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Atomic pair correlation functions for liquids provide an image of temperature-dependent short­
range order. If the thermal ensemble of atomic configurations is mapped (by steepest descent on 
the potential hypersurface) onto potential energy minima, the pair correlation function from the 
resulting transformed configurations exhibits substantial image enhancement, revealing short­
range order in a much more vivid fashion. Previous studies of model atomic liquids have 
demonstrated that at fixed density, mapped short-range order is virtually independent of the 
initial temperature, and thereby amounts to an "inherent structure" for the liquid. The present 
paper investigates steepest-descent mapping and inherent structure for hard spheres, construed as 
the infinite-n limit for pair potentials (alrt. Methods used are both analytical and simulational, 
the latter involving molecular dynamics for n = 12 and 24. Results show that inherent structures 
in the hard-sphere limit are randomly packed configurations, where particle radii have been 
inflated to the point of jamming. 

I. INTRODUCTION 

Realistic models for interactions among particles in 
condensed phases require potential functions <I>(r I ... r N ) that 
are bounded from below, and are arbitrarily many times dif­
ferentiable when all interparticle distances rij > O. In at­
tempting to understand both static structure as well as kinet­
ic processes in such many body systems it is instructive to 
divide the 3N-dimensional configuration space exhaustively 
into "basins," one surrounding each local minimum of <1>. 1-4 

This division is accomplished by a mapping that connects 
any configuration r I ..• r N to ria •.. r Na , a nearby configuration 
at which <I> is locally a minimum. The collection of all start­
ing configurations which map onto a given minimum a de­
fines the basin Ba for that minimum. 

In the case of identical structureless spherical particles, 
the appropriate mapping is generated by the following steep­
est descent equations (S;;;'0)1.3: 

drj(s)/ds = - Vj<l>[rl(s) ... rN(s)]. (1.1) 

Starting from the given N-particle configuration as initial 
condition, the solution to Eq. (1.1) for positive s displaces the 
configuration along the direction of the negative of the po­
tential gradient (in 3N dimensions) until it comes to rest 
(s- + ~) at the appropriate minimum. An elementary ar­
gumene suffices to show that, apart from particle permuta­
tions, the expected number of distinct <I> minima rises expon­
entially with N in the large-N limit (fixed density). 

Introduction of the mapping and of the resulting basins 
in the 3N-dimensional configuration space effectively sepa­
rates the statistical thermodynamics of the condensed phase 
into two parts. The first simply concerns the packing geome­
try of the particles, i.e., identification of the local <I> minima 
and classification of those minima by depth. The second in­
volves evaluating the mean "vibrational" partition function 
for basins as a function of their depth. On account of this 
formal separation of packing from vibrational deformation, 
it becomes possible exactly (as N_ + ~) to express the clas­
sical canonical partition function QNifJ), /3 = (kB T)-I, as 
a quadrature over tf>=<I>IN, the depth of minima on a per­
particle basis 1: 

QNifJ) = A - 3N f dtf> exp{N[ u(tf» - /3tf> - /3/VifJ, tf»]}. 

(1.2) 

In this expression A is the mean thermal deBroglie wave­
length, exp[Nu(tf»] is the distribution of distinguishable 
minima by depth, and/v is the generally anharmonic vibra­
tional free energy for basins of given depth 

exp[ - N/3/VifJ, tf>)] = (La dr exp[ - /3l1a <I>(r)] )~, 
(1.3) 

l1a <I>(r) = <I>(r) - <I>(r a). 

Limits of integration for tf> in Eq. (1.2) are set (a) at the 
lower end by the absolute <I> minimum corresponding to the 
best crystalline packing of particles, and (b) at the upper end 
by some form of "worst" packing. Between these limits the 
integrand will attain its maximum, say at tf>m ifJ), which isjust 
the maximum of the exponent: 

oi.tf>m) - /3tf>m - /3/VifJ, tf>m) = maximum. (1.4) 

Because N is large the integral will be dominated by the con­
tribution from the immediate neighborhood of this maxi­
mum, so that the free energy F for the system is given by 

/3FifJ)/N=3InA-oi.tf>m)+/3tf>m +/3/vifJ,tf>m)' (1.5) 

One of the surprising results that has emerged from this 
approach is that under constant density conditions, tf>m ifJ) is 
virtually constant over the entire temperature range of sta­
bility for the liquid phase, and can be accurately identified 
merely as the maximum of the packing entropy function U. 3,5 

This means that the liquid, regardless of its temperature, 
samples the dominating population of packings (they are 
amorphous) in the same a priori manner. Consequently there 
is a temperature-independent inherent structure underlying 
the liquid phase which is unveiled by the mapping to <I> mini­
ma. 

Short-range order exhibited by the liquid can be exam­
ined by means of the correlation functions g(2), g.3), ••• , the 
first of which is amenable to experimental measurement in 
real substances.6 The short-range order present in the under-
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lying inherent structure can be revealed by inspecting the 
corresponding set of "quench" correlation functions 
t:), t:), ... . These latter are image-enhanced versions of the 
former, wherein vibrational deformation has been removed 
by the mapping to minima. More precisely, an ensemble of 
system configurations appropriate to some temperature gen­
eratesg(2), g(3), ••• for that temperature; the ensemble of images 
for those configurations after mapping generates t:), t:),··· . 

Numerical studies now exist of g(2) and t:) for several 
different kinds of model liquids, including pure substances 
with different crystal structures,3,7-9 binary mixtures,1O and 
network formers with strongly nonadditive interactions. II In 
all cases thet:)'s are found to be independent of the tempera­
ture of the liquid prior to mapping. This is the short-range­
order manifestation of the virtual temperature independence 
of tPm 1f3) in the stable liquid phase. Temperature variations of 
the unquenched correlation functions g(2), g(3), ••• evidently 
arise only from varying extents of vibrational deformation 
away from the potential minima. 

Another benefit of the mapping and the associated basin 
construction is that the Lindemann melting criterion becomes 
reinterpreted and generalized. 12 In particular it is now possi­
ble to define rms return distances, for particles under the map­
ping, that have precise meaning both for the crystal phase and 
for the liquid phase. The former case leads to the Lindemann 
melting criterion for the crystal, the latter case leads to a new 
freezing criterion for the liquid. 

The hard-sphere model historically has supplied a key 
element in the development ofliquid-state theory. 13-16 Its in­
trinsic importance has been augmented by a variety of pertur­
bation methods for both static 17-19 and kinetic20 properties of 
liquids that utilize the hard-sphere model as an unperturbed 
reference system, and that then treat attractive forces between 
molecules as a weak perturbation. The guiding principle for 
these "van der Waals" theories of real liquids is that the hard 
cores almost exclusively determine the short-range order at a 
given density, and so the attractive longer-ranged forces pri­
marily act to bind the dense liquid at the observed density. 

The potential energy function <PHS for the hard-sphere 
model is either zero or plus infinity, depending on whether or 
not all particle pair distances exceed the collision diameter a. 
On account of this singular behavior <PHS has no discrete set 
of minima, and the mapping in Eq. (1.1) is not defined. There­
fore it might appear superficially that the inherent structure 
approach to liquids has no insights to offer the hard-sphere 
model and its relatives, and vice versa. 

However the two viewpoints can indeed be connected, 
and that is the objective of this paper. The hard-sphere pair 
interaction can be viewed as the limit of a sequence of func­
tions that are smooth and bounded at positive separation. A 
particularly simple realization uses the inverse power func­
tions: 

N 

<PHS (rl· .. rN) = lim L (a/r;jt· (1.6) 
n __ oo i<j= I 

For any finite n, no matter how large, the mapping (1.1) is well 
defined; so too will the functions a,lv, tPmt:), ... then be well 
defined. We will attempt to study the asymptotic behavior of 
the inherent structure theory for inverse power potentials as n 
becomes large. 

The following Sec. II provides some general comments 
about inverse power potentials. Section III examines the 
asymptotic approach to the hard-sphere limit, and identifies 
the nature of the inherent structures that pertain to the hard­
sphere limit. Section IV presents some molecular dynamics 
simulation results for two systems of 256 particles each, one 
with n = 12 and the other with n = 24, to supplement the 
purely analytical considerations. Section V contains some 
closing remarks. 

II. INVERSE-POWER POTENTIALS 

When the potential energy consists entirely of inverse­
power central pair potentials, 

N 

<P(rl···rN) = L (a/rijt· (2.1) 
i<j=i 

then in the large-system limit all excess intensive thermody­
namic properties predicted by the classical partition function 
depend on number density p and inverse temperature /3 only 
through the single dimensionless variable21 

/3 = /3pn/3an. (2.2) 

This simplification actually does not require pairwise inter­
actions, but merely rises from the fact that <P is homogen­
eous. Similarly, the correlation functions will be functions of 
reduced variables: 

tm)(r l ... rn;/3,p) =g-(m)(rl / p I/3, ... , rn/pI/3;y). (2.3) 

The quantities a and!v which appear in the transformed 
partition function (1.2) likewise have simplified forms when 
interaction (2.1) applies. We can take them to be 

oi.tP, p)==01p - nl3a - ntP ), (2.4) 

/3lvlf3, tP,p) yl(p-nI3a -ntP,y)· (2.5) 

As a result of these reductions,p -nl3a - ntPm will be a function 
only ofy. 

The crystal structure of the thermodynamically stable 
solid phase depends on the value ofn. Hoover, Young, and 
Grover22 report that if n > 7 the low temperature crystal is 
face-centered cubic between absolute zero and the melting 
point; if 4<n<7 they find that the stable crystal structure 
continues to be face-centered cubic at very low temperature, 
but undergoes a transition to body-centered cubic before the 
melting point is reached. We have carried out accurate lattice 
sums which show that the zero-temperature lattice energy 
remains minimized by the face-centered cubic structure for all 
n>3. 

Our subsequent considerations will be restricted to n val­
ues sufficiently large so that only the face-centered cubic crys­
tal obtains at any temperature below the melting point. 

For reference purposes, Fig. 1 shows plots of the pair 
potential (a/rt for n = 12,24,48,96, and 192. Approach to 
the hard-sphere form is obvious in this sequence. 

In the following we will suppose for convenience that 

(2.6) 

III. HARD-SPHERE LIMIT 

The right member of the steepest descent Eq. (1.1) is Fj , 

the net force on particlej due to all others: 
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FIG. 1. Plots of inverse-power pair potentials (air)" for selected values of 
exponent n. 

Fj = L Fj ,;' (3.1) 
'Y}) 

Here Fj,; = - F;,j is the force onj due to i. When <I> com­
prises inverse power pair potentials, we have 

Fj,; = (nla)(alr;jt+ IU;j' (3.2) 

where unit vector uij points from i to j: 

U;j = (rj - r;)lr;j' (3.3) 

When n is very large the component forces Fj,; acting on 
particle j will be strongly ordered by magnitude, the largest 
corresponding to the smallest pair distance r;j' the next lar­
gest to the second smallest pair distance, and so on. This 
hierarchical ordering becomes ever more dramatic as n in­
creases toward infinity, the hard-sphere limit. 

The same situation applies to the full set of pair forces 
for the system as a whole. When n is very large, the particle 
pair with the smallest separation experiences a mutual repul­
sion that is orders of magnitude larger than that experienced 
by the pair with the next larger separation. This second pair 
in turn has a mutual force orders of magntiude larger than 
that of the third closest pair, etc. And again the discrepancy 
in magnitudes increases with n. 

This hierarchical structure for large n has very clear 
implications for the steepest-descent mapping. At the begin­
ning of the steepest descent (s ~ 0), the closest particle pair, 
say i j, moves directly and symmetrically apart while over 
the same short time scale all other N - 2 particles are sub­
stantially stationary. During this regime, 

drijlds = (2nla)(alrij)n + \ (3.4) 

so that 

r;j(s) = [2n(n + 2)ans + r7/2(0)] 1I(n+2). (3.5) 

Eventually, at some positive "time" Sl' rij(s) will have 
increased to the point where it is virtually equal to the sepa­
ration of that pair, say kl, which initially had the second 
smallest distance: 

(3.6) 

At this stage the pair repulsions between i j and between kl 
have become comparable. Consequently, further increase ins 
has the two pairs moving apart at the same rate, while the 
remaining N - 4 particles continue to be substantially sta­
tionary. Of course this assumes that i j and kl are totally dis­
tinct, which is certainly to be expected in a system of many 
particles. 

Continuation of this process uncovers a sequence of 
times 

0<SI<S2<S3<'" (3.7) 

at which successively more and more particle pairs join the 
mutual distancing operation as they come into "contact," so 
to speak.. Equation (3.4) describes the way that each such 
independent pair increases its separation with increasing s. 

At some stage in this process it is to be expected that one 
of the separating pairs tu will encounter a nearby particle v, 
i.e., 

(3.8) 

to form a contact-connected triplet. As Fig. 2 shows, subse­
quent motions of tuv dictated by the steepest descent 
Eqs.(1.1) cause the vertex angle at shared particle u to de­
crease until an equilateral triangle is formed, which then 
expands as such. Eventually triplets can grow to quadruplets 
or larger aggregates as more contacts come into play. 

Quite obviously the process being described is entirely 
equivalent (as n-oo) to expansion of identical hard cores 
about every particle, coupled with motions of those particles 
away from one another when the cores come into contact so as 
just to avoid overlap. The contacts serve to partition the N 
particles into connected aggregates. Let b (s) be the monotoni­
cally increasing effective hard core diameter at time s, and 
suppose for the given initial configuration of particles that the 
number of aggregates containing exactly j particles is M j (s), 
where for all s;;;.O: 

FIG. 2. Net forces (proportional to displacement rates) in a contact-con­
nected triplet. Subsequent particle motions cause the vertex angle at u to 
decrease until an equilateral triangle forms. 
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N 

N= Lj~(s). (3.9) 
j=l 

At s = 0, Ml = N and all other Mj = O. 
The process under consideration causes aggregates to 

grow, never to disconnect. Consequently, the mean aggregate 
size (reckoned on a per-particle basis) 

N 

N- 1 LlMj(s)~(s) (3.10) 
j=1 

is nondecreasing, with 

A (0) = 1. (3.11) 

Although A (s) will be piecewise constant for any given initial 
configuration, its average over all initial conditions for a 
fixed system total energy is expected to be strictly monotoni­
cally increasing as a function of s, or of b (s). 

The particle aggregation by contact is a special kind of 
continuum percolation process,23-25 and manifests a critical 
percolation threshold. This threshold is marked by that criti­
cal diameter be at which the mean aggregate size A switches 
over from order unity to order N. When b (s) < be the clusters 
are essentially all small, and their normalized distribution is 
virtually independent of system size. However when be < b (s) 
there will exist a system-spanning cluster that contains a 
non vanishing fraction of all N particles. The critical percola­
tion threshold is that point of the steepest-descent process at 
which global connectivity suddenly appears. 

The existence of the percolation threshold requires that 
attention be given to the order of limits in which exponent n 
and particle number N separately approach infinity. If N 
were to go to infinity first, the growing aggregates at and 
above the percolation threshold may be too large (indeed 
infinite) to respond by translation or rotation to the demands 
of increasing b. That is, some fraction of the particles will no 
longer be able to increase their distance from neighbors any 
further, while at the same time others that are less complete­
ly impacted can continue to do so. 

FIG. 3. Two-dimensional representation of a rattler (denoted by R ) encased 
within a jammed configuration of hard cores. The cores by definition have 
diameter bj • 

To avoid this possible complication, we will suppose that 
for fixed N the exponent n passes first to infinity. Then subse­
quentlywecanaskwhatmaybetheimplicationsalsoofallow­
ing N to become infinite at fixed number density p. With this 
convention on ordering of limits it becomes clear that b can 
increase through be without altering the basic process of un i­
formly expanding hard cores around all particle centers. 

Eventually b reaches a value bj at which the collection of 
particles becomes irremedially jammed. At this stage no local 
motion of the particles exists which would permit further b 
increase without occurrence of core overlap. Obviously, bj 

depends on the initial configuration upon which the steepest­
descent mapping operates. If that initial configuration had the 
N particles in a geometrically good approximation to one of 
the close-packed lattices (fcc, hcp, etc.), then jamming would 
occur when 

pbJ=21/2. (3.12) 

On the other hand, a more disordered initial configuration 
such as might be encountered in the equilibrium liquid phase 
would almost certainly become jammed in a random packing, 
for which it is known26 that 

pbJ~ 1.22. (3.13) 

Jammed packings that are partly crystalline, partly amor­
phous could also occur with pb J lying between values (3.12) 
and (3.13). 

Not every one of the N particles need participate directly 
in the jamming. In principle there can be isolated "rattlers" 
trapped within a cage of particles which are themselves 
jammed, but all of which are further than bj from the particle 
they enclose. Figure 3 provides a two-dimensional illustra­
tion. The concentration of these rattlers is likely to be quite 
small in both two- and three-dimensional cases. As the steep­
est-descent process continues beyond the jamming point, the 
predominating set of jammed particles will remain stationary, 
while the rattlers continue to displace to positions which lo­
cally maximize the minimum distance to their cage particles. 
When this is completed the endpoint of the steepest descent 
has been achieved. 

Now we can let N approach infinity withp held fixed. We 
must then ex!'ect that the dispersion in bj's resulting from 
various initial configurations for a given thermodynamic 
state, will vanish in that limit. In other words almost all steep­
est-descent mappings will jam at a common effective core di­
ameterb *. On account of restriction (2.6) and result (3.13) it is 
guaranteed that 

b*>a. (3.14) 

Remember that a is the physical hard core size generated in 
the potential energy by allowing n to go to infinity; b * is the 
effective hard core size that establishes the jamming point for 
the collection of particles. Inequality (3.14) represents a kind 
of "core inflation." 

We can now ask what these considerations imply for the 
quench pair correlation functiongi)(r). A trivial observation is 
that 

gq2)(r) = 0 (O<r<b *). (3.15) 

More interesting is the behavior at r = b *, where jamming 
causes each particle to touch an average number z of neigh-
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(0) 
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FIG. 4. Transformation (schematic) of the hard-sphere pair-correlation 
function by the steepest-descent mapping. Part (a) shows the conventional 
fluid-phase pair-correlation function; part (b) shows the quench pair-corre­
lation function with Dirac delta-function contributions indicated as vertical 
line segments at appropriate distances. 

bors. Under the assumption that the concentration of rattlers 
is negligible the mechanical condition of jamming in three 
dimensions requires 

z;;;.4. (3.16) 

Since 

i
b '+ E 

lim 4trp • tq21{r)rdr = z, 
e-O b -E 

(3.17) 

it is clear that til must contain a Dirac delta-function contri­
bution centered at b *, specifically, 

(z/411'pb *2)8(r - b *). (3.18) 

For r> b *, til will contain a piecewise-continuous back­
ground part from pairs that had not managed to come into 
contact before jamming occurred. 

It is natural to inquire whether Eq. (3.18) is the only 
delta-function contribution to be expected in til. The con­
clusion is that others must also appear. We expect to find 
distributed throughout even an amorphous random packing 
a nonvanishing concentration of fragments from the regular 
fcc and hcp lattices. This would produce a family of delta 
functions at the appropriate multiples of b * with magnitudes 
that diminish rapidly with increasing distance. The first few 
of these multiples are27 

b *,2 112 b *,(8/3)1/2b *, 31/2b *, (11/3)1/2b *, 2b *. (3.19) 

Whether fragments of other lattices (such as bee) could also 

contribute delta functions is a question we shall leave open for 
the present. 

That lil should be a highly singular function of r should 
come as no surprise, since the hard-sphere interaction itself is 
80 obviously singular. In fact, the conventional pair correla­
tion functiong(21 for hard spheres apparently28 is a nonanaly­
tic function of r for all r> a. 

Several investigations have been published concerning 
the properties of Uammed) random packings of hard 
spheres,29-31 The binning methods that they typically have 
used for the pair correlations are not particularly well suited 
to detect the presence of Dirac delta functions beyond the 
hard core contact distance. Nevertheless, at least some of the 
results contain peaks that occur at some of the positions 
(3.19), and which may indeed indicate the presence of Dirac 
delta function contributions. 

Figure 4 schematically shows how the steepest-descent 
mapping in the hard-sphere limit transforms the pair-corre­
lation function. Part (a) represents the conventional g(21(r), 
presumed to pertain to the fluid phase of the hard-sphere 
model (the transition densities are known to be pa3 = 0.943 
at the fluid's freezing point, pa3 = 1.040 for the crystal's 
melting point.)32 Part (b) represents til(r) that results from 
the n--+ 00 limiting form of the configurational mapping. 

IV. COMPUTER SIMULATIONS 

While the analysis of the preceding section was directed 
at the infinite-n limit, it is also relevant for understanding the 
finite-n regime. Figure 1 provides a bit of guidance about 
how rapidly with n the hard-sphere limit is actually ap­
proached, but it does not really help in predicting the explicit 
n dependence of the pair correlation functions g(21 and til. 
For this latter feature we have turned to molecular dynamics 
computer simulation with frequent mapping to potential 
minima. Specifically, we have examined the cases n = 12 
and 24. 

The molecular dynamics calculations were carried out 
using a standard numerical procedure. 3

,9 Both inverse-pow­
er choices were investigated using N = 256 particles subject 
to periodic boundary conditions. The primitive cell contain­
ing these particles was cubic with side length chosen so that 

pa3 = 0.818 41 (4.1) 

(in fact we selected units for the computations for which 
a = 1). With either n = 12 or 24 the interactions are suffi­
ciently short ranged so that a minimum-image convention 
for pair interactions can be (and was) used. 

The integer 256 is appropriate for formation of the face­
centered cubic crystal, free of defects and aligned with cubic 
box sides, with periodic images exactly in register with the 
particles at the box surfaces. This was the beginning configu­
ration used for the molecular dynamics sequences for both n 
values. 

Figure 5 shows the mean value (<I» of potential energy 
vs temperature for the case n = 12. The points shown corre­
spond to a large collection of separately "equilibrated" states 
generated during a slow warming sequence. The data fall on 
two distinct branches, and indicate an upper bound to the 
true melting temperature at the given density due to the pos-
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FIG. 5. Mean potential energy vs temperature for n = 12. The data shown 
pertain to molecular dynamics simulation for 256 particles at reduced den­
sity 0.818 41. 

sibility of superheating: 

Tm(n = 12)<0.32. (4.2) 

In fact melting should occur33 at reduced temperature 0.22. 
Figure 6 shows the corresponding data, <I> vs tempera­

ture, for the more rigid potential n = 24. No doubt superheat­
ing again occurred, but a first-order melting nevertheless ap-
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FIG. 6. Mean potential energy vs temperature for n = 24, via molecular 
dynamics simulation with 256 particles at reduced density 0.818 41. 

pears. Although no accurate determinations of T m (n = 24) 
have apparently ever been attempted, the trend suggested by 
known cases33 indicates that it should only be about half of 
Tm (n = 12). If indeed this is correct then we have produced 
even greater superheating for this second case, as might have 
been expected for such a steep potential with fixed-density 
conditions. Conclusions reached below are not affected by 
superheating. 

The zero-temperature intercepts in Figs. 5 and 6 are the 
respective lattice sums for the perfect face-centered cubic 
crystals. For points of reference these have the values 

<I>(fcc) = 174.13851 (n = 12), 
(4.3) 

= 19.239 13 (n = 24). 

Of course this quantity converges to zero as n increases to 
infinity since the diameter-a hard spheres so generated would 
be out of contact [the nearest-neighbor separation in the fcc 
lattice is 1.2000 a at density (4.1)]. 

A pair of thermodynamic states in the stable fluid range 
was chosen for detailed study, one each for n = 12 and for 
n = 24. The respective temperatures were 0.3644 (n = 12) 
and 0.3149 (n = 24). Figures 7 and 8 provide the pair-corre­
lation functions g(Z) for each. That the first peak of the 
n = 24 g(2} is substantially higher than that for the n = 12 g(2) 
cannot be explained by the small temperature difference 
alone, but must be the result of shape change in the pair 
potential. 

The g(Z) curves in Figs. 7 and 8 and each represent aver- . 
ages over molecular dynamics runs of 1 if steps of time incre­
ment at = 5 X 10-3 (particles have unit masses). Mapping to 
potential minima was numerically constructed every 200 
time steps, requiring over 50 equally spaced mappings from 

2 

0.5 1.5 2 2.5 3 J .. ) 

ria 

FIG. 7. Pair-correlation function g<2l(r) for the n = 12 system at tempera­
ture 0.3644. The density is 0.818 41. 
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FIG. 8. Pair-correlation function g'21(r) for the n = 24 system at tempera­
ture 0.3149. The density is 0.81841. 

each of the two equilibrated fluid states. The resulting sets of 
<I>-minimum configurations then were used to calculate the 
corresponding til's, shown in Figs. 9 and 10. 

The transformation from g<2),S to til's causes a dramatic 
enhancement of the image of short-range order. Not only is 
the first peak of each g(2) sharpened and heightened, but the 
initially featureless second peak is resolved into a split peak 

6 

5 

4 

2 

FIG. 9. Quench pair-correlation function g'il for the n = 12 system at den­
sity 0.818 41 and prequench temperature 0.3644. 

B 
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2 

o~~~~--~~~~--~~~~--~~~ 
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ria 
FIG. 10. Quench pair-correlation functiong'i l for the n = 24 system at den­
sity 0.818 41 and prequench temperature 0.3149. 

with a weak shoulder on the small-rside. Qualitatively, theg~) 
's in Figs. 9 and 10 resemble not only one another, but they 
also closely resemble til's that have previously been comput­
ed for other model fluids that likewise were known to crystal­
lize in the face-centered cubic lattice.8,34 The most reliable 
indicator of the form of ti) for pure substances is in fact the 
equilibrium crystal structure that forms at the freezing point. 
For cases that form crystals distinct from face-centered cubic 
it has been established that g~) has quite a different appear­
ance.9,34 

But beyond the superficial similarity between Figs. 9 
and 10, careful examination reveals significant quantitative 
differences. Firstly, the value of ti) at its first peak is 6.51 for 
n = 12, but rises to 8.17 for n = 24 (the respective peak posi­
tions are r = 1.167 and 1.165). Obviously this is the trend to 
be expected if, as n-+ + 00, the first peak is to narrow into a 
Dirac delta function an indicated above in Eq. (3.18). Sec­
ondly, the three components into which the mapping has 
resolved the second g(2) peak are considerably more distinc­
tive for n = 24 than for n = 12. It is significant that these 
components occur close to 21/2,31/2, and 2 times the distance 
of the first peak, strongly suggesting that local fragments of 
face-centered cubic lattices exist in these particle packings 
that also would sharpen to Dirac delta functions in the 
n-+ + 00 limit. 

Figures 9 and 10 offer no evidence that the short-range 
order would totally sharpen into that of perfect close-packed 
arrays in the hard-sphere limit. The particle packings ob­
tained from the fluid phase are manifestly amorphous, re­
gardless of the n value. 

Figures 11 and 12 present in graphical form the <I> values 
obtained numerically at the local minima, for each of the two 
cases. Comparison with Eq. (4.3) shows that every one of the 
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FIG. 11. Potential energy values at local minima obtained by quenching the 
n = 12 system from the fluid state at temperature 0.3644. 

mappings identified a local minimum lying above the abso­
lute minimum. Both for n = 12 (Fig. 11) and for n = 24 (Fig. 
12) the majority of the cI> values cluster closely together, 
however the distributions are both skewed to the 10w-cI> side. 
This latter feature had been identified previously as a charac­
teristic of easily crystallizable models,7 as distinct from glass 
formers. 10 The difference in cI> scales for these last two plots 
embody the collapse of all minima to the common value 

40r-~--~---r--,---~--r-~--~---r--, 
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FIG. 12. Potential energy values at local minima obtained by quenching the 
n = 24 system from the fluid state at temperature 0.3149. 
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FIG. 13. Mean number of positive eigenvalues, vs temperature, for the 
n = 12 Hessian matrix. 

cI> = 0 in the hard-sphere limit. 
The Hessian matrix of second cI> derivatives, a 2c1>/ 

aXja axjp, leads to a useful measure of anharmonicity.34 If 
the dynamics confines the system to the immediate neigh­
borhood of a potential energy minimum, then all eigenvalues 
(except for three corresponding to free center-of-mass mo­
tion) will be positive. However, if the dynamics entails large 
excursions from minima, the resulting anharmonicity would 
be expected to produce directions of downward curvature in 
cI>, i.e., some negative eigenvalues. In particular, passage 
across transition state regions would necessarily involve 
downward curvature. 

Figures 13 (for n = 12) and 14 (for n = 24) show the 
mean number of positive eigenvalues for the Hessian matrix 
as a function of temperature. As expected, this is equal to 765 
at low temperature, where the system executes very nearly 
pure harmonic motion about the absolute cI> minimum. But 
as temperature rises, a substantial proportion of the eigen­
values both for n = 12 and n = 24 tend to become negative, 
even before melting occurs. Furthermore, melting produces 
a discontinuous drop in the mean number of positive eigen­
values, indicating clearly that the fluid-phase portions of the 
cI> hypersurface are more anharmonic than the crystal-phase 
portions. Similar observations apply to a model for the noble 
gases, where both attractive and repulsive forces are present 
in the pair potential.34 

v. DISCUSSION 

The steepest-descent mapping and the particle packings 
it identifies are mathematically precise realizations of Ber­
nal's intuitive ideas about short-range order in liquids. 35,36 As 
pointed out in the Introduction, these ideas have now been 
embedded in a statistical mechanical framework that shows 
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FIG. 14. Mean number of positive eigenvalues, vs temperature, for the 
n = 24 Hessian matrix. 

their relevance to the canonical partition function and to the 
free energy. These connections emphasize the need to under­
stand better the nature of particle packings. 

To the extent that hard-sphere models will continue to 
provide a useful way to conceptualize condensed phases, it 
will be useful to investigate the nature of their amorphous 
packings. The approach followed in this paper indicates that 
computer construction of hard -sphere packings should prob­
ably not be carried out in the conventional manner in which 
particles are sequentially added on to a growing but otherwise 
immutable cluster. 30,37-40 Instead, it would be more relevant 
to start with an appropriate random distribution of points, 
continuously expand exclusion spheres about each, and move 
them apart as the steepest-descent procedure suggests, until 
finally jamming occurs.41 This avoids the problems of anisot­
ropy that inevitably plague the conventional packing con­
struction approaches, and for the first time permits study of 
the interesting phenomenon of the rare rattlers. Furthermore, 
the exclusion-sphere expansion approach is easily adaptable 
to mixtures of spheres with different sizes (and even nonaddi­
tive radii), as well as to nonspherical shapes. 

One of the more exciting developments in condensed 
matter chemical physics has been the identification of metas­
table binary alloys that exhibit icosahedral orientational or-

der, but no translational order.42 This creates a challenge to 
produce packings of two (or more) types of spheres which 
would have similar properties, We suspect it would be fruitful 
to adapt the exclusion-sphere expansion method to try to cre­
ate such packings, in the hope that success would afford in­
sight into the properties of real materials showing icosahedral 
order. 
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