime of temperatures and densities near the 
triple point of that substance. 

In order to calculate go(r), the pair potential u(r) 
should be separated into the sum of two terms: the "core" 
potential Uo(r), corresponding to the repulsive force, and 
the remainder v(r), corresponding to the attractive force. 
Following Weeks, Chandler, and Andersen,l,2 we write 
the core potential for hexon as 

uo(r) = u(r) - u(re), r:::;; re , 

= 0, r> reo 

We will always use the subscript "0" to refer only to 
properties of the core potential. 

In the following sections we will compare g(r) for 
the hexon solid and liquid, to the go(r) for the core solid 
and liquid, as calculated by molecular dynamics. 

IV. THE STRUCTURE OF THE SOLID HEXON 
COMPARED TO THE VAN DER 
WAALS PREDICTION 

Our comparison of the structure of the core solid 
with the hexon solid near the triple point of hexon begins 
with a discussion of the crystal structure of each model 
at zero temperature and pressure. The density which 
yields the zero pressure structure of hexon at zero tem
perature is near the triple-point density, and the temper
ature for which the hexon solid melts is near the triple
point temperature. We then compare g(r) for the hexon 
solid with go(r) for the core solid, calculated at a density 
and temperature below the hexon triple point. 

A. The structure of the hexon crystal at 
T = 0 and P = 0 

We have examined all monatomic Bravais lattices, 
the diamond lattice, and the hexagonal close-packed 
latticell in order to identify the structure with the lowest 
potential energy at zero temperature and pressure. For 
the diamond and hexagonal close-packed lattices, we 
simply calculated and compared the lattice energy, 

U = L u(lri), r E {lattice} 

over a wide range of densities p = ltv, where v is the 
volume of the unit cell. In order to search among all 
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monatomic Bravais lattices, we combined a steepest
descent and a conjugate-gradient procedure l2 to minimize 
U with respect to the length and orientation of each of 
the basis vectors, for a fixed volume v of the unit cell. 
The conjugate-gradient technique guarantees that the 
calculated force constants are positive, so that the structure 
indeed represents a local minimum rather than a maxi
mum or a saddle point on the potential energy surface. 
No boundary conditions were applied in this search; they 
were not required with our short-ranged potentials. For 
densities from 0.78 to 1.35, the only Bravais lattices for 
which U was a minimum were simple hexagonal lattices. 
For lower densities, only simple cubic lattices were found. 
For many densities in this range, we repeated the mini
mization from several different and randomly selected 
configurations. In every case the basis vectors were repro
ducible to at least six significant figures. 

In Fig. 4 we show the energies corresponding to the 
diamond, hexagonal close-packed, simple cubic, and sim
ple hexagonal lattices as a function of density. We will 
focus on the zero pressure case since we expect that the 
corresponding density will be near the triple density. At 
zero pressure, the simple hexagonal lattice is the one 
which corresponds to the lowest energy for the hexon 
potential. The energy per particle is UIN = -7.3806855, 
and the density is p = 0.8895. 

The simple hexagonal lattice can be constructed by 
stacking layers of two-dimensional triangular nets directly 
above one another, a distance c apart. II Each net, which 
is itself a two-dimensional close-packed lattice, consists 
of atoms placed at the vertices of equilateral triangles 
with sides of length a. The parameters a and c are listed 
in Table I for a few densities which correspond to low-
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AG. 4. The potential energy U at T = 0, as a function of density p, for 
the following structures: diamond (chain-dash curve), simple cubic 
(chain-dot curve), hexagonal close packed (dashed curve), body-centered 
cubic (solid curve), and, the simple hexagonal structures (triangles) 
found by the conjugate-gradient minimization of U. 

TABLE I. Cell parameters a and c for the simple hexagonaIlattice found 
at T = 0 and density p for the hexon model. The zero-pressure structure 
is found at the density p = 0.8895. 

p 

0.800000 
0.820000 
0.850000 
0.880605 
0.889500 
0.898395 
0.900 000 
0.950000 
1.050000 
1.150000 
1.250000 

a 

1.178959 
1.166 373 
1.148 314 
1.130910 
1.126044 
1.121 261 
1.120407 
1.094 308 
1.037 131 
0.999520 
0.973444 

c 

1.038441 
1.035096 
1.030219 
1.025 260 
1.023 795 
1.022 323 
1.022057 
1.015 002 
1.022 382 
1.005053 
0.974850 

cia 

0.880811 
0.887448 
0.897 158 
0.906580 
0.909196 
0.911 762 
0.912220 
0.927529 
0.985780 
1.005 536 
1.001 444 

pressure structures. At these densities, U is lowest for 
these simple hexagonal structures. 

The simple hexagonal lattice is remarkable in several 
respects. While the hexon model is one of a class of 
atomic pair-potential models, the simple hexagonal phase 
has not been found for any of the elements at low 
pressures. 13 Also, most of the elements which do crystallize 
into hexagonally symmetric structures do so with a cia 
ratio larger than unity and near the "ideal" close-packed 
ratio of 1.633. 13 However, the hexon crystal has a cia 
ratio less than unity for the densities which correspond 
to low pressures. We show how the cia ratio varies with 
density in Table I. When cia is less than unity, the nearest 
neighbors of an atom are not the six surrounding atoms 
in its own (close-packed) layer, but instead are the two 
atoms in the layers directly above and below it. This 
feature is vividly displayed in the radial distribution 
function shown for the zero pressure structure in Fig. 5, 
for T = 2 X 10-5• For example, what would have been 
the first and third peaks for a cia ratio of unity have each 
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AG. 5. The radial distribution function for the hexon crystal at T = 2 
X IO-s and p = 0.8895. The bin is 0.03 wide. 
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been split into two peaks. For many structures, the 
maximum of the radial distribution function is in the 
first peak, but here, it is a maximum in the third peak. 
Finally, the simple hexagonal lattice is a loosely packed 
structure in comparison to the face-centered cubic, body
centered cubic, and hexagonal close-packed structures 
commonly found for the elements. In Table II we show 
the packing fractions II calculated for the zero-pressure 
hexon crystal structure, and for some of the structures 
found for the elements. It would be remarkable if a 
potential with only a repulsive force could produce such 
a structure. Even potentials with a repulsive force much 
softer than that for the hexon potential are not known to 
produce structures more loosely packed than the body
centered cubic lattice. 14 We nevertheless continue with 
our comparison of the hexon solid with the van der Waals 
prediction for the solid structure, as we present the crystal 
structure corresponding to the core potential. 

B. The crystal structure for the core potential 

We found the zero pressure hexon crystal at the 
density p = 0.8895, and so we look for the crystal 
structure for the core potential by comparing the lattice 
energy 

Uo = L Uo<lrl), r E {lattice} 

for a variety of lattices at that density. We calculated Uo 
for the body-centered cubic, face-centered cubic, simple 
cubic, hexagonal close-packed, and diamond lattices for 
the range of densities shown in Fig. 6. We also calculated 
Uo for all simple hexagonal lattices at the density p 

= 0.8895. Only the difference between the energies for 
the body and face-centered cubic lattices is shown in Fig. 
6; Uo for the hexagonal close-packed lattice is virtually 
identical to Uo for the face-centered cubic lattice, and the 
energy for the others is always much higher than either 
of the two lattices. For densities from 0.8600 to 1.0600, 
Uo is lowest for the body-centered cubic lattice. 

The fact that the repulsive force of the hexon model 
produces a crystal structure less closely-packed (cf. Table 
II) than the structure for the Lennard-Jones crystal indi
cates that the repulsive force of the hexon model is 
qualitatively "softer" than the repulsive force of the 
Lennard-Jones model. 15 The softness of the hexon's re
pulsive force may be considered unusual but should not 
be reckoned unphysical. For example, if the van der 
Waals picture is appropriate for any substance (e.g., alkali 

TABLE II. The packing fraction of the simple hexagonal lattice at p 

= 0.8895 compared with some other lattices (Ref. II). The packing fraction 
for any simple hexagonal lattice is found from 'Ir' 3-3/2 • (c/af. 

Lattice 

face-centered-cubic 
body-centered-cubic 
simple-hexagonal 
simple-cubic 
diamond 

Packing fraction 

0.74 
0.68 
0.55 
0.52 
0.34 
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FIG. 6. The difference ulr' - ut« as a function of density for the core 
potential at T = O. 

metals) with a body-centered cubic crystal, I the repulsions 
will be comparably soft. 

If the van der Waals picture were accurate for hexon 
at zero temperature and pressure, then the crystal structure 
found from the core potential at the same density (p 
= 0.8895) should have been the structure found for 
hexon. Here, however, the attractive force balances the 
repulsive force in an important way for hexon. This 
failure of the van der Waals picture in this circumstance 
should not be taken, by itself, to be a counterexample to 
the van der Waals picture. The van der Waals picture 
assumes high temperatures, and the most that is usually 
claimed for the van der Waals picture is that it is accurate 
even down to triple-point temperatures. Therefore, the 
real test of the van der Waals picture for the solid and 
the liquid is found when we adjust the temperature, via 
molecular dynamics, to near the triple-point temperature. 
After a brief discussion of the molecular dynamics cal
culation, we will compare the structure of the solid and 
liquid predicted by the van der Waals picture with the 
actual structure. 

V. DETAILS OF THE MOLECULAR 
DYNAMICS CALCULATION 

Molecular dynamics was executed, respectively, for 
448 hexon and 432 core atoms. The volume of each of 
the boxes was chosen so that the density was p = 0.8895. 
The box of the 432 core atoms was constructed as a cube 
with sides of length 6.21/2 • p-1/3 so that it would be 
commensurate with the body-centered cubic lattice. The 
box for the 448 hexon atoms was constructed with sides 
oflength 7· a, 4.3 1/2 • a, and 8· c, (cf. Table I), so that it 
would be commensurate with the zero temperature hexon 
crystal found at p = 0.8895. The volume and shape of 
each of the boxes containing the atoms were kept constant 
for this study. The surface of each box is removed via 
periodic boundary conditions. 16 The classical equations 
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of motion were solved for the atoms of unit mass with a 
fifth-order Gear algorithm.17 Our time step was never 
smaller than fl.! = 0.002, and we always conserved the 
energy for at least eight decimal digits during each run. 
Since both u(r) and Uo(r) have finite range, we did not 
require the minimum image or any other cutoff conven
tion. 

We began our molecular dynamics studies with a 
search for r m

), the melting temperature of the hexon 
crystal. We found I'm) by repeating the following momenta 
rescaling procedure: Increase the momenta by 2%, advance 
the trajectory by 450 time steps, and then collect averages 
for another 500 time steps at that temperature. In this 
way we produced the plot of the internal energy <P vs T 
shown in Fig. 7(a). From the loopls in Fig. 7(a) we 
estimate the melting temperature as r m) = 0.53 ± 0.04. 
In the same way, we produced, for the core system, the 
plot of <Po vs T in Fig. 7(b), from which we estimate the 
melting temperature of the core solid as T&m) = 0.40 
± 0.01. 

This procedure for finding the melting temperatures 
also shows us how stable are both of the crystal structures. 
By examining both the radial distribution function and 
the average square displacements, we find that the hexon 
and core solids retain, respectively, at all temperatures up 
to their melting points, simple hexagonal and body
centered cubic structures. Further, the pressure was positive 
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FIG. 7. The average potential energy 4> as a function of temperature for 
(from top to bottom) (a) the melting of the hexon solid, (b) the melting 
of the core solid, and (c) the spontaneous freezing of the hexon liquid. 
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FIG. 8. The radial distribution function for a hexon solid at T = 5 
X 10-8 and p = 0.8895. The solid was produced by quenching a hexon 
solid at T = 0.26. The solid at T = 0.26 was the result of the spontaneous 
freezing of the liquid hexon, as illustrated in Fig. 7(c). 

for both systems at every positive temperature which we 
examined. 

A final confirmation of the simple hexagonal structure 
for hexon can be found in our attempt to crystallize the 
liquid hexon. We began with the liquid at T = 1.13T(m) 
which had been run for 7000 time steps, so that it was 
well equilibrated. Then we reversed the momenta rescaling 
procedure used to melt the crystal, except that we collected 
averages for 1000 rather than 500 time steps. The plot of 
<P vs T is shown in Fig. 7(c). The spontaneous transition 
to a solid occurs near T = 0.30. We quenched the solid 
at T = 0.26 by resetting the momenta to zero at random 
intervals between 50 and 500 time steps. The resulting 
g(r), which is plotted in Fig. 8, does indeed look very 
much like the g(r) for the simple hexagonal crystal, but 
not like those of the other crystals. In fact, as the x-z 
projection of the simulation box (plotted in Fig. 9) shows, 
we have produced a simple hexagonal (but rotated) struc
ture with a grain boundary which is nearly coplanar with 
the x-y plane. On either side of the boundary, the only 
phase which has nucleated is a strained simple hexagonal 
solid. 

We may now begin our comparison of g(r) and go(r) 
for the hexon solid slightly below r m

) and for the liquid 
slightly above r m

). 

VI. THE VAN DER WAALS PICTURE FOR 
HEXON NEAR r(m) 

As we have already observed, neither the hexon nor 
the core solid undergoes a structural transformation before 
their respective melting temperatures. Therefore the van 
der Waals picture is a thoroughly inappropriate description 
of the hexon solid even near its melting point. We 
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FIG. 9. Projection of the x and z coordinates of the atoms in the 
quenched hexon solid, whose radial distribution function is illustrated 
in Fig. 8. 

illustrate the differences between the two structures in 
Fig. 10, where we show both g(r) and go(r) at, respectively, 
T = 0.35 and T = 0.36. Even so, we might suppose that 
there may be many liquids which may be accurately 
described by the van der Waals picture, while the corre
sponding solids may not be so described. Our goal is, 
really, to test the van der Waals picture for the liquid. 

Our test of the van der Waals picture for liquid 
hexon is centered on the comparison between g(r) and 
go(r) at a temperature slightly above T(m). We chose T 
= 0.60 for each liquid, which is about 13% above Jim). 
We calculated g(r) and go(r) from runs of 5000 time steps 
each. We show the resulting radial distribution functions 
in Fig. 11. For comparison, we show in Fig. 12 the g(r) 
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FIG. 10. The radial distribution functions for both the hexon solid (solid 
curve) and the core solid (dashed curve) at respectively T = 0.35 and T 
= 0.36, and p = 0.8895. 
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FIG. 11. The radial distribution functions for both the hexon liquid 
(solid curve) and the core liquid (dashed curve) at T = 0.60, and p 

= 0.8895. 

and go(r) calculated by Weeks and Broughton4 for the 
Lennard-Jones liquid at T = 0.75 and p = 0.87. In several 
respects, the g(r) for the hexon liquid is qualitatively 
different from go(r). The peak heights and positions are 
noticeably different, as are depths and positions of the 
minima. The first peak of g(r) has a prominent shoulder 
entirely missing in the first peak of go(r). In fact, the 
shoulder occurs where go(r) reaches its first minimum. 
The first peak· of g(r) has also been shifted in such a way 
as to indicate that the diameter of the hexon atom is 
effectively smaller than that of the core atom. While the 
second peak of go(r) is symmetrical near its top, the 
second peak of g(r) is asymmetrical, with a ramp on the 
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FIG. 12. The radial distribution functions for both the Lennard-Jones 
liquid (solid curve) and the Lennard-Jones core liquid (chain-dot curve), 
at T = 0.75 and p = 0.87. Reproduced from Ref. 4 with permission. 
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right-hand side of the peak. While the first peak of g(r) 
is closer to the origin than that of go(r), the second peak 
is farther from the origin than that of go(r). Even the solid 
Lennard-Jones system conforms more readily to the van 
der Waals picture than does the liquid hexon at 13% 
above its melting temperature, as we can see from Fig. 
13. The van der Waals picture plainly cannot do justice 
to the unusual structure of the hexon liquid near its 
triple-point temperature. Here we will not exhaustively 
search for the lowest temperature for which the van der 
Waals picture is appropriate, although the van der Waals 
picture certainly becomes accurate for temperatures above 
4· Jim). We note, however, that both the shoulder on the 
first peak and the asymmetry of the second peak still can 
be seen at temperatures as high as twice T(m). 

Although the van der Waals picture gives an inac
curate picture of the structure of the hexon liquid, it can 
accurately predict values for thermodynamic parameters. 
For example, the excess (over ideal gas) internal energy 
per particle cJ> can be calculated from g(r) by the following 
formula,9 

cJ> = (p/2) f dr u(r)g(r). 

The van der Waals approximation to cJ> is in error by the 
following term, 

AcJ> = (p/2) f dr u(r)[g(r) - go(r)]. 

The error AcJ> for the Lennard-Jones liquid is less than 
1 % of cJ> for densities and temperatures near the triple 
point. 19 For liquid hexon at T = 0.60 and p = 0.8895, 
the error is only about 3% of cJ>. The explanation for this 
begins with a glance at Fig. 14, where we show [g(r) 
- go(r)]. The integrand of AcJ> varies rapidly, but in such 
a way that the variations cancel to a great degree when it 
is integrated. We expect that the errors in the correspond
ing van der Waals approximation1,2,4 to the Helmholtz 
free energy will also be small. 
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FlG. 13. The radial distribution functions for both the Lennard-Jones 
solid (solid curve) and the Lennard-Jones core solid (chain-dot curve), 
at T = 0.75 and p = 0.98. Reproduced from Ref. 4 with permission. 
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FlG. 14. The difference g(r) - go(r), from Fig. II. 

VII. CONCLUSIONS 

The attractive force in the hexon model balances the 
repulsive force in such a way that both the solid and 
liquid structures are qualitatively different from those 
anticipated in the van der Waals picture. This disruptive 
balance can be partly understood in terms of the shape 
of the hex on potential, which is markedly different from 
the Lennard-Jones potential in at least one aspect. The 
"bowl" about the minimum re is much wider for the 
hex on potential than for the Lennard-Jones potential. 
One measure of this is the force constant u"(re), which 
for hexon is 1/5 the value for the Lennard-Jones model. 
As a result, the attractive force is strongest much further 
out [cf. Figs. l(b) and 2(b)] from the diameter of the 
hexon atom than it is for the Lennard-Jones model. In 
the liquid hex on, this distance corresponds to a distance 
about halfway between the second and third neighbors 
surrounding the central hexon atom. By contrast, the 
maximum attractive force for the Lennard-Jones model 
nearly coincides with the average nearest-neighbor distance 
in the Lennard-Jones liquid. Now it is easier to see why 
the attractive force has such a remarkable effect in the 
hexon liquid while having virtually no impact on the 
structure of the Lennard-Jones liquid. For both models, 
the centers of the first peak of g(r) and go(r) nearly 
coincide. Apparently, the attractive forces in both models 
are so weak that in a dense liquid, essentially only the 
repulsions set the nearest-neighbor distance. So the at
tractive force is virtually irrelevant to the structure of a 
Lennard-Jones solid or liquid, for it operates most strongly 
at a distance which has already been determined by the 
repulsive force. Further, beyond that distance, the attrac
tive force so rapidly attenuates that the attractive part of 
the Lennard-Jones potential becomes nothing more than 
a uniform background. On the other hand, even a rela
tively weak attractive force can balance the repulsions in 
an important way if, as in the case of hexon, it is strongest 
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well beyond the average nearest-neighbor distance, i.e., 
well beyond where the repulsive force has its maximum 
impact. 

This explanation of the failure of the van der Waals 
picture for hexon appears limited to those cases where 
g(r) for the liquid is already known, for it is from g(r) 
that we found the average nearest-neighbor distance in 
the liquid. However, in retrospect, the explanation above 
really only would have required a knowledge of the 
structure of the harmonic solid, since the nearest-neighbor 
distance found in the harmonic solid turns out so close 
to that found in the liquid. The structure of the harmonic 
solid can usually be found far more economically than 
the radial distribution function of the liquid. 

One important lesson from this work, then, is that 
those who study the liquid state can learn more from the 
solid state than they usually do. The fact that hexon 
crystallized into such a loosely-packed structure would 
have been enough indication of the importance of attrac
tive forces, at least for the solid, since repulsive forces 
alone usually produce much more closely-packed struc
tures. Further, many of those structural features unique 
to the hexon solid persist in the liquid near its triple 
point. This too is an indication of how structured the 
hexon liquid is, and to that extent, how important the 
attractions are. Finally, in view of our explanation for the 
success and failure of the van der Waals picture, an 
understanding of the solid's structure can give an eco
nomical zero-order understanding of the balance of the 
many forces which are involved in the structure ofliquids. 

We also hope that these results will be encouraging 
to those who attempt to understand the liquid state in 
terms of their "inherent structures," as defined by Stillinger 
and Weber. If even the harmonic crystal can play an 
important role in our understanding of the hexon liquid, 
all the more should the inherent structures of liquid 
hexon be considered important. Although the details fall 
outside the scope of this paper, we note that our prelim
inary results indicate that both the hexon model and its 
core model exhibit temperature-independent inherent 
structures for their liquids. These structures resemble 
defective versions of the corresponding crystals. This 
behavior is the same as has been observed in application 
of the technique to other atomic substances.2o 
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