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Molecular-dynamics computer simulations have been carried out to study the liquid and amor-
phous solid states for a system comprising 120 Ni and 30 P atoms. This study utilized additive cen-
tral pair potentials to model the interactions. Emphasis has been placed on the geometry of the re-
sulting potential-energy hypersurface for the system as a whole to explain temperature dependence
of short-range order, and to characterize bistable degrees of freedom that dominate low-temperature
properties in this, and other, amorphous solids. A small collection of transition states and associat-
ed reaction coordinates for such degrees of freedom has been numerically constructed. The corre-
sponding atomic motions tend to be localized mainly on a small subset of the atoms, but are diverse
insofar as which chemical species are involved, in barrier height and asymmetry, and in the non-
linearity of the collective reaction coordinate.

I. INTRODUCTION

Both technological needs' and basic scientific curiosi-
ty underlie the present intense study of amorphous ma-
terials. While theory has been able to supply a few key in-
sights into atomic level mechanisms for the rich set of
phenomena observed experimentally, many unanswered
questions remain. The present work provides a conceptu-
al framework that seems capable of answering many of
those questions. Specific computations devoted to the
amorphous nickel-phosphorous alloy system are reported
below to illustrate our general method.

This paper represents an extension of an earlier report
also devoted to the Ni-P system. As noted in that prede-
cessor, our initial estimate of the atomic pair interactions
was somewhat deficient, and an improved version was
proposed. The present study utilizes that improved set of
interactions, the details of which are contained in Sec. II.

The novel features of this and recent related work
on the classical many-body problem stem from careful ex-
amination of the differential geometry of the potential en-

ergy hypersurface. In particular this concerns the local
minima, their distribution by depth, and the nature of the
saddle-point regions separating neighboring pairs of mini-
ma. The topography of this hypersurface in the multidi-
mensional configuration space for a many-body system
obviously controls the dynamical trajectories available to
that system. Those trajectories in turn determine kinetic
properties as well as equilibrium structure.

Section II briefly outlines our Ni-P model and how it
has been investigated at the near-eutectic composition of
80 at. % Ni+ 20 at. % P by means of molecular dynam-
ics simulation. During the course of many of our molecu-
lar dynamics runs we have implemented a mapping of in-
stantaneous system configurations onto nearby potential-
energy minima (without however disturbing the conserva-
tive dynamics). This mapping is generated by a mass-
weighted steepest descent on the potential-energy hyper-

surface, and creates a running record of the stable atomic
packings (potential minima) within whose ambits the
dynamics carries the system as time proceeds.

Section III presents some results concerning short-range
order in the Ni-P alloy. In particular we have evaluated
the three independent pair-correlation functions gN;N;,
gN p, and gpp under conditions of thermal equilibrium,
but over a wide temperature range. In line with conven-
tional expectations, temperature increase causes the degree
of short-range order revealed by these functions to de-
crease substantially. The sets of system configurations
contributing to the above pair-correlation functions also
have been mapped onto potential-energy minima, and the
results utilized to compute sets of "quenched pair-
correlation functions" gNN & gNp &, and gpp ~. Not only
does this mapping produce substantial "image enhance-
ment" of the short-range order, but it also demonstrates
(under fixed density conditions) that this enhanced short-
range order is independent of starting temperature (if it is
above the glass transition), and thus it is an inherent
structural attribute of the liquid phase. This latter prop-
erty seems to have applicability that extends well beyond
the Ni-P alloy system, and certainly encompasses mon-
atomic model substances which easily crystallize. '

Section IV examines the statistical topography of the
potential hypersurface for the Ni-P alloy by means of two
further numerical probes. The first concerns mean atom
return distances under operation of the mapping to mini-
ma. The second involves the distribution of eigenvalues
for the Hessian matrix of second derivatives of the poten-
tial function. Both illustrate the high degree of anhar-
monicity involved in those regions of configuration space
that typically contribute to the solid even below its glass
temperature, and even more so to the liquid phase.

The delicate numerical problems associated with locat-
ing and characterizing transition states (saddle points) re-
ceive attention in Sec. V. Despite difficulties, a group of
such transition states and their associated collective reac-
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tion coordinates have been constructed. These results pro-
vide a very detailed picture of the way that bistable de-
grees of freedom can create "two-level systems" that ap-
parently dominate low-temperature heat capacity, thermal
expansion, and phonon scattering in many low-
temperature amorphous solids. '"*'

The final section (Sec. VI) discusses further possible
areas of application for the multidimensional geometric
approach followed herein.

II. MODEL AND SIMULATION DETAIL

N
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where a(i) =Ni or P indicating the species of atom i It is.
convenient to choose reduced units for @ so that the
metal-metal pair interactions have unit depth at the
minimum and are zero at r= l. The following parameter
choices were found to reproduce adequately the important
features of the amorphous Ni-P alloy in comparison with
experimental x-ray scattering data (a) For all interac-
tions,

p =12, q =0, a =1.652194.

(b) For the metal-metal interaction uN;N;,

A =1.0&8.805977, o,'=1.0 .

(c) For the metal-metalloid interaction uN'p,

2 = 1.5 )& 8.805 977, a =2.49/2. 20= 1.1318.. . .

(2.3)

(2.4)

(2.5)

(d) For the metalloid-metalloid interaction upp,

A =0.5)&8.805977, a=2.49/2. 20=1.1318.. . .

For a wide range of materials such as noble gases, '

alkali metals, "' binary mixtures, and bulk silicon, ' ap-
propriate effective pair interactions have been found to be
well represented by a family of functions of the form

r

A [(ar) P —(ar) «] exp[(ar —a) '], 0 & ar & au(r)= (2.1)0, ar&a

where A, a, I', and a are strictly positive. This functional
form is particularly useful in simulation studies because
its range of interaction is limited, and it is continuous and
all its derivatives exist for positive r In a.ddition the pa-
rameters provide sufficient flexibility so that using only
these pair interactions for pure substance applications ei-
ther the fcc or bcc lattices can have the lowest energy at
zero temperature and pressure.

This potential form was also found5 to represent ade-
quately the metal-metal, metal-metalloid, and metalloid-
metalloid pair interactions in the Ni-P binary alloy sys-
tem. The total potential energy may be written for such a
system as

0'-

P —P I

i

Ni —P l
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I
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FIG. 1. Pair interaction potentials (in units of e, the metal-
metal interaction energy) as a function of the interatomic
separation distance (in units of o, the metal-metal characteristic
separation distance).

ture (fcc) for the pure Ni and also assures that the bond
lengths for the pure Ni and pure P are in the correct
ratio (2.49 A to 2.20 A).

Figure 1 shows a plot of the three pair interaction po-
tentials as a function of separation distance. The relative
depths at the potential minima are 1.0, 1.5, and 0.5 for the
Ni-Ni, Ni-P, and P-P pair interactions respectively, and
agree roughly with the expected relative bond strengths.

The molecular dynamics simulations were carried out
with 150 atoms: 120 Ni atoms and 30 P atoms. This al-
loy mixture is close in composition to the deep eutectic
found at 19.11 at. % P. The stable isotopes Ni and 'P
were used in the simulations, corresponding to reduced
masses 1.0 and 0.5, respectively.

The Newtonian equations of motion

dr;
m; = —V;4, (2.7)t'

where m; is the mass of the ith atom, were solved using a
fifth-order Gear algorithm, '7 and reduced time step
ht =5 X 10 . Classical dynamical trajectories of 10
time steps were generated to determine average thermo-
dynamic properties of the alloy. Temperature changes
were implemented by the usual momentum scaling, fol-
lowed by relaxation runs of 2&&10 steps which were dis-
carded before averages were accumulated.

During the course of generation of a dynamical trajec-
tory, configurations of the 150 atoms were sampled (typi-
cally every 100 time steps) and subjected to a "quenching"
procedure to determine the instantaneously relevant
structurally stable packings (N minima). This quenching
involved a mass-weighted steepest descent that requires
solving

(2.6)
Br;

m = —V.4,
Bs

(2.8)

This choice of parameters yields the correct crystal struc- with the given system configuration serving as initial con-
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ditions. ed' ' . The s —++ oo solutions to Eq. ~ .. ,2.8) were con-
18 ro-structed using a ew oN ton's method. The quench p

cedure does not a ecff t the course of the subsequent
dynamical trajectory generation, bu

' '
p yb t is sim 1 carne ou

'
d dent informative monitoring device.

its with mea-In order to compare the simulation resu ts wi
he simulationsurements it is necessary to redimension t..e

data. The unit of mass is that of the Ni atom:

Ni — Ni

mN; ——1.0284&& 10 g . (2.9)

The unit of length is

g =2.2183 A (2.10)

m at 2.49 A.which places the Ni-Ni pair potential minimum a
The energy scale is

e= 1.8546 kcal/mol

= 1.2879 )& 10 ' erg/atom, (2.11)

=6.2721X 10 (2.12)

Each molecular dynamics run of 10 ste s consequentlyp
spans 5&=3.1361 ps.

III. INHERENT STRUCTURES

h' h causes the melting point of the pure metal mea-w ic eau

f N 1453 C The
d f m simulation at 1.85 reduced uni s o g

the measured melting temperature or i,
ual to 880'C, corresponds toeutectic temperature T,„, equa o

d ed tern erature 1.2358. The simulations were per-
/cm chosen so

ex eriment (we usethat the number density agreed with expe
'

62N nd 31P rather than the naturally occurnng mixtures
is hi her than that nor-of isotopes, so our mass density is ig er

mally found in experiments).
The fundamental unit of time is therefore

(otpi N/6 )
1/2

FIG. 3. Metal-metal pair-correlation fufunctions. The zero of
the high-temperature case has been offset.

units). Each point is an average over a . -p1- s run, and
the points were genera e u

'
t d during both heating and cooling

c cles.
F' 2 h the scatter in the data at lowThe inset in Fig. s ows

~ ~

es which results from the different thermal his-temperatures w ic resu s
All of these low-of the low-temperature samples. A otories o e

t re solids correspond to amorphou p gus ackin s oftempera ure
Ni and P atoms; no crystalline structurer s were ever

Fun amen ad t 1 information about atomic arrangements
»i-P allo resides in the three radia pa'-

correlation functions gN;~;, gN;p, a gpp
tions are defined by requiring that the proba i ity t a

8 will respectively be occupied by species p and ~j2 W

or P) is
Figure 2 s ows a p oh lot of average potential energy per

atom, P, as a function o emf ' f temperature (both in reduced pyp&p„(R i2)d VidV2, (3.1)
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FIG. S. Metalloid-metalloid pair-correlation functions. FIG. 7. Metal-metalloid pair-correlation functions deter-
mined from the quenched configurations. The curves corre-
spond to the same thermodynamic states shown in Fig. 4.

where p& and p„are the number densities. The normaliza-
tion is such that in an infinite system

lim g„„(Ri2)~1 .
R )2~ oc

(3.2)

Figures 3—5 show our results for these three pair-
correlation functions at two temperatures, one near the
eutectic temperature and the other at a much higher tem-

erature. The two reduced temperatures are 1.33 andpera u
0 03.67, and correspond respectively to 968 C and 3151 C.

The results show that raising the temperature decreases
the short-range order, as expected. The curves in Fig.. 5
for gpp are subject to considerable statistical "noise" due
to the small number of P atoms present. Nevertheless, it

is obvious that the pairs of P atoms are relatively uncorre-
lated at both temperatures, in comparison to the other two
types of atom pairs present in the system.

Figures 6—8 show quench pair-correlation functions
g calculated from the same thermodynamic states in-pz, q
volved in Figs. 3—5. These functions were generated by
constructing pair-correlation functions from the quench
configurations that were determined every 0.031361 ps
along the trajectory and then averaging these 101 configu-
rations to produce the curves shown.

It is clear from the figures that the "quench" pair-
correlation functions are substantially independent of the
temperature of the trajectories from which they are calcu-

Ni — Ni

0
0

FIG. 6. Metal-metal pair-correlation functions determined
from the quenched configurations. The curves correspond to
the same thermodynamic states shown in Fig. 3.

0
0

r

FIG. 8. Metalloid-metalloid pair-correlation functions deter-
mined from the quenched configurations. The curves corre-
spond to the same thermodynamic states shown in Fig. 5.
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lated, provided those temperatures are above the eutectic
temperature T,„. Although only two temperature ex-
tremes are shown, this conclusion is based also on a large
number of other quench pair-correlation functions calcu-
lated at intermediate temperatures. Well below T,„ this
temperature independence starts to break down as the sys-
tem becomes locked into atypical regions of phase space.
This becomes particularly noticeable at or below reduced
temperature OA (cf. Fig. 2).

The difference in the quench pair-correlation functions
in Fig. 8 may be ascribed to a sampling problem due to
the relatively small number of P atoms. The running
coordination number of atoms at the first minimum of
gpp &

at r= 1.275 is 6.5 1 for T= 3.67 and 5.5 1 for
T=1.33. Note in Fig. 8 that these two curves are more
nearly identical at larger distances where the number of
contributing P-P pairs increases.

Ni and for the P atoms vary with temperature. Each
point represents an average over 101 distinct quenchings.
These return distances increase rapidly with temperature
up to roughly T,„,but flatten considerably at higher tem-
perature. Although results for the two species are similar
there is a crossover at reduced temperature 0.8, with Ni
tending to move farther at lower temperature, P at higher
temperature.

In contrast to the present case, substances which crys-
tallize exhibit a marked discontinuity in the mean return
distance at the melting point, T . Below T these return
distances are related to the Lindemann melting criterion,
while above T~ they provide a complementary freezing
criterion. ' '

Another illuminating probe of 4 hypersurface
geometry emerges from eigenvalues of the Hessian matrix
K. These are defined by the determinantal equation

IV. HYPERSURFACE GEOMETRY iK —co Ii =0, (4.2)

r

d„= r; —r; q Xp
l

(4.1)

where the summation is only over atoms of type p (Ni or
P), r; is the position of the ith atom of type p, r;~ is its
position at the quench minimum, and Xz is the total
number of atoms of type p.

Figure 9 shows how the mean return distances for the

The geometry of the potential energy hypersurface for
the Ni-P alloy may be examined and characterized by the
mean atomic return distance to the quench minima, and
by the principal curvatures of the hypersurface deduced
from the eigenvalues of the Hessian matrix. The average
mean return distance that an atom traverses in going from
any point on the potential-energy hypersurface to its asso-
ciated stable potential energy local minimum configura-
tion is defined as

where I is the unit matrix. The elements of K are given
by

—i'K; Jr=(m;m;)
Xg~ XJy

(4.3)

where x;~ is the ath component of position vector r; for
atom i. We have carried out the matrix diagonalization at
equal spaced time intervals along dynamical trajectories
generated in the molecular dynamics simulation.

Figure 10 shows how the average number (n~, ) of
positive eigenvalues (co & 0) varies with temperature.
Three eigenvalues are always zero, owing to the free
translational motion of the system as a whole with period-
ic boundary conditions. Therefore in the low-temperature
limit we expect, and indeed find, 447 positive eigenvalues
as the 150-atom system executes harmonic motion near a
single 4 minimum. However, the mean number of posi-
tive eigenvalues displays an immediate decline as tempera-
ture rises. Since co &0 indicates the existence of a direc-
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FKx. 9. Average distance the atoms move to arrive at the
minimum potential energy quench configuration as a function
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atom distances and the triangles are the Ni atom distances.
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FIG. j.0. Average number of positive eigenvalues of the Hes-
sian matrix as a function of temperature in reduced units.
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TABLE I. Table of transition states.

Case

(a)
(b)
(c)
(d)
(e)
(f)

—894.500 13
—897.757 47
—897.040 25
—897.126 13
—898.552 95
—898.009 38

—894.530 46
—897.811 30
—897.764 76
—898.268 79
—898.741 76
—898.047 23

—894.501 28
—897.764 76
—897. 141 57
—898.741 76
—898.553 75
—898.082 05

17.730
3.109
9.839
7.639

17.600
8.535

17.358
29.710
6.733

102.292
43.903
12.316

tion of negative curvature on the 4 hypersurface, these
negative eigenvalues are an indicator of anharmonicity.

When the same matrix diagonalization is carried out
for a single-component system in its crystalline phase, '

the low-temperature behavior contrasts strongly with that
shown in Fig. 10 for the amorphous Ni-P system. Instead
of the immediate decline shown, (n~, ) remains substan-
tially constant and equal to its zero-temperature limit up
to a significant fraction (=0.2 of the melting tempera-
ture); this is to be expected for a system confined to the
deep and isolated region surrounding an absolute
minimum (crystalline packing). However in an amor-
phous solid there always appear to exist a distributed col-
lection of low-barrier "two-level" degrees of freedom
whose anharmonicity can be elicited by minimal thermal
agitation. We suggest therefore that the low-temperature
limiting behavior of (naos) can be a powerful tool in
determining the density and barrier distribution of these
important bistable degrees of freedom.

V. FUNDAMENTAL TRANSITIONS

During the evolution of a dynamical trajectory in phase
space, the system penetrates a sequence of quench regions
surrounding distinct potential minima. These regions are
defined to be the sets of configurations all of which con-
nect to a common interior 4 minimum via the mass-
weighted steepest-descent quench mapping [Eq. (2.8)]. At
low-temperature successive mappings to quench minima
will consistently fall into the same configuration until
eventually the system leaves the region of that one
minimum and passes into the region of another minimum.
At higher temperature mean residence time in any
minimum -region will be shorter. Figure 11 shows the
depths for minima mapped out every 0.031 36 ps for three
different low-temperature dynamical trajectories. The top
panel shows the quench chronology for a trajectory where
eight different minimum energy configurations were
found with a total of twelve transitions between regions.
The characteristic signature of an active bistable ("two-
level" ) system appears in the latter part of this sequence.
It has been proposed that such bilevel oscillators are im-
portant in the low-temperature specific heat, thermal ex-
pansion, and phonon properties of amorphous solids. '

The middle panel shows four different minimum energy
configurations and a total of six transitions. The bottom
panel shows five different minimum energy configura-
tions and a total of four transitions. The arrows indicate
some of the points where we have succeeded in finding the
simple saddle point or "transition state" connecting the
successively visited minimum regions.

—5.965
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++++tt
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FICx. 11. Quench potential energy per atom for three dif-
ferent dynamical trajectories. The trajectory temperatures for
the top, middle, and bottom panels were 0.2113, 0.1545, and
0.1843, respectively. The arrows indicate the points at which
some of the transition states shown in Table I were determined.

The simple saddle points (as well as each minimum) are
extrema of 4 satisfying

%'=(V4) =0.
A simple heuristic procedure' has been constructed using
this basic property to locate the saddle point. First two 4
minimum configurations, A and 8, which are known to
be connected from the dynamical trajectory mappings, are
located. Then 4 is evaluated along a linear path connect-
ing A and 8. Starting at the configuration of maximal N
along this path, the function 4 is minimized so that Eq.
(5.1) is satisfied. The Hessian matrix of second deriva-
tives is then evaluated at the end point of the minimiza-
tion and diagonalized to determine that one and only one
negative eigenvalue exists to verify that indeed a simple
saddle point has been found.

Starting at the simple saddle point, very small displace-
ments (both positive and negative) along the negative-
eigenvalue eigenvector direction are made followed by the
usual mass-weighted steepest descent quenches to deter-
mine directly the two states which this saddle point con-
nects. This acts as a check to ensure that we have in fact
found the transition state connecting starting configura-
tions A and 8.

Six transition states have been quantitatively character-
ized. Table I gives their potential energies as well as those
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FIG. 12. Total potential energy versus distance along the re-
action coordinate, both in reduced units, for transition state (b)
of Table I. The transition state is located at zero. State A is on
the left; state B is on the right.

FIG. 14. Total potential energy versus distance along the re-
action coordinate for transition state (c) of Table I. State B is
on the left; state 3 is on the right.
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(~) (&)~ =r —r —82 1 1

(5.2a)

(5.2b)

where r,' ' and r,' ' are the coordinates of atom i in con-
figurations A and 8, respectively, and s is a vector which
brings the centroids of A and B into coincidence. If ran-
dorn and. nonlocal rearrangements of atoms occurred in
going from state A to state 8 then the displacement pa-
rameters would roughly have a normal (Gaussian) distri-
bution for which one easily calculates

of the flanking pairs of minima. In addition Table I
shows a measure of the degree of rearrangement localiza-
tion of atoms between states A and 8 given by

5
Mp ———, (5.3)

dr~l (R)= I ds
ds (5.4)

where drjlds is defined by Eq. (2.8), the mass-weighted

As can be seen from Table I, the M's are very large by
comparison indicating that only a small number of atoms
out of the entire system tend to move in going from state
A to state B.

Figure 12 shows the total potential energy as a function
of distance along the reaction coordinate path consisting
of forward and reverse steepest-descent paths emanating
«om the transition state labeled (b) in the table, l.e., the
traIlsl'tloIl occlll ring between steps 57(jQ and 5gQQ of the
middle panel of Fig. 1I. The path length from the transi-
tion state is defined as

0.03 0.3
I

0.02
CL'
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0.01

C
E
0
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0. 1

C

U

0.0

—0.01
—0.2 —0. 1 0

linear pat h
0. 1

—0. 1 —0.$ 0.2
linear path

0.4

FIG. 13. Normal distance from the reaction path to the
linear path connecting two states versus linear path length for
transition state B of Table I. The transition-state position is in-
dicated with a triangle. State 2 is on the left; state B is on the
right.

FIG. 15. Normal distance from the reaction path to the
linear path connecting tv' states versus linear path length for
transition state (c) of Table I. State B is on the left; state A is
on the right.
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FIG. 16. Absolute values of eigenvector components for each
atom of the reaction coordinate at transition state (b) of Table I.
The atoms are ordered according to magnitude of the com-
ponent. The P-atom components have been offset.

steepest-descent equations. The nonlinearity of the reac-
tion coordinate is shown in Fig. I3, where the normal dis-
tance from the reaction path to the linear path connecting
the two states is plotted. A triangle indicates the location
of the transition state.

Figure 14 shows the total potential energy versus reac-
tion path length for the transition state labeled (c) in
Table I which occurs between steps 6000 and 6100 of the
middle panel of Fig. 11. Figure 15 vividly portrays the
highly nonlinear nature of the reaction coordinate path
which connects the two potential minima across this tran-
sition state.

An indication of which atom or group of atoms is in-
volved in the motion through the transition state may be
obtained by looking at the components of the eigenvector
of the one negative eigenvalue at the transition state.

FICx. 18. Distance traversed by atoms from the transition
state (b) to minimum state B. Same plotting order as in Fig. 17.

These components have been sorted by magnitude and
atomic type, either Ni and P, and plotted in Fig. 16 for
the transition state labeled (b) in Table I. The plot shows
that for this case most of the motion belongs to a single
Ni, with some modest participation of the surroundings,
reinforcing the conclusions drawn earlier from the M&
parameters in Table L The distance the atoms move from
ihe transition state to states A and 8 are shown in Figs.
17 and 18, respectively. The distances have been plotted
in the same order as were the eigenvector components.
Notice that although atoms with larger eigenvector com-
ponents tend on average to move farther, the distances are
not monotonically decreasing as might be expected if the
transition-state geometry alone strictly governed the
motion between A and B. This is particularly noticeable
for the more distant minimum (Fig. 17).

Figure 19 shows an eigenvector component plot for the
transition state labeled (c) in Table I. This transition state
is the only one of the total of six for which a P atom has a
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FIG. 17. Distance traversed by atoms from the transition
state (b) to minimum state A. Each atomic distance is plotted in
the order of its eigenvector component of Fig. 16.

FICx. 19. Absolute values of eigenvector components for each
atom of the reaction coordinate at transition state (c) of Table I.
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FIG. 20. Distance traversed by atoms from the transition
state (c) to minimum state A. Each atomic distance is plotted in
order of its eigenvector component of Fig. 19.

FIG. 22. Absolute values of eigenvector components for
transition state (a) of Table I.

eb e, =—0.0496 . (5.5)

For transition states labeled (d) and (f) the inner product
of their transition state reaction coordinate eigenvectors is

e&.ef ——0.0129 . (5.6)

These results seem to indicate (at least for the Ni-P
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FIG. 21. Distance traversed by atoms from the transition
state (c) to minimum state B. Same plotting order as Fig. 19.

larger component than all of the Ni atoms. Figures 20
and 21 show the distances the atom must travel from the
transition state to states A and B, respectively. Again the
nonmonotonicity of atomic distances is most evident for
the state farther from the transition state.

Two pairs of successively surmounted transition states
are connected through sharing of the region surrounding a
single @ minimum. %'e can ask whether the successive
transitions are geometrically correlated. For transition
states labeled (b) and (c), we find that the inner product of
their reaction coordinate eigenvectors is

model) that successive transitions are usually localized on
rather distinct subsets of the atoms.

Figures 16 and 19 show cases in which the reaction
coordinate at the transition state clearly singles out a sin-
gle atom to bear most of the motion. However, that is not
always the case. Figure 22 presents another case [transi-
tion state (a) in Table I] for which primary atomic
motions at the transition state appear to be distributed
over a larger group of both Ni and P atoms.

VI. DISCUSSION

The primary objective pursued in this paper is under-
standing the structure and kinetics in the Ni-P alloy sys-
tem from the standpoint of the multidimensional
geometry of the potential-energy hypersurface. In pursu-
ing this objective it has been necessary to map configura-
tions occurring along the dynamical trajectory onto near-
by potential minima by means of a mass-weighted
steepest-descent connection. The novel insights that
emerge from this approach appear to justify the extra
computational effort required.

In particular, the mapping to minima ("quenching") is
a potent device for enhancing the image of short-range or-
der that is present in the pair- (and higher order) distribu-
tion functions. Consistent with earlier findings for a wide
variety of model substances, ' we have found that
under constant density conditions this image enhancement
reveals a common inherent structure that underlies the
stable liquid phase, regardless of temperature. Because of
the conceptual simplicity this observation brings to
liquid-state theory, it is important in future modeling
studies to see how well it applies to other glass-forming
substances, such as BzO3 and Se. Also, effort should be
devoted to devising analytical predictive theory of the in-
herent structures (random packings) themselves, as well as
a theory of the fundamentally anharmonic process that
reconstitutes measurable pair-correlation functions at
various temperatures from the inherent structures.

Perhaps the greatest advantage offered by our multidi-
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mensional geometric approach is its facility for identify-
ing and characterizing the low-barrier bistable degrees of
freedom that dominate properties of many amorphous
materials at low temperature. The transition states and
associated reaction pathways reported in Sec. V show that
the bistable degrees of freedom are localized but coopera-
tive. Furthermore they are diverse in nature, with consid-
erable variation in barrier height, asymmetry, number and

types of atoms involved, and extent of curvature of the re-
action pathway. Attempts to identify bistable degrees of
freedom by separately testing motion of individual
atoms ' will almost certainly produce misleading results.
In our opinion, more simulation of the, type advocated
herein is justified to understand low-temperature amor-
phous substances in greater qualitative and quantitative
detail.
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