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Any molecular system explores significantly different regions of the potential-energy 
hypersurface as the system is found, respectively, in the solid and liquid phases. We study in detail 
the multidimensional geometry of these different regions with molecular-dynamics calculations 
for 256 simple atoms in a fixed volume. The atomic interactions are chosen to represent the noble 
gases. The stable crystal for this model displays a face-centered cubic structure. We evaluate the 
local gradient and curvatures of the regions of the hypersurface sampled by the system for a wide 
range of temperatures. We observe that a significant fraction of the curvatures become negative in 
the region sampled by the system at temperatures even as low as one-fourth the melting 
temperature. Further, the curvature distribution changes dramatically with respect to 
temperature at the melting point. We also construct and evaluate a new distribution for the 
distance between the atoms in their instantaneous dynamical configurations and those in their 
corresponding "quenched" configuration (i.e., the configuration found at the corresponding 
potential-energy minimum). With the help of this new distribution, we conclude that the 
quenched configurations which are encountered during the melting process are structures which 
contain vacancy-interstitial defect pairs. 

I. INTRODUCTION 

We propose to investigate the transition between liquid 
and solid phases in terms of the topography of those thermo­
dynamically predominant portions of the potential-energy 
hypersurface for N molecules with varying temperature T 
but fixed density. In what follows, we explain why an investi­
gation of the topography of U (r I '" r N ) (the potential energy 
hypersurface expressed as a function ofthe coordinates r l ... 
rN of the Nmolecules contained in a fixed volume V), should 
produce useful information about the solid-liquid transi­
tion. We then present: the parameters with which we moni­
tor the shape of the potential-energy hypersurface; the mo­
lecular dynamics calculation of the parameters for the 
potential-energy surface of N = 256 argon-like atoms, at a 
fixed density but over a wide range of temperatures; and a 
presentation of the results. We conclude with a discussion of 
the consequences of these results for some previously pro­
posed melting theories, and of what future use one might 
make of our results. The treatment here is entirely classical, 
and so, e.g., our comments about the low-temperature be­
havior of our system must be taken in that context. Further, 
since we only consider phases which are stable at equilibri­
um, we exclude the formation of glasses from our discussion. 

We expect at the outset that the topographical differ­
ences between the region of U (r I ... r N) occupied by liquid­
phase configurations and the region occupied by solid-phase 
configurations should be so characteristic and pronounced 
that it should be relatively straightforward to choose local 
geometric parameters which will clearly and always signal 
the phase transition as the temperature passes through the 
transition temperature. The portion of U(rl ... rN) sampled 
by the equilibrium configurations in the low-temperature 
solid phase is one of the permutationally equivalent wells 
whose sole minimum, at r~ ... r~, is the static crystal energy 
Uo, and is also a global minimum of U(rl ... rN)' For low 

enough temperatures, the configurations primarily sample 
only the harmonic region about the absolute minimum. 
There the hypersurface, and also the thermodynamics, can 
be completely characterized by the well depth U (r~ ... r~), 
and the local curvature tensor VV U (r~ '" r~). On the other 
hand, at the higher temperatures of the liquid phase, the 
configurations sample a much more complicated and anhar­
monic region of U(rl ... rN). This region is shaped by many 
minima, maxima, and saddle points which induce a wide 
variety of both convex and concave contours on the hyper­
surface (as portrayed schematically in Fig. 1), features which 
are not present in the portion sampled by the harmonic solid. 
As observed in earlier work, I this suggests that we can parti­
tion U (r I ... r N) uniquely into distinct regions so that each 
region is a "basin" whose "drainage lines" descend toward 
exactly one of the minima. If the system melts, then the con­
figurations will no longer be constrained to sample only the 
basin surrounding the crystal minimum, but will be free to 
sample a wide variety of higher-lying basins. Therefore the 
list of attributes of the hypersurface which would change 
dramatically upon melting or freezing should include not 
only the local slopes and curvatures of U (r I ... r N ) but also 
the depths and apertures ofthe basins of U(rl ... rN) which 
would be encountered by the trajectory. In the next section 
we present our choice of parameters corresponding to these 
attributes. Although these parameters are presented in the 
context of a molecular dynamics calculation,2 where the 
configurations rl(t) ... rN(t) are generated by the classical 
equations of motion at every time step t, the same consider­
ations would apply if the configurations were generated by, 
say a Monte Carlo calculation. 2 

II. THE PARAMETERS 

We consider first the local slope and curvature of the 
hypersurface which the configurations encounter at any in-
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FIG. 1. Schematic representation of the potential-energy hypersurface. 
Open circles are maxima, solid circles are minima. Saddle points are indicat­
ed by crosses. The solid curves are equipotential loci. Dotted curves passing 
through saddle points and converging at maxima represent boundaries of 
the steepest-descent basins that surround each local minimum. 

stant t. In general they are given by, respectively, the gradi­
ent VU[rl(t) ... rN(t)] and the Hessian VVU[rl(t) ... 
r N (t )]. However, these arrays contain much more informa­
tion than we can use, so we focus on parameters which con­
tract the information into a more compact form. We there­
fore monitor the local slope with the square of the 
(Euclidean) norm of the gradient, IVU[rl(t) ... rN(t)]i2. To 
monitor the curvature, we merely count the number of nega­
tive eigenvalues ofVVU [rl(t) ... rN(t)]. The appearance of 
negative eigenvalues in the Hessian signals the entry of the 
trajectory into a nonconvex portion of the hypersurface. 

Next, we consider the depth and aperture of the basin in 
which the configuration is found at any time. To find the 
minimum of the basin, we can cut across the contours from 
any point in the basin down to the minimum with, e.g., a 
steepest-descent or conjugate-gradient procedure. Such pro­
cedures have been employed successfully for this purpose in 
earlier work.3 With the resulting quenched configuration 
rl ... r1,r, we calculate two parameters: the quench energy Uq 

= U (rj ... r1,r), corresponding to the depth of the minimum, 
and the "return-distance" (squared) 8~(t) = (liN) 
xl:f= Ilri(t) - rW. Theaverageof8~(t) overall configura­
tions in that basin gives, for each basin, an estimate of the 
aperture of that portion of the basin encountered by the tra­
jectories. When the system is in the undefective solid phase, 
then the basin is the well about the crystal (global) minimum 
Uo, and the average return distance (squared) is identical 
with the average displacement (squared) parameter used in 
the venerable Lindemann melting theory. We discuss the 
Lindemann theory in detail in the Conclusion. For now, we 
observe that the average over all configurations is a straight-

forward generalization, for both the solid and liquid phase, 
of Lindemann's displacement parameter for the solid phase. 

III. THE MOLECULAR-DYNAMICS CALCULATION 

We study the melting of N = 256 atoms which interact 
via the pair potential 

u(r) =A (r- 12 
- r-S)exp[(r - a)-I], O<r<a, 

=0, r>a. 

The parameter a fixes the length of the interaction, so that 
the attraction is smoothly truncated to zero at r = a. The 
parameters A and a were chosen so that u( 1) = 0 and at the 
minimum u(re) = - 1, and so, A = 6.767 441 and a 
= 2.464 91832. Then we can view u(r) as a smoothly cutoff 

version of the Lennard-Jones potential2 in the reduced units 
E = 1 and (T = 1. Figure 2 displays u(r) compared with the 
Lennard-Jones potential in the reduced units. The potential 
u(r) has been discussed by Stillinger and Weber,3 and has two 
noteworthy advantages. First, the attractions smoothly van­
ish at less than three atomic diameters away from the center 
of the atom. Second, the static crystal lattice has a face· 
centered cubic structure for a range of densities where the 
zero-temperature pressure is positive. This property is not 
shared by, e.g., the popular Lennard-Jones potential, which 
produces a hexagonal close-packed lattice at T = 0 for all 
densities where the pressure is positive.4 Not only is the face­
centered cubic structure more symmetric than the hexagon­
al close-packed structure, but also it is the crystal structure 
experimentally observed for rare gas solids.4 Figure 3(a) 
shows our calculated static crystal energy for the atoms in 
the face-centered cubic and the hexagonal close-packed lat­
tices, as a function of v, the volume per atom. Figure 3(b) 
shows the difference between the energies corresponding to 
the two structures. For v.;;;0.937 85, the zero temperature 
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FIG. 2. The model pair-potential (solid curve) and the Lennard-Jones pair 
potential (chain-dot curve) as a function of interatomic radius, in reduced 
units. Both functions vanish at r = I and pass through minima ( - 1) at r. 
=2[/6. 
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FIG. 3. The upper panel (a) shows the T = 0 lattice energy as a function of 
volume per atom for the face-centered cubic lattice (solid curve) and the 
hexagonal close-packed lattice (chain-dot curve). The lower panel (b) shows 
the energy difference 1!1 = (U fcc - U hCP) X 1000. The triangle in panel (b) 
marks the volume per atom which we chose for the molecular dynamics 
calculation. 

pressure is positive. In this range, the face-centered cubic 
structure is preferred for atomic volumes as low as v 
= 0.8900, while the hexagonal close-packed structure is 

preferred for lower v. 
We initiate the molecular dynamics calculation by plac­

ing the N atoms in a face-centered cubic lattice which fits in a 
cube with volume (6.215 238 272)3, so that the volume per 
atom, v = 0.937 85 corresponds to the minimum static crys­
tal energy Uo = - 1833.4918. The dimensions of the cell are 
fixed throughout the calculation, and periodic boundary 
conditions are imposed.2 The classical equations of motion 
are solved with a fifth-order Gear algorithm.5 The time step 
fl.t ranges from fl.t = 0.0125 for temperatures below melting 
to fl.t = 0.0025 for the high temperature liquid, in our re­
duced units for atoms of unit mass. With these choices, the 
total energy was conserved to at least one part in 105 over 
each run. We measure time in multiples of'T = 0.0125. All 
the states discussed in the next section, with temperatures 
ranging from T = 0.5 to T = 6.2, were produced by increas­
ing the last instantaneous momenta of the previous state by 
between 5% and 50%, and advancing the trajectory by 
1500T before collecting averages. We calculate (P ), the time 
average of some parameter P, over trajectories at least 

10 ()()(}r long. We calculated the temperature,6 pressure, and 
potential energy of the system every lOr. To find (I V U [rl(t) 
... rN(t)] 12)112, we collected the sum 

N 

L L (l7(t ))2, 
;= I k=x,y,z 

wheref7(t ) is the k th component of the force on atom i due to 
all the other atoms at time t. At every 200T we calculated the 
eigenvalues ofVVU [rl(t) ... rN(t )]. The components of the 
Hessian are 

X
_d (_l dU(7ij)) 
dr r dr (i =hl, 

hia;y = - Lhiajy, 
i#j 

where a and r label the components of the coordinates of 
atoms i andj, tij = Ir;(t) - rj(t )1, and tJay is the Kronecker 
delta. At every lOOT we quenched the instantaneous configu­
ration rl(t) ... rN(t) with a steepest-descent procedure3 to 
find r1 '" rN, the corresponding configuration at the mini­
mum of the basin, and evaluated U(r1 ... rN), and tJ~. We 
also scored the frequency of single-atom return distances in 
order to form the probability distribution function P (r) 

= (J.. f tJ(r - 17i (t) - 112
), wheretJ (x) is the one-dimen-

Ni=1 
sional Dirac delta function. 

IV. RESULTS 

Figure 4 shows our calculated average potential energy 
( U) for temperatures from T = a to T = 6.2. The break in 
the curve indicates that the solid melts at T m = 2.40 ± 0.05. 
The melting temperature at this density is comparable to 
that found for the Lennard-Jones solid.7 We also found that 
the pressures were always positive, and increased with tem­
perature, and exhibited a characteristic break at T m • 
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FIG. 4. The average potential energy (4)) as a function of temperature, 
showing the melting of the model solid. 
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The root-mean square of the norm of the gradient, 
(IVU [rt(t) ... rN(t)] 12) t/2, is by itself a measure of the aver­
age local slope of the hypersurface at the given total energy. 
However, we present instead, in Fig. 5, the calculated values 
for 

(-l-(IVU [rt(t) ... rN(t)W»)1/2. 
3NT 

In the limit of T= 0, this is WE' the classical Einstein fre­
quency of the crystal,8 defined by 

w~ = _l_tr VVU(r? ... r~). 
3N 

For higher temperatures, the average 1/3NT (IU [rt(t) ... 
r N (t ) W) can be interpreted as a generalized Einstein fre­
quency squared,9 which we denote by fii-. However, fii- cor­
responds to the average oftr VVU [rt(t) ... rN(t)] evaluated 
at the instantaneous configurations rather than at the crystal 
minimum. We observe that the T = 0 intercept of the curve 
in Fig. 5 is precisely the conventional Einstein frequency by 
calculating directly tr VV U (r? ... r~) for the static crystal 
lattice. The WE calculated in this way is also shown in Fig. 5, 
and does indeed agree with our (graphical) estimate of 
limr _ 0 fiE' We should expectthat fiE would decrease with 
increasing temperature if the crystal were permitted to ex­
pand in our calculation. However, the volume is fixed in our 
calculation, and so we expect and see that fiE increases with 
temperature. Several theories of melting identify T m with 
the temperature at which the Einstein frequency of the crys­
tal WE becomes complex. to Such approaches ignore the exis­
tence of the coexisting liquid phase. While fiE remains real 
at all temperatures, we observe that the curve of the calculat­
ed fiE suffers a sharp break at T m , where fiE discontinuous­
ly increases by about 10%. Further, fiE is well defined in the 
liquid phase and contains information about the liquid 
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FIG. 5. The generalized Einstein frequency OE as a function of tempera­
ture. The solid triangle at T = 0 represents the conventional Einstein fre­
quency for the model solid, which was calculated directly from the trace of 
the force-constant matrix evaluated at the static crystal configuration. 

phase. Although fiE cannot be calculated easily by the self­
consistent phonon techniques which have been used to cal­
culate WE' the fact that fiE signals so clearly the solid-liquid 
phase transitions may be illuminating to those who study 
melting as a phonon instability in the crystal. 

Figure 6 shows our calculated (No. u), the average 
number of negative eigenvalues ofVVU [rl(t) •.• rN(t )], ex­
pressed as a percentage of all the 3(N - 1) nonzero eigenval­
ues. For very low temperatures, (No. u) should remain zero, 
and this is evidently the case for T < 0.5. However, near 
T = 0.52, (No. u) suddenly rises along an eventually con­
cave curve, until the curve suffers a break at T m • The jump in 
(No. u) is from about 17% to 20%. Above T m' (No. u) 
follows, within the statistical error, a rising and slightly con­
cave curve over the temperature range examined. 

Figure 7 shows our calculated (<5~) t/2, the root-mean 
square return distance averaged over all configurations. For 
low temperatures, (<5~) t/2 increases with T 1/2, as expect­
ed/ t but above T m' the curve appears to increase linearly 
with temperature. The curve shows a sharp break at T m • 

Of the two calculated states nearest T m' one is unambig­
uously a liquid at T = 2.43, and has a root-mean square re­
turn distance of (<5~) t/2 = 0.45. The other is a defective 
solid at T = 2.35, with (<5~) t/2 = 0.27. Regrettably, a com­
parison of the usual radial distribution function of the solid 
at T = 2.35 with those of the solids at the lower temperatures 
does not reveal any important differences between the solids. 
However, a projection of the sequence of instantaneous re­
turn distances <5rq(t) = + (<5~)1/2 and the corresponding 
quench energies Uq [rt(t) ... rN(t)] into the (<5rq, Uq) plane 
shows very clearly that the defective configurations occupy a 
topographically distinct region of U (r I ... r N)' Figure 8 
shows the projection <5rq vs Uq for, respectively, the solid at 
T = 1.96, the solid at T = 2.35, the liquid at T = 2.43, and 
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FIG. 6. The average number of negative eigenvalues of the force-constant 
matrix (evaluated at the instantaneous dynamical configurations), ex­
pressed as the percentage of the 3(N - I) total nonzero eigenvalues, and 
displayed as a function of temperature. 
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FIG. 7. The root-mean square return distance (05r.) 1/2 as a function of tem­
perature. 

the liquid at T = 6.2. At T = 1.96, the configurations are 
(statistically) still confined to the well about the crystal mini­
mum Uo• For the solid at T = 2.35, the configurations occu­
py alternately the basin about Uo and basins about the mini­
ma with mean depth U: = - 1796.77. The liquids at T 
= 2.43 and T = 2.66 show no such simple dichotomy 

between minima, for here the configurations sample a por­
tion of the hypersurface contained in a wide variety of basins, 
whose minima are each distinctly above U:. 

In Fig. 8(b), corresponding to the solid at T = 2.35, the 
quench energies clustered about U: each appear to be equal 
to U:. Actually they are each different from U:. To resolve 
more clearly the energy differences between the minima 
about U:' we show those minima drawn on a more expand-
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ed energy scale in Fig. 9. We can distinguish, to eight deci­
mal places, between 12 distinct wells of varying depth, from 
among the 43 quenched configurations clustered about U:. 
We suppose that the quenched configurations each corre­
spond to a face-centered cubic lattice with a single vacancy­
interstitial defect pair, differing primarily according to the 
orientation of the defects with respect to the crystal axes, and 
to each other. To support this conjecture, we created, in an 
independent calculation, a vacancy-interstitial defect pair 
with a small separation in the static (T = 0) face-centered 
cubic lattice, and subsequently allowed the system to relax at 
low temperatures via molecular dynamics. We quenched the 
relaxed configuration to find the potential energy of the de­
fective lattice uv

-
i = - 1796.8813, very near one of the 

observed quench energies (Uq = - 1796.8976) and also 
nearthelowest(Uq = - 1797.0642) of the 12 quench energy 
classes portrayed in Fig. 9. 

Finally, Figs. 10 and 11 show P(r), our calculated fre­
quency distributions ofthe single-atom return distances, for 
the same temperatures used in Fig. 8. When the solid melts, 
P (r) broadens, which again indicates that the configurations 
in the liquid phase encounter a topographically distinct and 
more diverse region of the hypersurface than those in the 
solid phase. Not only the shape but also the functional form 
of P (r) changes. To show this, we attempted to fitP (r) to the 
Einstein prediction PE(rjdr = Ar exp( - ar)dr, where A 
and a are constants determined by a least-squares fit of the 
observed PE(r) to P(r). Even at temperatures as high as 
T = 1.96, P E(r) is an excellent fit to the data. However, at 
T = 2.35, and for all higher temperatures, the function 
PE(r) can no longer be made to fit the data in a reasonable 
way. 12 This indicates a basic change in the functional form of 
P (r) as the system begins to melt. In particular, we find that 
P (r) in the liquid phase has a more extended tail at large r 
than can be accommodated by any scaled version of PE • 
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FIG. 8. Projection ofthe instantaneous quench energies Uq and the corresponding return distances 05rq for (from left to right) T= 1.92 (a), T= 2.35 (b), 
T = 2.43 (c), T = 2.66 (d). 

J. Chern. Phys., Vol. 83, No.8, 15 October 1985 
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.112.66.66 On: Tue, 04 Mar 2014 04:16:08



4084 R. A. LaViolette and F. H. Stillinger: Solid-liquid transition 

0.32 

"\l 

0.31 "\l "\l 

0.30 "\l "\l 
"\l "\l"\l 

CI> 
0.29 0 

c:: 
"\l 

"\l "\l "\l"\l 
CIS .... 
III 0.28 :a 
I 

"\l 
"\l 

E 0.27 
:I .... 
CI> 

"\l"\l V 
V 

Il::< 0.26 

0.21> 
,I 
"\l~ 

0.24 
"\l ~"\l 

"\l 

0.23 -1797.1 -1797 -1796.9 -1796.8 -1798.7 

Quench Energy 

FIG. 9. A portion of Fig. 8(b) on an expanded scale. 

v. CONCLUSIONS 

The results displayed in Figs. 4 through 11 show that the 
topographical differences between the portions of U (r 1 ••• 

r N) sampled by configurations in the liquid and solid phases 
are indeed dramatic. By exploring the aperture and depth of 
the basins which partition the hypersurface we are able to 
portray the transition between solid and liquid phases as fol­
lows. In the solid phase, upon heating from T = 0, the con­
figurations very quickly begin to sample anharmonic regions 
of the potential-energy well about the crystal minimum, as 
seen in Fig. 6. Nevertheless, as Fig. 8 shows, the configura­
tions for our N = 256 system are confined to that well for 
temperatures up to nearly T m • At T m , the configurations are 
finally able to invade regions contained in many basins of 
diverse slope, curvature, aperture, and depth. As Figs. 8(c) 
and 8(d) show, the configurations sample that part of the 
hypersurface contained in basins which are wider and shal­
lower than the well about the crystal minimum. Further, the 
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FIG. 10. The atomic return distance frequency distribution P(r2) as a func­
tion of ,-2. The solid curve corresponds to T = 1.96, the dashed curve to 
T = 2.35. The vertical scale shows the normalized frequencies multiplied by 
1000. 
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FIG. 11. P(,-2) as a function of,-2. The solid curve corresponds to T = 2.43, 
the dashed curve to T = 6.2. The vertical scale shows the normalized fre­
quencies multiplied by 1000. Both noisy curves were partially smoothed by 
a least-squares fit to a sequence of cubic polynomials in order to see clearly 
the differences between the two curves for ,-2 > 0.2 

region that they sample in the liquid phase is apparently 
contained in virtually the same population of basins for all 
temperatures above T m' This may also be demonstrated by 
comparing the radial distribution functions of the quenched 
configurations found at different temperatures above T m • 

These radial distribution functions also appear to be inde­
pendent of temperature,13 consistent with results shown in 
Fig. 8. The minima of these basins may thus be called the 
"inherent structures" of the liquid, because they identify the 
basins which contain the region of U (r 1 ••• r N ) sampled by the 
configurations. The term inherent structures, introduced in 
earlier work by Stillinger and Weber, 1,3 should not be viewed 
as an attempt to represent the liquid as a solid-like entity, as 
does the "significant-structure" theory of Eyring and oth­
ers. I4 As we have emphasized in this work, the point of view 
expressed by the term inherent structures assumes dramatic 
and basic differences between configurations in the solid and 
liquid phases, for otherwise we could not expect to extract 
useful information about the liquid-solid transition by 
studying these inherent structures and the topography of the 
potential-energy hypersurface. This work demonstrates that 
the liquid and solid phases are indeed distinguished by gross 
topographical differences in the hypersurface, and to that 
extent, we can offer no support for the significant-structures 
picture of liquids. 

As we mentioned in the Introduction, the root-mean 
square return distance (8r!) 1/2 is a straightforward general­
ization ofthe Lindemann displacement parameter (8u2

) 112, 

which measures the root-mean square displacement of the 
atoms in the solid from the static crystal configuration. ls

-
I7 

The Lindemann theory of melting asserts that upon heating, 
the solid melts when (8U2)I/2 reaches a certain maximum 
permissible fraction of the lattice spacing, and that this max­
imum is constant for all melting densities and temperatures. 
This assertion is exact for atoms which interact according to 
the pair potential u(r) = const X r - ", for then the energy 
and distance scale together. IS

-
17 Many atomic systems 

which do not interact in this manner nevertheless also ap­
pear to conform to the Lindemann picture of melting. For a 
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variety of model atomic interactions, the Lindemann param­
eter at melting is about 15% ofthe lattice spacing. IS

•
16 Our 

calculated (c5r;) 1/2 for the solid 18 is 16% of the lattice spac­
ing at T = 1.96 (cf. Fig. 7), and probably remains near that 
value up to just below T= 2.35. (At T= 2.35, the configura­
tions begin to sample a region of the hypersurface containing 
a basin other than the well surrounding the crystal mini­
mum, and the root-mean square return distance is no longer 
identical with the conventional Lindemann parameter.) 
While the Lindemann theory has proven useful, it should not 
be regarded as a comprehensive theory of melting, even 
where it is exact, for it says nothing about the coexisting 
liquid phase. 16 Indeed, the Lindemann parameter, as origin­
ally conceived, is not even defined in the liquid because of 
diffusion. Our return distance parameter is on the one hand 
identical to the Lindemann parameter when the configura­
tions remain in the neighborhood of the crystal minimum, 
and on the other hand is well defined in the liquid phase. The 
return distance parameter opens up the possibility of deve­
loping a truly "two-sided" theory of melting which acknowl­
edges the properties of both the liquid and solid phases. A 
generalized Lindemann criterion along these lines, based 
upon the information presented in Fig. 7, might be that the 
solid melts when (c5r;) 1/2 reaches 15% of the lattice spacing, 
and the melt freezes when (c5r;) 1/2 declines to about three 
times that value. Ours is not the first attempt to generalize 
the Lindemann parameter to the liquid phase. Ashcroft and 
co-workers, in their studies ofliquid metals, regard the hard­
sphere packing fraction as the Lindemann parameter for li­
quids. 19 They have developed a successful first-principles 
theory of the melting of sodium which incorporates this 
point of view. 20 They suggest that the liquid counterpart to 
the Lindemann criterion is that the liquid freezes when the 
hard-sphere packing fraction drops to 0.42. While such an 
approach seems reasonable for spherical atomic liquids if an 
appropriate hard-sphere diameter can be assigned, we do not 
expect to see its application to nonspherical molecular sub­
stances. However, our return distance parameter is not only 
more directly connected to the Lindemann parameter, but is 
also not limited to spherical atomic substances.21 Of course, 
a Lindemann-like rule for the freezing of liquids has not yet 
been generally established even for atomic liquids. However, 
neither this lack nor the apparent failure of the conventional 
Lindemann picture of melting for molecular solids 17 rules 
out the development of a generalized Lindemann rule for the 
freezing of liquids. 

Perhaps the most important use that we can make of the 
return distance parameter is in a defect-mediated theory of 
melting. The return distance parameter clearly signals the 
appearance and importance of defective inherent structures 
at and above T m • In the case studied here, the defects seem to 
be only simple variations of a vacancy-interstitial pair. A 
simple theory of melting based upon the presence and ener­
getic details of vacancy-interstitial pairs of defects has al­
ready proved successful for a model sodium solid.22 The evi­
dence presented here suggests that we can expect some 
version of such theories to enjoy broader success. Of course, 

the techniques presented here would apply equally well if the 
melting had been preceded by, say, inherent structures with 
extended dislocations rather than point defects. Therefore, 
we expect that we can apply these general geometric tech­
niques to study melting even apart from the question of va­
lidity of specific defect-mediated theories. 
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