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This paper examines the statistical mechanics of collections of two-level systems that experience a 
nonlinear mean-field coupling. The coupling reduces the two-level excitation energy by an 
amount that depends on the number of excitations already present; in other words the energy 
spectrum manifests a cooperative "softening" phenomenon. An exact solution in the infinite 
system limit is presented for key aspects of a specific case, the "logarithmic" model. This model 
exhibits a symmetric infinite heat capacity anomaly with divergence exponent equal to 2/3. 
Furthermore, the divergence evolves from maxima with heights asymptotically proportional to 
N 1/2 as the number N of coupled two-level systems increases to infinity. 

I. INTRODUCTION 

One of the basic objectives of statistical mechanics is to 
show how strong interactions among many degrees of free­
dom produce collective phenomena. The study of phase 
transitions offer the most obvious example, with critical phe­
nomena having supplied a particularly intense and produc­
tive focus for research over the last two decades. 1-3 

This paper explores the properties of a class of statistical 
mechanical models which exhibit phase transitions. In spite 
of the fact that they are conceptually simple, exactly solv­
able, and nontrivial in their properties, they apparently have 
not been examined previously. These models deserve consi­
deration because they can exhibit critical behavior with an 
infinite-heat capacity anomaly. The analysis offered below 
shows that this property arises collectively from a special 
form of "mean-field" coupling between the degrees of free­
dom. That coupling enters in an unconventional nonlinear 
way which qualitatively alters the usual mean-field classical 
critical behavior with a bounded heat capacity.4,5 

Section II defines the new class of models, and displays 
their generic energy spectrum in such a way that the oppor­
tunity for phase transitions becomes obvious. In the interests 
of subsequent explicit calculations, a specific case from this 
general class of models is selected for special scrutiny, called 
below the "logarithmic model." 

In general, both first-order and higher-order phase tran­
sitions can arise. However, Sec. III demonstrates for the spe­
cific case of the logarithmic model how to identify that value 
of a basic coupling constant which ensures that a critical 
point occurs at vanishing external field. 

Section IV derives thermodynamic critical exponents 
for the logarithmic model. As its infinite heat capacity 
anomaly indicates, some of these at first sight appear to dif­
fer from those of conventional mean-field theory. 

Section V examines the way that collective critical be­
havior emerges as the size of the system (i.e., the number of 
degrees of freedom N ) increases to infinity. In particular, the 
analysis shows that the heat capacity (per degree of freedom) 
possesses a maximum which diverges to infinity as N 1/2. 

That characteristic is illustrated by some numerical results 
for fixed small values of N. 

This paper concludes with a discussion in Sec. VI of the 

relationships between the present models and those of the 
Ising type. In particular it is stressed that the peculiar critical 
exponents arise effectively from exchange of variables pres­
ent in the usual mean-field equation of state. 

II. ENERGY SPECTRUM 

The models under consideration comprise N identical 
degrees of freedom, each of which is described by a state 
variable n j' These latter are permitted to adopt only the 
values 0 and 1, corresponding respectively to ground and 
excited states. Units will be chosen so that the excitation 
energy is 1 for anyone of these two-level degrees of freedom 
if it is isolated. 

Precise definition of the models requires that the full set 
of 2N energy levels E (n I ... n N ) be specified. Because the com­
ponent two-level systems are identical, E must have full per­
mutational symmetry under interchange of the n j' We now 
postulate that the energy spectrum has the following generic 
form: 

N 

E(nl· .. nN ) = L n j [tP(M IN) + H]. (2.1) 
j=1 

Here H is an external field acting equally on all two-level 
systems, and 

(2.2) 

gives the total number of excitations present. The function 
tP(x) is required to be analytic on the unit interval O..:;x..:; 1 and 
to satisfy the following conditions on that interval: 

tP(O) = 1, 

tP(x) >0, 

tP'(x) <0. 

(2.3a) 

(2.3b) 

(2.3c) 

Consequently tP is monotonically decreasing. When H;;.O the 
ground state will have all n j = 0, but if 

H < - tP(l), (2.4) 

the ground state will have all n j = 1. 
The function tP mediates interactions between the two­

level systems, and because it does so only through the vari­
able MIN it provides a mean-field coupling that acts uni-
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formly over the entire collection of two-level systems. The 
energy required to increase n 1 from 0 to 1 is 

E(I, n2, n3 ••• ) - E(O, n2, n3".) = ¢J(M IN) + H, (2.5) 

where M refers to the state with n l = 1. In the large system 
limit, this energy difference reduces to that for an isolated 
two-level system subject to the external field, provided n2 , 

n3". all are equal to zero. However, as the fraction of these 
other systems in the upper state increases from zero, ¢J de­
creases and so too will the excitation energy for system 1 
decrease. 

This is the qualitative basis which permits phase transi­
tions in the models under study. Suppose for the moment 
that H = O. Thermal equilibrium at low temperature would 
entail very few n j = 1, and each two-level system would 
thereby experience virtually the full energy gap for excita­
tion. As temperature rises, the fraction of systems in the 
upper state will also rise, and because that causes ¢J and the 
gap to decrease a positive feedback mechanism exists to en­
hance the fraction of excitations even further. If ¢J declines 
sufficiently rapidly with its variable MIN then an avalanche 
of excitations should ensue, in other words a phase transi­
tion. 

The canonical partition function Z (j3, H), {3 = 1/ k B T, 
can be written compactly as a sum over M: 

N 

Z(j3,H) = I [N!/M!(N -M)!] 
M=O 

xexpl-{3M[¢J(MIN)+H]j. (2.6) 

This is the generating function from which eqUilibrium ther­
modynamic properties can be deduced for any system size N. 
In the large system limit (N-oo) Z will be asymptotically 
dominated by terms in the M sum narrowly distributed 
around that valueM *(j3, H) which maximizes the summand. 
On account of the identity of all N two-level systems, this is 
given by N (n), where (n) is the thermal average value of any 
of the n j' It is straightforward to show that 

(n) = 11 + exp[{3d(n)¢J(n»))/d(n) +{3H]j-I. 
(2.7) 

For the purposes of specific detailed illustration below it 
will be useful to examine the following choice for ¢J (the loga­
rithmic model): 

¢J(x) = In(1 + Ax)/Ax. (2.8) 

The coupling constant A is real and positive, and will be set at 
a value derived in Sec. III. The conditions (2.3) and the re­
quirement of analyticity over O..;;;x..;;; 1 are obviously obeyed. 
With use of this logarithmic form for ¢J the partition function 
becomes 

N 

Z(j3,H) = I [N!/M!(N -M)!] 
M=O 

X(1 +AM IN)-PN1Aexp( -{3MH), (2.9) 

while the implicit equation (2.7) for (n) reduces to 

(n) = 11 +exp[{3I(1 +..1. (n»)+{3H]j-I. (2.10) 

This last expression makes it clear how A controls the extent 
to which the ambient mean excitation field reduces the ener­
gy gap for excitation. 

III. CRITICAL COUPLING CONSTANT 

The next objective is identification of a value for the 
coupling constant A such that when H = 0 the logarithmic 
model (in the N-oo limit) manifests a second-order phase 
transition. This critical coupling constant Ac marks the 
boundary at H = 0 between those small A 's for which the 
behavior is characteristic of nearly independent degrees of 
freedom with no phase transition, and those large A 's which 
induce first-order phase change with a jump discontinuity in 
(n) vsp. 

With vanishing external field, Eq. (2.10) which deter­
mines (n) may be written 

(n) = 1(..1. (n),{3), 

where 

l(x,{3) = 11 + exp[{3 1(1 + x)] J -I. 

(3.1) 

(3.2) 

That two coupling regimes are possible is illustrated by Fig. 
1, where for {3 = 6 and two distinctly different A choices, 
both members of Eq. (3.1) are plotted as a function of (n). 
Weak coupling (A = 5 in Fig. 1) involves only a single inter­
section between the I curve and the 45° straight line, and 
this applies at all temperatures. Strong coupling (A = 20 in 
Fig. 1) can yield three intersections over some nonvanishing 
{3 range, the relevant one of which (giving the absolute sum­
mand maximum in Z) switches its identity at the transition 
temperature. 

The desired critical point corresponds to confluence of 
the three intersections. When this occurs the I curve is tan­
gent to the 45° line at the intersection, and has a point of 
inflection there as well. The simultaneous values (n) c' Pc, 
and Ac which locate the critical point therefore must be de­
termined from the conditions 

I(Ac(n)c,{3c) = (n)c' 

[alia (n) k(n)"pc = 1, 

[a 2 I la (n)2]Ac(n)~c = O. 

<n> 

FIG. I. Plots of both members of Eq. (3.1) for f3 = 6. 

(3.3) 

(3.4) 

(3.5) 
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FIG. 2. Plots of both members ofEq. (3.11 for ;' .. /3c ' 

By invoking form (3.2) for f, and then using Eq. (3.3) to 
simplify results, Eqs. (3.4) and (3.5), respectively, can be put 
into the following forms: 

Pc 1 
(1 +Ac(n)c)2 = (n)c(l- (n)c)' (3.6) 

2(nUl - (nU' 
(3.7) 

These lead in turn to the relation 

Pc 2 
l+Ac(n)c 1-2(n)c' 

(3.8) 

which then permits Eq. (3.3) to be recast as a transcendental 
equation in (n)c alone: 

(n)c = {I + exp[2/(l - 2(n)c)] j-l. (3.9) 

The last equation (3.9) possesses only a single real solu­
tion in the physically relevant interval [0, 1]. Numerical 
analysis yields the result 

(n)c = 0.083221 72020. (3.10) 

Using this value, Eq. (3.7) leads to Ac: 

Ac = lI(n)c - 2 = 10.01609385. (3.11) 

Finally, Pc can be evaluated from Eq. (3.8): 

Pc = 4(1 - (n)c)/(l - 2(n)c) = 4.399 357 281. (3.12) 

Figure 2 exhibits plots vs (n) of the two members ofEq. 
(3.1), where A and P have been set equal to their critical 
valuesAc and Pc . The common pointofintersection, tangen­
cy, and inflection has been explicitly indicated. 

VaryingA in the logarithmic model away from the value 
Ac in Eq. (3.11) causes the critical point to drift continuously 
away from H = O. In particular A > Ac moves the critical 
point to H> 0, A <Ac moves it to H < O. 

IV. CRITICAL EXPONENTS 

Now that the critical point for the logarithmic model 
has been located, it is straightforward to extract critical ex­
ponents for singularities in thermodynamic properties. The 
required analysis rests upon behavior of solutions to Eq. 
(2.10) (with A = Ac) in the critical region. 

Set 

F(n),/3,ll) = {I +exp[ P +H]}-l. (4.1) 
1 +Ac(n) 

This function can be developed in a locally convergent multi­
ple Taylor series around the critical point 

F(n),/3,H) 
co 

= i,if...O(11 j1k !)-lp(i,j,k )(bon)i(A.{3 )iHk, 

where 

and 

[ 
'aJ k ] 

Pl ' 'k)- a' a F I,j, -
an1ap JaH k (".)./1 .. 0 

bon = (n) - (n)c' 

A.{3=P- Pc· 

(4.2) 

(4.3) 

(4.4) 

The partial derivatives of low order are easy to calculate 
from Eq. (4.1); some ofthese are 

P(O,O,O) = (n)c> 

P(l,O,O) = I, 

P(O,l,O) = (n)c(n)c - 1)/(1 +Ac(n)c), 

P(O,O,l) = (n)c(n)c - l18c· 

(4.5) 

Precise numerical values for these quantities have been listed 
in Table I, along with those for a few higher-order deriva­
tives. 

Only the leading-order terms from expansion (4.2) are 
required to infer critical exponents. When just those repre­
sented in Table I are retained, the basic relation (2.10) re­
duces to the following: 

0= !P(300)(bon)3 + P(OIO)A.{3 + P(OOl)H 

+ P(llO)bonA.{3 + P(lOl)bonH, (4.6) 

First examine the case whereH = 0, for which this last equa­
tion (4.6) yields 

- P(300)(bon)3 
A.{3 = 6[P(01O) + P(llO)bon] (4.7) 

In view of the fact that bon goes continuously to zero as A.{3 
goes to zero, the leading-order behavior can be obtained by 
neglecting the term with bon in the denominator. Thus, 

bone!. - [6P(01O)/P(300)j1/3(A.{3)1/3, (4.8) 

valid for both signs of A.{3. 
Near to the critical point, still atH = 0, the mean energy 

TABLE I. Values for partial derivatives ofF (Eq. (4.20 at the critical point. 

i, jk 

0,0,0 
1,0,0 
0,1,0 
0,0, I 
2,0,0 
I, 1,0 
1,0, I 
3,0,0 

P(i, j, kl 

0.08322172020 
1.0 

-0.04161086009 
- 0.335652771 3 

0.0 
- 0.227 305 9304 
- 3.667 113 120 

- 85.895 022 27 
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per particle can be written 

() 
In(l +Ae(n)e) !:in 

E IN- +----
Ae 1 +Ae(n)e 

= 0.060 528 342 - 0.077 833 938(~ )1/3. 

(4.9) 

The heat capacity C follows immediately: 

CINkB = -fJ2a(E)IN)/a/3 

= 0.502 141 61661~ 1-2/3 + . . . . (4.10) 

This result demonstrates that the logarithmic model pos­
sesses a symmetrical infinite heat capacity anomaly at its 
critical point, with critical exponent equal to 2/3. 

Next we turn to isothermal field dependence of (n) at 
~ = O. The analog to the previous equation (4.7) is 

H = - P(300)(!:in)3 
6[P(OOl) + P(101)!:in] , 

(4.11) 

and again the !:in term in the denominator can be disregard­
ed. Consequently, 

!:in r;;;;, - [6P(OOI)/P(300)] 113H 1/3 

= - 0.286 214 1914H 1/3, (4.12) 

valid for both signs ofthe external field. To the extent that we 
can follow conventional usage,4,5 this indicates that the criti­
cal isotherm exponent is 3. 

In order to extract the critical behavior of the isothermal 
susceptibility quantity (a (n) I aH)p it suffices to retain just 
the first three terms in the right member ofEq. (4.6). There­
fore, 

!:inr;;;;, - {6[P(01O)~ + P(OOl)H J}1I3, (4.13) 

which upon differentiation leads to 

(anlaH)p r;;;;, - ~P(OOl)[6IP(300)] 113 

X [P(OIO)~ + P(OOl)H] -2/3. (4.14) 

When H = 0 this leads to the expression 

(anlaH)p r;;;;, _ jP(OOI)[6IP (300)P 2(010)] 1131~ 1-2/3 

= 0.383 729 86891~ 1-213, (4.15) 

which reveals that the critical susceptibility exponent is 2/3. 
Finally we turn to consideration of the way by which the 

!:in discontinuity that is present for H < 0 vanishes at the 
critical point. This attribute provides an analog for magneti­
zation or density coexistence-curve shapes familiar in con­
ventional critical phenomena. Similarly we expect to find a 
characteristic "coexistence curve" exponent for the !:in dis­
continuity. 

We must now consider explicitly all five terms in the 
right member ofEq. (4.6), each one of which Table I shows to 
have a negative coefficient. This combination of terms 
amounts to a cubic polynomial in !:in, and the curve in the /3, 
H plane along which the !:in discontinuity exists must be a 
locus along which that polynomial has three distinct real 
roots. Notice that the second and third terms on the right in 
Eq. (4.6) are the only ones linear in the variables which van­
ish at the critical point, the remaining three terms being 
higher order in those variables. Furthermore these linear 

terms do not involve !:in, but only ~ and H. In order for the 
cubic !:in polynomial to have three real roots upon approach 
to the critical point, it is necessary for those linear terms to 
cancel in leading order: 

P(OIO)~ + P(OOl)H = O. (4.16) 

This relation determines the limiting direction of the discon­
tinuity locus in the /3, H plane: 

~r;;;;, - [P(OOl)IP(OIO)]H = - 8.066470402 H. 
(4.17) 

Consequently, ~ can be eliminated from Eq. (4.6) to yield 

iP(300)(!:in)2 + {P(101) - [P(llO)P(OOl)IP(OIO)J}H = 0, 
(4.18) 

which leads to the following result for the simultaneous pairs 
of !:in values at the discontinuity locus: 

!:inr;;;;, ± 0.357 88111571H 11
/
2, (H <0). (4.19) 

Therefore, the "coexistence exponent" is 1/2. 
Accurate numerical studies of the logarithmic model (in 

the infinite-system-size limit) have been carried out in the 
neighborhood of its critical point. These show not only that 
the critical-region limiting laws (4.10), (4.12), (4.15), (4.17), 
and (4.19) are valid, but that they remain reasonable approxi­
mations a nonnegligible distance away from the critical 
point. 

V. FINITE SYSTEM COOPERATIVE BEHAVIOR 

The mathematical singularities in thermodynamic func­
tions that signify phase change refer strictly only to the infi­
nite system limit. Nevertheless, it is illuminating to observe 
how these singularities develop as the number of degrees of 
freedom N grows to infinity. We now study specifically the 
growth with N of the infinite heat capacity singularity, Eq. 
(4.10), for the logarithmic model. 

An expression for finite-N heat capacity emerges from 
double/3 differentiation of the logarithm of Z in Eq. (2.6). It 

5 H=O 
N = 256 

4 

O~---

I I 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

1/{3 

FIG. 3. Heat capacity per degree of freedom for the logarithmic model 
when H = 0, N = 256. 
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TABLE II. Heat capacity maxima for the logarithmic model at H = 0, with 
several system sizes. 

N p(max) C(max)/NkB 

2° 10.02 0.4392 
2' 7.243 0.4964 
22 5.728 0.6012 
2' 4.956 0.7824 
2" 4.6053 1.0746 
25 4.4649 1.5184 
26 4.4155 2.1679 
27 4.4006 3.1001 
28 4.3973 4.4265 

has the usual fluctuation form 

CI/3,H)/NkB = N/J2{ ([(M IN)[t,6(M IN) + H] P) 

- «(M IN)[t,6(M IN) + H ])2}, (5.1) 

where as before the angular brackets denote a canonical 
average: 

N 

(B) =Z-I L B(M)[N!/M!(N -M)!] 
M=O 

xexpl-/:1M[t,6(MIN)+H]j. (5.2) 

Since only the single summation index M is involved it is 
relatively easy to subject Eq. (5.1) to direct numerical evalua­
tion for modest values of N. 

Figure 3 shows a plot of C INk B for the logarithmic 
model at H = 0, and N = 256. A distinct but finite peak ap­
pears, centered close to the critical temperature for the infi­
nite system. Similar calculations have been carried out for 
other smaller values of N, showing lower and broader peaks. 
Table II provides peak heights and positions for system sizes 
ranging over several powers of 2. 

When/:1 andH are such that the system is off the coexis­
tence locus, fluctuations in M about the mean (M )==(n)N 
are normal, i.e., Gaussian with width proportional asymp­
totically to N 1/2. On the coexistence locus but away from the 
critical point, the M distribution is bimodal with separation 
asymptotically proportional to N. The two portions of the 
bimodal distribution separately are essentially Gaussian 
with normal (N 1/2) widths. 

The "critical point" for large finite N can be viewed as 
the point of confluence of the two Gaussian components of 
the bimodal distribution. Consequently theM distribution at 
the heat capacity maximum should have substantially the 
following non-Gaussian form: 

exp{ -AN [(M IN) - (n)ct}, (5.3) 

where A is a positive constant independent of N. This obser­
vation allows direct deduction of the asymptotic N depen­
dence of the heat capacity maximum. It implies that the fluc­
tuation expression (5.1) reduces at the critical point to 

NJx2expl-ANx4jdX 
-=~ ______ o:.NI/2, (5.4) 

Jexp { -ANx4Jdx 

where some irrelevant positive coefficients have been sup­
pressed. 

The last equation provides the desired growth law. It 
implies that if N were to increase from 2m to 2m + 2 (with m a 
sufficiently large positive integer), the height of the heat ca­
pacity maximum would double. Entries in Table II show 
that this behavior is nearly obeyed even when m is as small as 
4. 

VI. DISCUSSION 

Figure 4 indicates the qualitative shape of the surface 
relating simultaneous values of /:1, H, and (n) at thermal 
equilibrium. It is instructive to compare this surface to one 
appropriate, say, to liquid-vapor transitions in the case of 
fluids, where the three relevant variables are temperature, 
density, and pressure. The ruled surface of coexistence in 
Fig. 4 (the area enclosed by the coexistence curve) is oriented 
in such a way that external field H in the logarithmic model 
plays the role of temperature in the fluid equation of state. 
Furthermore, the inverse temperature variable /:1 in Fig. 4 
plays a role analogous to that of pressure in the equation of 
state context. In view of these features, the surface depicted 
in Fig. 4 resembles nothing more than a rotated version of a 
classical, or van der Waals-like, equation of state. 

Critical singularities and their exponents for classical 
fluids are well known, and are the same as those encountered 
in mean-field models of magnetism and of order-disorder 
phenomena. In particular, the critical-point heat capacity 
remains bounded in these classical or mean-field equations 
of state. That the present logarithmic model displays an infi­
nite heat capacity anomaly (in spite of its mean-field charac­
ter) is not surprising however, because the direction of ap­
proach to the critical point, and consequently the direction 
of the partial derivatives involved in heat capacity, is orthog­
onal to that of the conventional case. The specific divergence 

f3 

H 

<n> 

FIG. 4. Schematic representation of the logarithmic-model surface relating 
simultaneous values of p, H, and (n) at thermal equilibrium. 
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exponent - 2/3, Eq. (4.10), can be seen to be related to the 
fact that the critical isotherm degree in the classical equation 
of state is 3. Similar comments apply to other singularities 
examined in Sec. IV. 

The concept of spatial dimension is irrelevant to the 
class of models introduced in this paper because all two-level 
degrees offreedom are uniformly coupled to one another. A 
nontrivial variant might be considered in which the two­
level degrees offreedom were embedded on a regular lattice 
in D-dimensional Euclidean space, with each two-level sys­
tem interacting only with those No others within some fixed 
finite interaction radius R. The energy levels would have the 
following form: 

E(nl .. ·nN)= fnj[r/J(No-l~n/)+H] (6.1) 
}=I trJ, 

which can be compared to the earlier Eq. (2.1). Here the 
inner sum covers only the interaction zone of neighbors sur­
rounding j. With suitable choice of the coupling function r/J 
we can still expect to have phase transitions, even with a 
critical point at H = O. 

The previous case corresponds to allowing the interac­
tion radius R to become indefinitely large. It seems reasona­
ble to expect as well that the same limit obtains if the embed­
ding space dimension D (and along with it the number of 
neighbors No within a fixed interaction radius) likewise be­
comes indefinitely large. However, when both D and Rare 
small (for example D = 3, and just nearest-neighbor shell 
coupling) then presumably the critical exponents will differ 

from those derived in Sec. IV. It would be interesting to see 
how critical singularities depend separately on D and on R. 

Since the state variables n l have only the two values 0 
and 1, we can write 

r/J(N 0- 1 In/)==Ao + A~In/nm + ... 
/U) 

+ANon/ ... nz , (6.2) 

where the successive sums are symmetric combinations of all 
possible subsets of the neighbors of j. TheA k 's are uniquely 
defined numerical constants that emerge from the require­
ment that Eq. (6.2) be an identity for any combination of 
zeros and ones among the neighbors of j. Upon inserting Eq. 
(6.2) into Eq. (6.1) we see that the Hamiltonian involves one­
body, two-body, ... , (No + I)-body interactions. Conse­
quently, the limits of diverging D or R generate infinitely 
many-body interactions. Yet in spite of this seeming compli­
cation, we have seen that the critical behavior of the limiting 
class of models is indeed quite simple. 
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