
PHYSICAL REVIEW B VOLUME 31, NUMBER 8 15 APRIL 1985 

Computer simulation of local order in condensed phases of silicon 

Frank H. Stillinger and Thomas A. Weber 
AT&T Bell Laboratories, Murray Hill, New Jersey 07974 

(Received 7 November 1984) 

A model potential-energy function comprising both two- and three-atom contributions is proposed 
to describe interactions in solid and liquid forms of Si. Implications of this potential are then ex­
plored by molecular-dynamics computer simulation, using 216 atoms with periodic boundary condi­
tions. Starting with the diamond-structure crystal at low temperature, heating causes spontaneous 
nucleation and melting. The resulting liquid structurally resembles the real Si melt. By carrying out 
steepest-descent mappings of syste~ configurations onto potential-energy minima, two main con­
clusions emerge: (1) a temperature-independent inherent structure underlies the liquid phase, just as 
for "simple" liquids with only pair interactions; (2) the Lindemann melting criterion for the crystal 
apparently can be supplemented by a freezing criterion for the liquid, where both involve critical 
values of appropriately defined mean displacements from potential minima. 

I. INTRODUCTION 

In contrast to most other elements, the tetrahedral 
semiconductors Si and Ge shrink when they melt. 1 The 
crystalline forms of these substances have the open dia­
mond structure with each atom bonded to four others in a 
tetrahedral pattern. Diffraction experiments2- 4 show that 
melting causes a partial collapse of this structure whereby 
coordination number 4 in the crystal increases substantial­
ly to an average value exceeding 6. Electrical properties 
are strongly affected by this profound structural change: 
Conductivity jumps by a factor of 20 in Si, and of II in 
Ge.1 

Predicting details of the changes in local order for the 
tetrahedral semiconductors as they melt provides an ir­
resistible challenge to theory. For the most part, recent 
theoretical progress in understanding classical liquids and 
the melting process has concentrated on relatively simple 
model systems, specifically those with additive pair in­
teractions. s-7 Liquified noble gases (Ar, Kr, Xe) typify 
such systems, for which the famous Lennard-Jones (LJ) 
interaction 

(1.1) 

constitutes an important paradigm. 
Quite obviously, the tetrahedral semiconductors fall in 

a very different class. No reasonable pair potential will 
stabilize the diamond structure, as vu stabilizes the 
close-packed crystals characteristic of the noble gases. It 
is not even clear at the outset that any temperature- and 
density-~ndependent potential could successfully describe 
liquid semiconductors, since they are not molecular insu­
lators but contain conduction electrons. Nevertheless, the 
existence of just such a potential (or family of potentials) 
is an important topic toward which this work has been 
directed. 

In Sec. II we propose a specific nonadditive interaction 
potential for the condensed phases of Si, and indicate how 
it was selected. The molecular-dynamics simulation tech­
nique used to infer local order and other attributes of the 
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condensed phases that are implied by this potential has 
been outlined in Sec. III. That outline also includes a dis­
cussion of the configurational mapping procedure which 
we have previously found useful in analyzing the local or­
der that is present in condensed phases. 8 -to In Sec. IV we 
present some thermodynamic properties displayed by our 
216-atom computer simulations, while in Sec. V we pro­
vide results concerning local order. In Sec. VI we consid­
er results from the mapping onto potential minima. In 
Sec. VII we focus briefly on the Lindemann melting cri­
terion, 11 and indicate the possibility that a new "inverse 
Lindemann criterion" for freezing of liquids can be for­
mulated. In Sec. VIII we assess the overall validity of the 
present model, and attempt to identify directions for sub­
sequent improvement and applications. 

II. NONADDITIVE POTENTIAL 

Any potential-energy function <I> describing interactions 
among N identical particles can quite generally be 
resolved into one-body, two-body, three-body, etc. contri­
butions as follows: 

<1>(1, ..• , N)= .L v 1 (i) + .L v2 (i,j)+ .L v3(i,j,k) 
f f,j i,j,k 

i<j i<]<k 

+ · · · +vN(l, ... ,N). (2.1) 

In order that this representation be useful in the usual 
types of theoretical modeling, it is necessary that the com­
ponent functions v" converge quickly to zero with in­
creasing n. 

The single-particle potential v 1 normally describes wall 
and external forces to which the system is subject. These 
are absent for the case considered below, so the expansion 
(2.1), in principle, begins with the pair-interaction terms. 

In view of the fact that the Si crystal consists of atoms 
held. in place by strong and directional bonds, it seems 
reasonable at first sight that the corresponding <I> could be 
approximated by a combination of pair and triplet poten-
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tials, v2 and v3• That will be our point of view in the fol­
lowing. In the same spirit as that behind Eq. (1.1), we 
first introduce energy and length units £ and u, and then 
write 

(2.2) 
v3(r1,rj,rk)=ef3(r1/u, rj/u, rk/u), 

where E is chosen to give / 2 depth -1, and u is chosen to 
make / 2(2116) vanish. That / 2 must be a function only of 
scalar distance is obvious; similarly, f 3 must possess full 
translational and rotational symmetry. 

In the present context, selection of interactions between 
Si atoms is a considerably more demanding task than that 
confronted when attempting only to describe small dis­
placements from the ideal tetrahedral geometry. The 
latter suffices to describe elastic properties and phonon 
spectra of the crystalline material. In such a restricted re-· 
gime it may be appropriate to utilize potentials of the 
Keating type. 12 Now, however, it is mandatory to span 
the entire available configuration space in order to achieve 
a satisfactory description of the shortLrange order in the 
liquid phase,. and of the atom-exchanging diffusive 
motions that occur continuously in the liquid phase. 

The reduced pair potential for use in our study was 
selected from the following five-parameter family: 

fz(r)= (A (Br-P-r-q)exp[(r -a)-1
] , ; <.a 

0' r ";?_a (2.3) 

where A, B, p, and a are positive. This generic form au­
tomatically cuts off at r =a without discontinuities in any 
r derivatives, which is a distinct advantage in any 
molecular-dynamics simulation application. 

The same cutoff advantage can be extended to the 
three-body interactions f 3 • Specifically, we assign them 
the form 

f3(ri,rj,rk) =h (rij,rik, ejik )+h (rj;,rjk,(3ijk) 

+h (rki,rkj,eikj) , (2.4) 

where ejik is the angle between rj and rk subtended at 
vertex i, etc. The function h belongs to a two-parameter 
family (A., r > 0). Provided that both rij and r1k are less 
than the previously introduced cutoff a, it has the follow-
ing form: . 

h (rij,rik,(Jjik )=A.exp[ y(r;j -a)- 1 +r(r;k -a)- 1
] 

(2.5) 

otherwise h vanishes identically. The "ideal" tetrahedral · 
angle e t is such that 

I 
coser=-3' (2.6) 

so that the trigonometric part of expression (2.5) clearly 
discriminates in favor of pairs of bonds emanating from 
vertex i with the desired geometry. 

We have carried out a limited search over the seven pa­
rameters A, B, p, q, a, A., and r to identify a reasonable 
choice of / 2 and f 3 • An important component of this 
search was an evaluation of lattice sums to ensure that the 

diamond structure was indeed the most stable periodic ar­
rangement of particles at low pressure, at least among 
simple alternatives. However, after this lattice-sum cri­
terion was satisfied, it was still necessary that the melting 
point and the liquid structure inferred for the tentative in­
teraction by the molecular-dynamics simulation also be in 
reasonable accord with experiment. These latter criteria 
served to contribute to our rejection of several of our ini­
tial choices for parameter sets. 

Overall, the most satisfactory parameter set thus far 
discovered is the following: 

A =7.049 556 277 , B =0.602 224 558 4 , 

p=4, q=O, a=1.80, (2.7) 

A.=2l.O, y=l.20. 

This is the choice upon which all results reported in the 
· remainder of this paper are based. · 

Figure 1 shows the corresponding binding energy per 
atom ¢1/N (in reduced units) versus number density p 
(also in reduced units) for several simple lattices. Al­
though at zero pressure the diamond structure (DIA) is 
preferred, the other cases-simple cubic (sc), body­
centered cubic (bee), and face-centered cubic (fcc)-are 
reasonably close. We believe that this closeness is impor­
tant in assuring that thermodynamic melting to a col­
lapsed liquid structure be possible at a reasonable tem­
perature. By construction, the sum of three-body interac-

. tions nearly vanishes for the diamond structure. Al­
though that sum substantially destabilizes the other lat­
tices, these alternative structures partially compensate by 
incorporating more of the stabilizing pair bonds than does 
the diamond lattice. Evidently, it is important to achieve 
a proper balance between these competing effects in order 
to model Si successfully. 

At the minimum in the diamond curve of Fig. 1, 

p=0.46oa--3 
, lf>IN = -1.999 993c:. (2.8) 
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FIG. 1. Lattice energy (per atom) vs density for the nonaddi­
tive Si potential. Equation (2.7) provides the parameter set used 
for the interactions. The arrow locates the density at which our 
molecular-dynamics calculations were performed. (See text for 
label legend.) 
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FIG. 2. Reduced pair potential vs distance. This function 
vanishes identically beyond r = l: 80. 

In order for these to correspond to the observed lattice 
spacing and atomization energy of crystalline Si at 0 K, it 
would be necessary to choose 

a=0.209 51 nm, 
(2.9) 

£=50 kcal/mol 

=3.4723X w- 12 erg/at. pair. 

Figure 2 shows the reduced pair potential f 2 as a function 
of reduced distance. 

III. MOLECULAR-DYNAMICS SIMULATION 

Our computer simulation has utilized N =216 atoms in 
a cubic cell with fixed volume. Periodic boundary condi­
tions were applied at all six faces of the cell. Because pri­
mary interest concerned the liquid phase, we elected to 
keep the mass density equal to that of the real liquid at its 
observed melting point, 1410°C, namely 2.53 g/cm3•1 The 
mass of the common stable isotope 28Si is 

m =4.6457X w-23 g/at. , (3.1) 

so that the edge length of the cubic cell must be given the 
value 

L =7.646 l4a= 1.605 31 nm . (3.2) 

The corresponding number density for the 216 atoms, 

p=0.4832a- 3 , (3.3) 

exceeds that shown in Eq. (2.8) for the zero-pressure, 
zero-temperature crystal. The integer N =216 has just 
the proper form to permit the atoms to be arranged in a 
defect-free diamond lattice, aligned with the sides of the 
cubic cell, while bonding perfectly across its faces to 
periodic-image atoms. The lattice sum for this somewhat 
compressed crystal is 

<I> IN= ~ 1. 992 346c . (3.4) 

The molecular-dynamics study for the model was ini­
tiated with the 216 atoms placed in the compressed crys-

talline arrangement, with a random set of very small mo­
menta. The given two- and three-body potentials in <I> 
lead to explicit force expressions for each particle which 
enter the Newtonian equations of motion. The latter were 
integrated using a fifth-order Gear algorithm, 13 and incre­
mental time step At =5 X w-3r, where the basic time unit 
is 

r=a(m !t)112 =7.6634X w- 14 s. (3.5) 

Under these circumstances the total energy would remain 
constant to at least seven significant figures during runs 
typically of several thousand At. Temperature was adjust­
ed by the usual method of scaling all momenta by a com­
mon factor. 

During some of the molecular-dynamics runs to be dis­
cussed below, the instantaneous atom configuration 
r 1(t), ... , r,v(t) was periodically mapped onto the config­
uration r 1q, ... , r,vq of a nearby <I> minimum. In no sense 
did this mapping disturb the system's Newtonian dynam­
ics; it was simply a computation carried out in parallel. 
The mapping was accomplished by using Newton's 
method to find the limiting ( s ~ co ) solution to the 
steepest-descent equations, 

dri 
ds =-Vi<l> (3.6) 

where the dynamical configuration supplies the initial 
condition. In principle, then, any instantaneous set of 
atom positions can be uniquely referred to a mechanically 
stable structure. Determining what the available <I> mini­
ma are for the Si model, and how they are serially sam­
pled at different temperature, constituted one of the im­
portant goals for this project. 

IV. THERMODYNAMIC PROPERTIES 

Figure 3 presents some of our molecular-dynamics data 
for the mean potential energy per particle, 
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FIG. 3. Mean potential energy per particle vs temperature 
for the Si model. The points shown represent a sequence of 
molecular-dynamics runs during which the total system energy 
was systematically increased from case to case (with equilibra­
tion). 
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(q;}=(¢)/Nc.' 

versus reduced temperature, 

T*=kBT/E. 

(4.1) 

(4.2) 

The positive temperature points shown in the figure 
emerge from a sequence of molecular-dynamics runs (each 
preceded by its own equilibration run), between pairs of 
which the total energy was monotonically increased. The 
perfect crystal at absolute zero provided the starting 
point. Runs were subsequently generated by giving" atoms 
very small random momenta, and then by sequentially 
scaling up the momenta between runs by an appropriate 
factor greater than unity. After each scaling an equilibra­
tion period was permitted to run 500 time steps followed 
by a subsequent averaging period for 1500 steps, while the 
system was obviously still in its crystalline phase (lower 
branch in Fig. 3). For the remainder of the sequence, 
which included melting and heating of the resulting 
liquid, the equilibration and averaging periods were 1000 
and 3000 steps, respectively. 

The retrograde behavior displayed in Fig. 3 is charac­
teristic of a first-order phase change. The existence of a 
positive latent heat implies that the temperature will drop 
when melting occurs at constant total energy, or, as in the 
present circumstance, even when the total energy is slowly 
increased. 

The liquid branch of the ( q; )-versus- T* curve has been 
reproduced during stepwise reduction in total system ener­
gy, and for that reason we believe the results shown in 
Fig. 3 are a correct reflection of thermal equilibrium in 
our small system. The crystal branch is probably reliable 
as well since it agrees accurately below the melting region 
with the expected equipartition result for harmonic nor­
mal modes. We have not attempted to recreate that crys­
tal branch by cooling the liquid until it spontaneously 
froze. 

No doubt the upper limit of stability for the crystal 
shown in Fig. 3 at T* =:0.103 represents an effective limit 
of superheating. The crystal contained no surfaces or in­
serted defect sites at which melting could easily initiate. 
Therefore, the thermodynamic melting temperature must 
be somewhat lower. We estimate it to be 

T~ =:0.080. (4.3) 

At this temperature the difference in ( q;) between the 
liquid and crystal branches is 

(4.4) 

Consequently, the entropy change that would accompany 
reversible transfer of the system from crystal to liquid 
would be 

b.S/NkB==3.7. {4.5) 

This constant-volume, constant-temperature result can be 
compared with the constant-pressure experimental melt­
ing value at 1 atm:14 

.6.S(expt)/kB=3.25. (4.6) 

In comparing these numbers, it is important to keep in 

FIG. 4. Pair-correlation function for the Si model in the crys­
tal phase at T* =0.0800. 

mind that the molecular-dynamics crystal is under sub­
stantial compression. 

The equipartition value of c: =CviNksE, the reduced 
constant-volume heat capacity that is relevant to the low­
temperature crystal, is equal to 

At T~ this has been observed to rise to 

c: { T~, cryst) == 2. 0 

(4.7) 

(4.8) 

as a result of anharmonicity in the lattice. The corre­
sponding result for the liquid at r::. is found to be 

(4.9) 

furthermore, this quantity in the liquid tends to diminish 
as T* rises. 

V. LOCAL ORDER 

The pair-correlation function g(r) offers a convenient 
way to observe and analyze local order in condensed sys-

o.~--~~--~~2~----7-~~ 

r/rr 

FIG. 5. Pair-correlation function for the Si model in the 
liquid phase at T* =0. 0817. 

' 
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tems.5-
7 This function is defined to be proportional to 

the mean number of atom pairs with vector separation r, 
averaged over all directions of r, with normalization to 
unity for a random distribution of atoms. 

Figures 4 and 5, respectively, show g(r) extracted from 
crystal- and liquid-phase molecular-dynamics runs near 
T!.. The first of these is highly structured, revealing the 
organization of atoms into well-defit:J.ed coordination 
shells. Running coordination numbers n (r) may be ob­
tained from g(r) as follows: 

n(r)=41Tp J;s 2g(s)ds, (5.1) 

and, as expected, this yields four nearest neighbors when 
it is evaluated at the deep minimum in Fig. 4 beyond the 
fully resolved first peak. Although second- and higher­
order coordination shells in Fig. 4 run into each other 
somewhat, their positions and magnitudes are just as ex­
pected for a vibrating but structurally perfect diamond 
lattice. Corresponding g results for the crystal at lower 
temperature show greater coordination-shell resolution. 

Comparison of the liquid-phase g with that for the 
crystal provides stark testimony to the profound structur­
al breakdown that occurs at melting. With the exception 
of a broader and considerably lower first peak, 
coordination-shell structure, as such, has become very in­
distinct. In particular, the gap appearing in Fig. 4 be­
tween the first and second coordination shells for the 
crystal has disappeared. A broad and weak second max­
imum is present in the liquid-phase g spanning the range 
between 1.35 and 1.80 times the distance to the first max­
imum, which is consistent with some minor persistence of 
tetrahedral bonding into the liquid. The running coordi­
nation number n (r) is equal to 8.07 at rIa= 1.625, the 
position of the shallow first minimmn in Fig. 5. 

It is useful to examine the structure factor S(k) corre­
sponding to a given g(r), on account of its relation to dif­
fraction experiments and to density fluctuations in the 
medium at wave vector k. We have, for a liquid, 

N 
S(k)=N- 1 _L (exp[ik·(r1-ri)]) 

j,l=l 

=l+p J exp(ik·r)[g(r)-l]dr. (5.2) 

Figure 6 shows S(k) for the same liquid state at 
1:'*=0.0817. On account of finite-system truncation er­
rors, the curve shown is inaccurate for k a < 2. 5; however, 
the remainder of the curve is significant. The most 
notable feature is the first maximum at ka=5.3 with an 
obvious shoulder at ka=6.8. This pattern always ap­
pears when the liquid is near T!,. The subsequent maxi­
ma shown in Fig. 6 with diminishing amplitudes occur at 
ka=11.2, 17.1, and 22.2. 

When the present results are compared with those from 
diffraction experiments2

'
3 on molten Si, the conclusion 

seems to be that our model is qualitatively successful in 
describing local order in the liquid, although moderate 
quantitative discrepancies appear. Specifically, the shoul­
dered first peak in S(k) is a very prominent feature in the 
experimental results, followed by relatively unstructured 
subsequent peaks with diminishing amplitudes. Further-

FIG. 6. Structure factor for the liquid-Si model at 
T* =0.0817. 

more, this S(k) pattern, experimentally, is only observed 
for molten Si and Ge among all elemental substances. By 
using the a value in Eq. (2.9) to express our molecular­
dynamics results in more familiar units, it can be verified 
that peak and shoulder positions agree satisfactorily with 
experiment. The comparison is given in Table I. 

Not surprisingly, the direct-space comparison of pair­
correlation functions is also qualitatively satisfactory. 
The molecular-dynamics (MD) function displayed in Fig. 
5 has its first maximum at r 1 =0.256 nm, with 

g(r1 )=2.06 (MD); 

experimentally,3 r 1 =0.250 nm and 

g(r1 )=2.23 (expt) 

(5.3) 

(5.4) 

at 1430°C. In addition, the relatively flat behavior ob­
served for g (r) in the present calculations beyond the first 
peak also appears in the experimental results. We refer 
the reader to figures appearing in Refs. 2 and 3 for specif­
ic details. 

The "mean number of nearest neighbors" in liquid Si 
experimentally has been reported as 6.4 both by Waseda 
and Suzuki2 and by Gabathuler and Steeb.3 However, in 
neither reference was the precise definition of that quanti­
ty given, nor were limits of uncertainty stated. Conse-

TABLE I. Comparison of structure-factor positions in k 
space. (Units fork are A -I.) 

Feature• 

First peak 
Shoulder 
Second peak 
Third peak 
Fourth peak 

"Refer to Fig. 6. 
bpor T*=0.0817. 

Molecular dynamicsb Experimentc 

2.53 2.80 
3.25 3.25 
5.35 5.15 
8.16 8.50 

10.60 11.20 

cFrom Waseda and Suzuki, Ref. 2, Fig. 1, for liquid Si at 
1460"C. 
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quently, it is not entirely clear whether our own result for 
n (r) at the first g(r) minimum, nainely 8.07, is in fact too 
large. In any case both experiment and the molecular-. 
dynamics simulation agree that the "mean number ?f 
nearest neighbors" in liquid Si is substantially less than m 
other elemental liquids (typically, 10-12). 

VI. MAPPING TO POTENTIAL MINIMA 

Previous applications8
-

10 have shown that mapping of 
system configurations onto nearby potential-energy mi~i .. 
ma illuminates the nature of short-range order present m 
condensed phases. Furthermore, this technique is useful 
in suggesting the form that should be adopted by analyti­
cal theory of the solid-liquid transition.15• 16 

Numerically solving the steepest-descent equation (3.6) 
to locate the relevant minimum for any given initial con­
figuration is a demanding task for the specific 216-atom 
system under consideration. Nevertheless, we have done 
such calculations for a few selected circumstances that 
seemed to warrant the effort. 

One of the principal results that has emerged from ear­
lier mapping studies has been that a virtually 
temperature-independent inherent structure ~nderlies ~he 
liquid state. While it is true that the patr-correlatton 
functions g(r, T) are typically and clearly temperature 
dependent (at constant density), the corresponding func­
tions g (r) evaiuated for the sets of mapped configura­
tions fiom each state are not. That is, the temperature 
dependence observed for pair correlat~on in thos~ s_imp_le 
liquids thus far examined consists enttrely of vanat10n m 
"vibrational" displacement away from potential minima, 
and not in substantial population shifts among regions be­
longing· to distinct groups of minima. The models for 
which this phenomenon has been previously verified all 
involve additive central potentials between the constituent 
particles. It is important now to see whether the strong 
nonadditivity operative in the present model for Si affects 
that phenomenon. . 

Figure 7 shows the "inherent" pair-correlation function 

oL-~--~--~~~~--~~~ 
0 2 

r/ri 

FIG. 7. "Inherent" pair-correl~tion function for liquid Si. 
The temperature in the slightly supercooled melt from which 
the 31 contributing potential minima were constructed was 
T*=0.0617. 

_,oL-.~--'-,o--~-2"'-o-~_..,.so-............l 
kri 

FIG. 8. Structure factor corresponding to the "inherent" 
pair-correlation function of Fig. 7. The ka<2.5 regime con­
tains substantial truncation error and should be disregarded. 

gq(r) obtained from a molecular-dynamics run on slightly 
supercooled molten Si at T* =0.0677. Figure 8 provides 
the corresponding structure factor. These results are 
based on atom configurations for 31 potential-energy 
minima which were obtained from molecular-dynamics 
configurations separated by lOO.tit. The distribution of <P 
values at these minima appears to be sufficiently irregular 
to suggest that comprehensive and representative 
configuration-space sampling has occurred. 

The conventional pair-correlation function g(r) for this 
supercooled liquid closely resembles that shown in Fig. 5. 
However, the mapping onto minima has produced a 
dramatic degree of structural enhancement, as might have 
been expected. Nevertheless, the sharp features exhibited 
by gq(r) clearly are not those of the crystalline solid, as 
comparison with Fig. 4 readily reveals. 

Figure 9 shows the conventional pair-correlation func­
tion g (r) for a very hot fluid at T* =0.1492. Not surpris­
ingly, this function possesses substantially less short-range 
order than that for the cooler liquid (at T* =0.0817) in 

""' 

oL-~--4---~~---'--~~~~ 
0 2 

r/a 

FIG. 9. Conventional pair-correlation function for hot mol­
ten Si at T* =0.1492. 
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Fig. 5. Figure 10 shows the corresponding "inherent" 
pair-correlation function gq(r). The latter represents an 
average over 30 configurations at <I> minima, where the in­
itial configurations along the dynamical trajectory were 
separated by lOOAt as before. 

The two gq's in Figs. 7 and lO must be rega,rded as 
essentially identical. Differences between the curves are 
very small everywhere, and, in any case, are of the order 
of statistical errors associated with our necessarily re­
stricted sampling. Once again we conclude that tempera­
ture variations observed for g (r, T) at constant density 
arise ~trictly from amplitude variation of "vibrational" 
motion within regions surrounding minima, and not from 
a shifting equilibrium between such regions. 

Running coordination numbers nq can be calculated for 
gq using Eq. (5.1). On this basis we find, for the nearly 
identical gq's in Figs. 7 and 10, that nq is 4.80 at the first 
minimum beyond the sharp first peak of gq, and rises to 
7.95 at the second minimum. This increment of just over 
three atoms occurs at a smaller distance than do second 
neighbors in the diamond lattice, and appears to be associ­
ated with the end-to-end distances of nearly-right-angled 
arrangements of atom triads. 

Although the mechanically stable atom arrangements 
which contribute to the gq(r) are amorphous Si deposits, 
one must avoid the temptation to identify them with real 
amorphous Si formed by various means in the laboratory. 
These latter materials doubtless vary in properties with 
method of preparation, and may have enjoyed the oppor­
tunity to engage in localized partial crystallization. 

The rather deep first minimum at rIa= 1.40 in the 
common gq function suggests using this distance as a cut­
off criterion for examination of bonding statistics. Thus 
any pair of atoms in a mechanically stable packing (<I> 
minimum) whose separation is less than this cutoff will be 
counted as bonded, while any pair with greater distance 
will not. Obviously, alternative definitions are possible, in 
particular, using the strengths of interaction between 
atoms. In any event, our simple geometrical criterion 
agrees with the known structure of the diamond lattice, 
with all nearest neighbors counted as bonded and no oth­
ers. 

0~0--~~~~--~2----~~~~ 

r/<J 

FIG. 10. "Inherent" pair-correlation function for hot molten 
Si at T* =0.1492. 

TABLE II. Fractions of Si atoms with various numbers of 
bonds in the collections of potential minima which define 
liquid-phase "inherent structure." 

Number Fraction 
of bonds• of atoms 

2 0.000 
3 0.000 
4 0.201 
5 0.568 
6 0.205 
7 0.024 
8 0.001 
9 0.000 

•The bond count utilizes rIa= 1.40 as an upper cutoff criterion. 

In Table II we present the fractions of Si atoms found, 
with this cutoff criterion, to engage in various numbers of 
bonds in the collection of <I> minima that define inherent 
structure for the liquid. Four-coordinate atoms are still 
present, but they are dominated by five-coordinate atoms, 
and higher coordination numbers frequently appear as 
well. Not,e, however, that the angle-dependent three-body 
interactions prevent any occurrence of coordination num­
bers near 12 that would indicate local close packing. 

VII. MELTING AND FREEZING CRITERIA 

Prior experience indicates how mapping of dynamical­
path configurations onto potential-energy minima can be 
a particularly useful tool for studying melting and freez­
ing.16 Consequently, we have applied this technique to a 
dynamical sequence during which a somewhat superheat­
ed Si crystal spontaneously underwent nucleation and 
melting to produce homogeneous liquid. 

In Fig. II we present values of <I> IN at the minima 
which were attained by the steepest-descent mapping. As 
before, the elapsed time between successive mappings was 
lOOAt. At the initial sampling step (labeled 0 in Fig. 11) 
the steepest descent brought the system to one of the abso­
lute minima corresponding to a structurally perfect dia-
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FIG. 11. Values of potential energy per particle at minima 
attained by periodic mapping during melting. 
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mond lattice. At this, and roughly the following 15 map­
pings, the system was recognizably crystalline, with a 
temperature T* ~0.102. That the absolute minimum was 
not encountered every time during this unmelted "first 
stage" reflects the strongly anharmonic character of the 
superheated crystal: Thermal fluctuations cause localized 
defects spontaneously to form and to annihilate. 

After this first stage, nucleation of the liquid occurred, 
and the depths of the potential-energy minima produced 
by the mapping drifted upward, as Fig. 11 clearly demon­
strates. Judging by the pair-correlation functions and the 
distributions of intact bonds as defined above, liquid and 
crystal coexist throughout this stage with the former in­
creasing in extent at the expense of the latter. 

The second stage, melting, terminates at about mapping 
step 80. Subsequently, the depths of the potential minima 
show no further upward drift; but fluctuate narrowly 
about a mean value 

. !7.1) 

In this third stage the system is homogeneously liquid, at 
T* ~0.0677, and is therefore somewhat unde!"cooled. The 
distribution of potential-energy minima sampled by this 
relatively cold liquid is substantially the same as that sam­
pled by much hotter liquids at the same density, and this 
fact underlies the existence of a temperature-independent 
inherent structure. 

The mapping operation moves all atoms in a systematic 
way until they are simultaneously subject to no force. It 
is illuminating to inquire how large on the average these 
atom displacements are required to be. For any given 
dynamical configuration rv ... , rN and its mapping 
r1q, ... , rNq• we can evaluate, for example, 

N 

(r)=N-1 ~ lri-rjq I . 
j=l 

(7.2) 

Figure 12 shows these mean scalar displacements for re­
turn to potential minima for each of the same 121 map­
pings upon which Fig. 11 was based. This shows not only 
the behavior in the superheated crystal, but the dramatic 
effect of melting. 

The mean mapping distance in a low-temperature crys­
tal would be determined by the amplitudes of harmonic 
phonon motions that are present, and clas~ically should 
scale as ( T* )112• As the temperature rises toward the 
melting point, anharmonic processes could be expected to 
increase the mean distance slightly, but it should still 
behave qualitatively as in the harmonic regime. The 
Lindemann melting criterion11 specifies that melting 
occurs when the root-mean-square displacement of atoms 
reaches a critical fraction of the lattice spacing, typically 
about +. 17• 18 At the present .level of precision it is un­
necessary to distinguish rms averages from the average 
defined in Eq. (7.2) above. The stage-1 mean distances 
shown in Fig. 12 average approximately 0.19 times the 
lattice spacing in the static crystal, and considering the 
fact that the solid is a bit superheated, this is consistent 
with Lindemann-law expectations. 

After melting, the mean mapping distances presented in 
stage 3 of Fig. 12 are approximately 0.29 times the 
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FIG. 12. Mean distances of atom displacement under the 
mappings utilized in ~ig. 11. 

nearest-neighbor separation (defined in the liquid as the 
distance to the first maximum of g, about 10% larger 
than the lattice spacing). Furthermore, the mean mapping 
distances from one case to the next display considerably 
greater relative dispersion than those in stage 1 for the 
unmelted solid. These greater distances and dispersions 
may provide valuable geometric information about the 
multidimensional mapping regions encountered in the 
liquid phase. . 

Just as in the situation for the crystal, raising the tem­
perature in the liquid causes the mean mapping distances 
for the atoms to increase. At T* =0.1492 they have risen 
to 0.39 times the nearest-neighbor separation. 

These observations generate an intriguing possibility, 
namely that a freezing criterion for liquids might theoreti­
cally exist as a complement to the Lindemann melting cri­
terion for solids. Present evidence seems to suggest that 
when cooling the liquid causes the mean atomic mapping 
distance to drop to about three-tenths of the neighbor 
spacing, freezing occurs. The introduction of the 
steepest-descent mapping operation, applicable to any 
phase of matter, is the key needed to effect extension of 
the simple and appealing Lindemann criterion to liquids, 
where, conventionally, its concepts would have been 
thought to be totally inapplicable. 

Nucleation for the melting process apparently requires 
proliferation and aggregation of defects in the anharmonic 
crystalline medium. Mapping onto potential-energy mini­
ma is a valuable tool for studying how this occurs. 16 One 
of the basic questions here concerns the nature of the 
separate defects that spontaneously form under thermal 
agitation in the solid. By examining the structures and 
energies for those minima lying just above the absolute 
minimum, it should be possible to answer this question. 

The lowest-lying mrmmum · above the absolute 
minimum, which was encountered during the stage-1 sam­
pling in Figs. 11 and 12, appeared at sampling step 13. 
Its structural excitation energy relative to the perfect­
crystal absolute minimum was found to be 1.445 81£. For 
any geometric definition of bonding with a cutoff in the 
range 
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(0) PERFECT CRYSTAL 

(b) BONDING DEFECT 

FIG. 13. Rebonding scheme in formation of a localized topo­
logical defect in the Si crystal. 

1.15 ·5Jcla5_l.45 (7.3) 

(which includes the choice used earlier), every one of the 
216 Si atoms participates in exactly four bonds in this 
defect-contai"ning structure. Consequently, the defect 
must entail some kind of topological reconnection of the 
bonds in the crystal. 

In the defect-free Si crystal the bonds are arranged so 
that all closed paths along successive bonds are polygons 
with an even numbers of sides (6, 8, 10, ... ). Our exam­
ination of stereo pictures for the defect configuration 
under consideration shows that odd polygons have been 
introduced at the defect, specifically including pentagons 
and heptagons. The rebonding scheme is shown in Figs. 
13(a) and l3(b). By construction, this is a locally strained 
but 111echanically stable arrangement of Si atoms. We are 
presently unable to say if such a topological defect would 
be an important entity in real Si, but further study of this 
possibility seems to be warranted. 

IV. M. Glazov, S. N. Chizhevskaya, and N. N. Glagoleva, 
Liquid Semiconductors (Plenum, New York, 1969), Chap. 3. 

2Y. Waseda andK. Suzuki, Z. Phys. B 20,339 {1975). 
3J. P. Gabathuler and S. Steeb, Z. Naturforsch. 34a, 1314 

(1979). 
4M. Davidovic, M. Stojic, and Dj. Jovic, J. Phys. C 16, 2053 

(1983). 
5S. A. Rice and P. Gray, The Statistical Mechanics of Simple 

Liquids (Wiley-Interscience, New York, 1965). 
6C. A. Croxton, Liquid State Physics-A Statistiqal Mechanical 

Introduction (Cambridge University Press, London, 1974). 

VIII. DISCUSSION 

The silicon model examined in this paper seems to be 
qualitatively successful in representing condensed phases 
of that substance, but it clearly has quantitative deficien­
cies. Since its potential-energy function is based on a very 
limited search, there is good reason to believe that signifi­
cant improvements are possible. 

One of the quantitative problems raised by the present 
version is that of energy scale. In order for the observed 
transition temperature, Eq. (4.3), to correspond to the 
freezing temperature for liquid Si ( 1410 °C), it is necessary 
for the basic energy parameter to have the value 

E~42 kcal/mol , (8.1) 

which is considerably less than the 50 kcal/mol needed to 
provide the correct cohesive energy of the crystal, Eq. 
(2.9). Although it is possible that changes in v2 and v3 
might bring r:;, down sufficiently far to eliminate the 
discrepancy, another option exists. This option involves 
augmenting , the potential with position-independent 
single-particle terms v 1 [see Eq. (2.1)], the source of which 
can be argued to lie in the electronic structure of the ma­
terial. For the case considered here, we would have to 
have 

v1 ~ -16 kcal/mol (8.2) 

to explain the cohesive energy of the crystal. We would 
expect v1 to have some density variation, and therefore to 
influence compressibility. In any case, addition of v1 
terms to the potential only affects the temperature scale, 
but has no influence on the local structure that obtains at 
a given reduced temperature. 

Many of the same considerations that relate to selection 
of a model Si potential are applicable as well to Ge. Their 
distinct melting temperatures require different energy and 
temperature scaling factors, of course, but also more sub­
tle distinctions must be observed. Measured pair­
correlation functions for the respective liquids at corre­
sponding temperatures show small but significant differ­
ences.2.3 It will be important eventually to see if the gen­
eral type of molecular-dynamics modeling advocated here 
can reproduce those differences. 
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