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In any fluid or solid condensed phase, instantaneous atomic positions can be resolved into a com-

bination of' inherent packing and of vibrational deformation components. In principle the latter can
be removed by quenching the system by «mass-weighted) steepest descent on the potential-energy hy-

persurface. Inherent structures generated this way for a noble-gas model potential have been

structurally analyzed, starting both from homogeneous liquid and from heterogeneous crystal-plus-

liquid states. Quenched configurations from the homogeneous liquid show that the icosahedral

mode of atom coordination is rare; instead, the more appropriate description of inherent structural
disorder for the model appears to be variation of coordination number from its most probable value

12. In the case of heterogeneous systems, steepest-descent quenching induces a substantial tendency

toward epitaxial crystal grow'th, incorporating point defects and stacking faults. Nevertheless,
mechanically stable packings with side-by-side coexistence of crystalline and amorphous regions still

can arise, with energy suggesting that the bonding between the two types of domains is weak.

I. INTRODUCTION

The distinct condensed phases crystal, liquid, and
amorphous solid differ markedly in appearance and in
measurable properties. Yet for any given substance a
common set of interactions at the atomic or molecular
level underlies all of these phases. This paper has as its
aim the exploration of that underlying unity, using
molecular-dynamics computer simulation to examine
quenches (mechanically stable particle packings} that re-
late respectively to the various condensed phases of a sim-

ple model atomic substance.
Crystalline periodic order permits profound conceptual

insights and simplifications in solid-state theory. By
contrast, noncrystalline liquid and solid phases present
theory with a complicating and bewildering array of
structural and kinetic characteristics. ' Questions contin-
ue to arise about how best to describe and to classify the
nonrepeating arrangements of atoms in these amorphous
states, and how to understand their relation to periodic
crystalline order. ' Our approach has utilized a steepest-
descent construction on the potential-energy hypersurface
that uniquely maps any atomic configuration onto a near-
by potential-energy minimum. ' The resulting particle
packings, prepared from several distinct initial states,
have been geometrica11y analyzed in ways selected to help
clarify some of the above issues.

Let xj,rz, . . . , x~ be atomic positions, and suppose that
4(ri, ri, . . . , rz) represents the potential of interaction.
Starting with any initial (s=O} configuration of atoms,
the coupled steepest descent equations

dr~(s)lds = —Vj@(ri,ri, . . . , r~)

have a solution which convergcs in the s~+ ao limit to
the relevant 4 minimum. All starting configurations
which converge to a specific minimum (atom packing} de-
fine a connected "basin" surrounding that minimum. By
this means, any system configuration can be uniquely

resolved into the relevant packing geometry, plus a "vi-
brational" distortion that has displaced the system from
the basin minimum. This formal separation procedure is
valid regardless of the phase of matter involved or wheth-
er thermal equihbrium obtains.

When N is large the number of distinguishable 4 mini-
ma (those not merely related by permutation of identical
atoms) rises exponentially with N 'The v. ast majority of
these are relatively high in 4 and are structurally amor-
phous. These are the packings typically encountered upon
applying the steepest-descent mapping (1.1) to the liquid6
and to the amorphous-solid states. The most nearly per-
fect crystal supplies the absolute 4 minimum; this and the
slightly higher, slightly-defective-crystal minima compose
the sparse low-potential tail of the full distribution of
minima arrayed by depth. In the event that the initial
configuration came from a state with a crystal-liquid in-
terface, the packing encountered normally would exhibit
side-by-side coexistence of regular crystalline and irregu-
lar amorphous regions. The present study includes each
of these cases.

The specific model examined in this paper describes the
heavier noble gases (Ne, Ar, Kr, Xe) reasonably well. It
assumes that 4 is additively composed of central pair in-
teractions:

4(ri, r2, . . . , rz}= g u(r;1) . (1.2)

In dimensionless units that are natural for the problem in
hand, u has the following form:

A(r ' —r )exp[(r —a) '], 0&r &a
u(r)= 'O0, a&r,

where
A =6.767441448,
a =2.464918 193 .
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This is a somewhat foreshortened version of the reduced
Lennard- Jones (LJ) interaction

and considers a few implications of this study for future
work.

uLi(r)=4(r ' —r ), 0&r, (1.5)

and as a result of the specific values chosen for A and a
the following three attributes are shared both by u and by
ULs:

u(1) =uii(1)=0,
u (2'/') =u„,(2'")= —1,
u'(2'") =u'„(2'")=0 .

(1.6)

The function u is superior to uLi in describing the heavier
noble gases in that it correctly leads to the face-centered-
cubic crystal as its absolute 4 minimum, while uL& leads
to the hexagonal close-packed structure. '

The fact that u vanishes identically beyond distance a
is advantageous for molecular dynamics applications.
Furthermore all derivatives of u are continuous at this
point, which is important in achieving high-accuracy nu-
merical solutions to Newton's equations of motion.

In Sec. II we examine short-range order in a collection
of amorphous packings that were prepared [via Eqs. (1.1))
from the thermodynamically stable liquid in a molecular
dynamics simulation. Primary interest concerns g» '(r),
the pair-correlation function for these packings. This
function is sufficiently structured that it naturally sug-
gests a distance criterion for the purpose of identifying
the "nearest neighbors" of any given particle. As a conse-
quence we have an easily implemented alternative to con-
struction of nearest-neighbor polyhedra surrounding each
atom. " Subsequently particles can be classified according
to the number of nearest neighbors they possess, and we
have calculated concentrations of particles so classified.

Once nearest-neighbor sets have been identified for each
particle, one can ask how those neighbors are arranged
spatially. It has been suggested' ' that a basic structur-
al ingredient in strongly supercooled liquids and amor-
phous solids is icosahedral coordination. Consequently a
geometric test is formulated and applied in Sec. III to
identify those 12-coordinate particles in our amorphous
packings that display icosahedral character.

Particles possessing different numbers of nearest neigh-
bors may be regarded formally as distinct species, and so
the entire system amounts to a multicomponent mixture
of these species. Separate pair-correlation functions can
then be defined to describe the spatial distribution of these
species. For example, g(r

~
11,13) would represent the

pair distribution (suitably normalized) for particles respec-
tively with 11 and with 13 nearest neighbors. Section IV
presents results for these g(r

~ p, v) in our noble-gas-
model amorphous packings.

Section V takes up the issue of spatially inhomogeneous
packings. Specific examples have been formed with 1008
atoms under periodic boundary conditions with amor-
phous portions in contact with the (111)surface of an fcc
crystalline slab. These structures show that periodic order
tends strongly to propagate into the amorphous region
with slow spatial decay.

The final Sec. VI presents some ancillary calculations,

II. AMORPHOUS PACKING
CORRELATION FUNCTION

The model defined by Eqs. (1.2)—(1.4) above exhibits a
perfect fcc crystal at vanishing temperature and pressure'
with reduced density

p= 1.06627,

and reduced bin, ding energy per particle

4/X = —7.162077 .

(2.1)

(2.2)

The melting point temperature T at the "natural" densi-

ty (2.1) has been determined by molecular dynamics simu-
lation to be'6

Tm =2.40 . (2.3)

0
0

FIG. 1. Particle pair-correlation function g~ '(r) for 11 amor-
phous packings prepared by steepest-descent mapping from the
liquid at T=6.20.

For the present study a new series of molecular dynam-
ics calculations with periodic boundary conditions has
been carried out at the same density (2.1). Systems con-
taining either 256 or 1008 particles have been examined.

Using the smaller system size, a well-equilibrated hot
liquid at reduced temperature 6.20 has been prepared.
During the constant-energy time evolution of this liquid, a
set of 11 configurations was selected, separated by equal
reduced time intervals Et=0.012. Self-diffusion is suffi-
ciently rapid at this temperature and density that these 11
configurations can be regarded as substantially indepen-
dent. Each of them in turn served as initial condition for
numerical integration of the steepest-descent equations
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(1.1), resulting in a corresponding set of 11 particle pack-
ings. These packings {for which all forces vanished) were
verified to be valid local minima by diagonalizing the
Hessian matrix for 4 and observing that all but a vanish-

ing triad of its eigenvalues were positive. The potential
energies of all of these packings were distinct, and each
was substantially higher than the absolute minimuin
(4= —1833.492) indicated in Eq. (2.2). The mean depth
of these amorphous packings was found to be

(4) = —1651.142, {2.4)

which is representative of the region of the density max-
imum in the full distribution of minima arrayed by
depth. '

The pair-correlation function gq '(r) has been evaluated
as ail average over the 11 packings. It appears in Fig. l.
Its form is virtuajly identical (within statistical uncertain-
ty) to those previously found for the same model but with
different initial liquid temperatures, ' and this implies
that the common gs '(r) reveals an inherent packing
structure for the liquid phase.

The function shown in Fig. 1 is much more structured
than the conventional pair correlation functions g'z'(r) for
the liquid phase, owing to removal of vibrational defor-
mation by the sto~est-descent mapping (1.1). In particu-
lar, the first peak and subsequent minimum are much
better developed, and this suggests a straightforward and
obvious definition of "nearest neighbors" in terms of the
position of that minimum,

r~ =1.35 . (2.5)

TABLE I. Coordination number distribution for amorphous
packings. Obtained from 11 amorphous packings of 256 parti-
cles at reduced density 1.06627, with periodic boundary condi-
tions. Nearest-neighbor (coordination} number n is defined by
Eq. (2.5}.

9
10
11
12
13
14
15

No. of
cases

3
59

593
1465
607

86
3

Fraction

0.001 065
0.020952
0.210582
0.520241
0.215 554
0.030540
0.001 065

Thus, any and all particles lying closer to a given particle
than r are to be regarded as its nearest neighbors. The
first- and second-neighbor shells in the fcc lattice at this
density occur at distances 1.0987 and 1.5538, respectively,
so the criterion correctly assigns precisely 12 neighbors to
each particle in the crystal.

Table I shows the various fractions of particles in the
11 amorphous packings with different coordination num-
bers. None of the 2816(=11X256)cases showed less than
9 or more than 15 nearest neighbors. %e see that even
after disruption of the fcc structure to form the amor-
phous packings, 12 continues to be the most probable

coordination number. Nevertheless deviations from this
value are frequent.

To put these last results in context, it is worth noting
how the smallest elements of stable packing disorder,
namely point defects, affect particle coordination num-
bers.

A monovacancy can be formed by removing a single
particle from the fcc crystal while leaving the box size un-
changed. The potential energy of the resulting 255 parti-
cle system at its (relaxed) mechanical stability point is

4(monovacancy) = —1819.237 . (2.6)

Distortion around the vacant site is minimal. The 12 par-
ticles that were nearest neighbors of the now-missing par-
ticle only have 11 neighbors, while all other particles con-
tinue to have 12.

The lowest potential energy configuration for an fcc
crystal with an extra particle (i.e., total of 257) exhibits a
"split interstitial, " that is, a pair of particles symmetrical-
ly fianking a nominal crystal lattice site. This split inter-
stitial in the present model is always aligned along one of
the principle cube directions Th. e potential energy of
such a 257-particle packing in the same volume as before
is the following:

4(split interstitial) = —1810.939 . (2.7)

Now one finds that two particles (the split interstitial pair)
have 10 neighbors by the criterion using Eq. (2.5}, none
have 11, six have 13 neighbors, and all the rest remain 12
coordinate.

A large fcc crystal containing several vacancies and
split interstitials that are all well separated from each oth-
er would have occurrences of non-12 coordinations that
are additive over the defects. However, closely clustered
defcLts would violate this additivity, the divacancy pro-
viding a simple illustration. In the interests ultimately of
explaining results in Table I, we mention that a formally
exact procedure exists for classifying any arbitrary pack-
ing as a point-defect-containing crystalline medium.

III. TEST FOR ICOSAHEDRAL COORDINATION

Twelve spherical particles can be symmetrically packed
around a thirteenth in three distinct ways as shown in Fig.
2.' The face-centered cubic (fcc) and the hexagonal
close-packed (hcp) options can be used to build up strain-
free packings of arbitrarily large numbers of particles.
The icosahedral option cannot; outward growth of a cen-
tral icosahedral seed using essentially the same mode of
coordination soon produces geometric frustration and
strain. Nevertheless, it has been proposed that icosahedral
coordination is a basic structural motif in amorphous
states of atomic substances, ' ' and so it is natural to
wonder if the present model conforms to this idea. Con-
sequently we have examined the collection of 11 amor-
phous packings of 256 particles for the presence of intact
icosahedra, an issue that cannot be resolved merely by ex-
armnlng g or gq

Our testing algorithm is based upon the existence of
square faces in the fcc and hcp coordination polyhedra,
while none are present in the icosahedron (see Fig. 2}.
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ICOSAHEDRAL

ht:p

modes violate this criterion.
The 1465 examples of twelvefold coordination listed in

Table I for the amorphous packings were all examined in
turn to see if they satisfied this geometric criterion. In
fact none did. Only one of the 1465 had as few as o'ne
violation, i.e., one of the 66 shell distances in the sensitive
range (3.1); careful examination showed that this one case
could be viewed as a distorted icosahedron. Increasing
numbers of examples from the set of 1465 exhibited in-
creasing numbers of distance violations. Perhaps these
might also be regarded as distorted icosahedra, but it
should be kept in mind that even the perfect fcc and hcp
geometries formally could be viewed as grossly distorted
icosahedra.

The conclusion seems to be that amorphous packings
for the noble-gas model under consideration do not have
icosahedral coordination as an important structural ele-
ment. Icosahedra are infrequent, distorted, and only inad-
vertent inclusions in a random structure that relies more
heavily on the other two types of twelvefold coordination.
Deviations of the coordination number from 12 as in
Table I seem to be a much more important ingredient in
producing amorphous structures for the present model.

FIG. 2.. Symmetrical coordination modes for 12 particles

(shown as vertices) around a thirteenth.

1.20(r &1.55 . (3 1)

Table II shows that the other two twelvefold coordination

TABLE II. Ideal coordination shell distances for each of the
three cases shown in Fig. 2. The coordinate-shell radius is as-
sumed to be 1.0500 for all three cases. Integers in parentheses
give the number of occurrences of each distance.

1.0500 {24)
1.4849 (12)
1.8187 (24)
2.1000 (6)

hcp

1.0500 (24)
1.4849 (12)
1.7146 (3)
1.8187 (18)
2.0106 (6)
2.1000 (3)

Icosahedral

1.1040 (30)
1.7864 (30)
2.1000 (6)

The pair correlation function g» '(r) in Fig. 1 shows that
radial distances to nearest neighbors, while not all identi-
cal, nevertheless are rather narrowly distributed around
the most probable value r=1.05. Focusing attention just
on the qualifying 12-coordinate particles, the set of 66
scalar distances are calculated for all pairs of particles in
each of these coordination spheres. Table II shows the set
of distances to be expected if the radius were exactly 1.05,
and if each of the three coordination geometries were
present in completely undeformed fashion. Square faces
for the fcc and hcp cases contribute distances equal to
1A849 in Table II.

Taking due account of nearest-neighbor bond-length
fluctuations in gq '(r), it seems reasonable to suppose that
an. icosahedral coordination shell will be devoid of pair
distances in the interval

IV. RESOLVED PAIR CORRELATIONS

Further insights into the structure of the amorphous
deposits emerge from resolution of the pair-correlation
function g~ '(r) into separate components g (r

~ p, v)
which refer to the spatial distributions of particles dis-
tinguished by their coordination numbers (p and v). This
kind of analysis has been useful before in studying two-
dimensional many-body systems. " Specifically,

N(N —1)gq (r)= g (Nq(N 5q ))g(r
~ p—v), (4.1)

piv

where N& is the number of particles with p nearest neigh-
bors as defined in the preceding Sec. III, and N is the to-
tal number of particles (256 for the present case):

(4.2)

The angular brackets in Eq. (4.1) denote an average over
the available collection of packings. The idea underlying
Eq. (4.1) is that the different groups of particles with dif-
ferent coordination numbers can be treated as distinct
species mixed together in the system, and that the
g(r

~ p, v) then are simply the pair-correlation functions
for distinct pair types in this mixture. Obviously we have
the symmetry condition

(4.3)

If our earlier conclusion for the noble-gas model is
correct that coordination number deviations from 12 are
the principal type of defect present in the amorphous
packings, then g(r

~
12, 12) should display the most obvi-

ous order of all of the g(r
~ p, v). Furthermore, the

short-range order revealed by g(r
~

12, 12) should closely
resemble that for close-packed crystals.

Using the ll amorphous packings of 256 atoms, we
have evaluated the six independent functions g{r

~
p, ,v)
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0
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FIG. 3. Pair-correlation function in the random packings for
particles both of which have 11 nearest neighbors.

0
0

r
FIG. 5. Pair-correlation function for the random packings

where one particle has 11 nearest neighbors, the other has 13.

for p, and v equal to 11, 12, and 13. As Table I indicates,
too few particles appeared with other coordination num-
bers to permit statistically significant determination of the
other g (r

~
p, ,v). Our results are presented in Figs. 3—8.

Out of the six functions shown, g(r
~

12, 12) does
indeed seem to be indicative of the most regular short-
range order. This conclusion is based on the following ob-
servations.

(1) g (r
~

12, 12) has the highest first-neighbor peak.

(2) Considering peaks beyond that for nearest neigh-
bors, g (r

~
12, 12) has the most prominent (its third peak,

with value exceeding 2).
(3) The first four peaks of g(r

~
12, 12) occur at dis-

tances roughly in the ratios 1, 2', 3', 2 that appear as
successive coordination shell positions in the fcc structure
(and also as some of the hcp successive shells).

In contrast to g(r
~

12,12), the five other functions
shown a11 indicate structural disruption in one way or

8-

CQ

Cg

bD

r
FIG. 4. Pair-correlation function in the random packings

where one particle has 11 nearest neighbors, the other has 12.

0
r

FIG. 6. Pair-correlation function in the random packings for
particles both of which have 12 nearest neighbors.
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neighbors are randomly dispersed throughout the amor-
phous packings. They are sufficiently high in concentra-
tion to be above a critical percolation threshold: Connect-
ed pathways across the system should exist passing from
one twelvefold coordinated particle to one of its neighbors
which is also twelvefold coordinated (on average there are
6.5) to a third twelvefold coordinated particle, etc.
Indeed, the concentration of correctly coordinated parti-
cles constitutes a relevant order parameter, and it would
be interesting eventually to determine how packing ener-
gies and entropies depend on this order parameter.

V. INHOMOGENEOUS PACKINGS

0
0

FIG. 7. Pair-correlation function in the random packings
where one particle has 12 nearest neighbors, the other has 13.

While application of steepest-descent mapping (1.1) to
configurations in the liquid can be used to generate homo-
geneous amorphous packings, a different procedure is re-
quired to produce inhomogeneous packings. These latter,
by definition, display a substantial spatial variation in the
coordination number order parameter, the local concen-
trations of twelvefold coordinated particles. For this pur-
pose a set of 100&-particle calculations was carried out us-

ing the same density (2.1) and periodic boundary condi-
tions as before. Now, however, the system resides in a
rectangular box with dimensions

Lx =7 69096 Ly =7 61208' Lz =16 14766 (5.1)

another. For example, g(r
~

11,13) seems to show the
same features as g(r

~
12, 12) but in a much diminished

way. In the case of g(r
~

12, 13) the "extra" particle
shows up as a small shoulder on the large-r side of the
first peak, and apparently perturbs local order at yet
larger r; this is even more evident for g (r

~
13,13).

The "correctly coordinated" particles with 12 nearest

0
0

FIG. 8. Pair-correlation function in the random packings for
particles both of which have 13 nearest neighbors.

4 = —6449.7456, (5.2)

lies significantly higher than the average we find for fully
amorphous packings of the 1008 particles (4—= —6480).
This indicates that the crystalline-amorphous interface is
energetically unfavorable, and may be evidence that the

The perfect fcc crystal fits into this box without strain,
oriented so that 18 close-packed layers (each containing 56
particles) stack perpendicular to the z axis.

In order to search for inhomogeneous packings, a con-
tiguous subset (slab) of the 18 close-packed layers was
held fixed while the remaining particles were subjected to
high-temperature ( T& 5) molecular dynamics for a period
sufficient to disrupt their periodic order. The resulting
configuration was then used as the starting point for a
steepest-descent mapping Eq. (1.1) that involved moving
all 1008 particles to the relevant 4 minimum. Trials of
this sort were attempted in which 4, 9, and 14 contiguous
planes were held fixed.

In those cases with 9 or 14 of the close-packed (111)
planes initially fixed, and occasionally with 4 planes fixed,
we found that the system recrystallized during the
steepest descent mapping. This is not to say that the per-
fect fcc crystal reappeared, but the crystalline structure
that spontaneously formed contained stacking faults (in
all cases) and point defects (usually). Figure 9 shows a
side view of one of these defective crystals. Evidently ep-
itaxial regrowth has easily overcome the disorder intro-
duced in the relatively narrow space between the initially
constrained layers.

When only four layers are fixed there is a reasonable
chance that an inhomogeneous packing will emerge from
the steepest-descent mapping. Figure 10 shows one of
these, whose potential energy,
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FIG. 9. Defective crystal composed of 1008 particles, with
potential energy 4= —7181.8548. This structure was formed
from an initial state with four contiguous close-packed layers
held fixed, the remainder of the system strongly disordered.

FIG. 10. Inhomogeneous packing of 1008 particles, with po-
tential energy 4= —6449.7456. Four contiguous close-packed
layers near the bottom of the system were initially held fixed
while the remainder of the system was strongly disordered.

bond between the two regions is mechanically weak.
Although it is desirable to check the 1008-particle

packings for stability as before with 256 particles, the
Hessian matrix is too large to diagona1ize conveniently.
Fortunately another option exists. The inhoxnogeneous
packing in Fig. 10 was used as the initial configuration
(with small momenta assigned to particles) for a long,
very-low-temperature molecular dynamics run. During
this run it was observed that all particles stably executed
only small vibrations around their starting points. If the
steepest-descent mapping had falsely converged onto a
saddle point, the molecular dynamics would have revealed
positional instability as the system rolled off that saddle
point toward one of its flanlting minima.

Figure 10 shows that the initiaHy-constrained crystal-
line slab (the four layers in the range —7.5 (z & —4.5}
mduces density stratlflicatlon 111 that port1on of the amor-
phous region nearest its surfaces. Analysis of particle po-
sitions discerns that at least four density maxima (with

respect to direction z) have formed during the steepest
descent, with amplitudes that diminish with distance from
the slab.

Two types of particle sites exist on the exposed (111)
surface of a crystalline slab that could be used for contin-
ued growth of the crystal. Only one of these types would
be used to extend the fcc lattice, while the other leads to
stacking in the hcp mode. The reason for the existence
and stability of inhomogeneous packings is that both
types of sites have simultaneously been used in formation
of the first new layer. This creates gaps which disrupt the
positional order of subsequent layers. A.s these latter set-
tle into place the geometric disorder increases with dis-
tance from the ordered slab substrate.

The site degeneracy on the (111)surface does not exist
for the (100}surface. Consequently we believe that under
our boundary conditions even larger systems would be re-
quired in order to create inhomogeneous packings with an
amorphous position in contact with this crystal surface.
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There would probably be a greater tendency for epitaxial
crystal growth in this latter case, and the crystalline-
amorphous interface would have to be stabihzed by a new
mechanism. It should be mentioned in passing that Abra-
ham, Tsai, and Pound have reported' Monte Carlo con-
struction of a (100)-amorphous interface with truncated
I,ennard-Jones interactions; however, the system size and
boundary conditions were different from those used here,
and mechanically stable structures were not sought in that
study.

The positive constant v will depend on density and the
forin of interaction, but for simple atomic substances it
appears to lie in the range 0.1—0.5. '

Subtle effects on the distribution of potential minima
can occur for relatively small N values, and future investi-
gations would be well advised to take them into account.
The case of N=243 serves to illustrate this point for our
model, Eqs. (1.2)—(1.4). Using the same cubical box size
(I. =6.215 24) as for 256 particles at density (2.1), the ab-
solute 4 minimum is

VI. DISCUSSION 4(243)= —1686.907, (62)

0( N) —N!exp(vN), (6 1)

where the factorial accounts for permutations of particles

The scarcity of icosahedral coordination geometry in
amorphous packings for our model, even as twelvefold
coordination in general is very frequent, constitutes one of
the major conclusions in this study. Although this result
is primarily based on our 256-particle calculations (Sec.
III), we have also found confirmation from a few calcula-
tions with 1008 particles. The larger systems placed into
homogeneous amorphous packings have potential energies
per particle and short-range orders in close agreement
with those found for the smaller systems, and likewise
they show only rare (about 1 in 10 particles) occurrences
of icosahedral coordination.

But while the icosahedral mode of packing may be rare
within the interior of an amorphous deposit, it may be
present in considerably higher concentration near a free
surface of such deposits. The presence of that free surface
would at least partially eliminate the built-in strain that
accompanies the three-dimensional outward propagation
of icosahedral packing. Future studies might profitably
compare the coordination statistics of free surface and of
interior positions of amorphous packings.

We stress that our failure to observe substantial num-
bers of icosahedra is restricted only to the one model in-
teraction given by Eqs. (1.2)—(1A), and should not be tak-
en as evidence against such behavior for significantly dif-
ferent interactions. No doubt there will be choices of
nonadditive interactions and/or of multicomponent sys-
tems that have far stronger tendency to incorporate
icosahedral packing within the interior of their amor-
phous deposits.

It is obvious that changing the number N of particles
strongly infiuences the number of potential-energy mini-
ma (packings) available to the system. In the large-N lim-
it, the constant-density number of minima II(N) is expect-
ed to show the asymptotic form '

corresponding structurally to a compact 13-vacancy in
what is otherwise a defect-free fcc crystal. That is, the
lowest energy is obtained by removing from the perfect
%=256 crystal a particle and its surrounding 12 nearest
neighbors. Higher lying minima for N=243 have also
been investigated, by using the steepest-descent procedure
from a collection of high-temperature fiuid configura-
tions. We have never been able to produce an amorphous
packing of 243 particles by this procedure. Instead the re-
sulting packings always consist of a dispersed arrange-
ment of the 13 vacancies in the fcc lattice.

The reason for this last peculiarity seems clear. The
number of distinct ways that 13 vacancies can be distri-
buted over 256 crystal sites is given by the elementary
combinatoAal expl essloIl

=exp(243v), v=0.20257. . . .256!
(6.3)

The exponential format for writing this number is useful
in light of expression (6.1). Since the resulting v value
falls in the expected range for all distinct packings, it
seems clear that vacancy-containing crystalline packings
in this case are so numerous that their basins exhaust vir-
tually the entire configuration space. Nothing is left for
amorphous packings.

Unfortunately it is not yet entirely clear what combina-
tions of box sizes and of particle numbers N will produce
this situation. However when it does exist it is likely to
influence the rate of crystal nucleation from the melt.
The system is always close to some (defective) crystalline
structure, needing only to travel downward within a basin
to achieve such a packing, and does not need to "undo" an
everywhere amorphous arrangement of particles. It is
possible that this phenomenon underlies the N-dependent
nucleation rates that have been reported by Honeycutt and
Andersen for molecular dynamics simulations with a
truncated Lennard-Jones pair potential.
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