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Short range order in liquids formally may be viewed as an inherent structure (amorphous 
particle packings) that has been smeared by thermally induced vibrational distortions. In order 
to study these distortions, we have employed molecular-dynamics computer simulation, with 
steepest-descent quenching to potential energy minima, for a model system resembling 
liquefied noble gases. A typical multidimensional path connecting the liquid configuration to 
its quench packing is found to be tortuous and characteristic of substantial anharmonicity. In 
this respect, thermodynamically stable liquids differ qualitatively from crystals and 
low-temperature amorphous solids. On the basis of evidence from quench path geometry, and 
by observing how particle pairs redistribute as a result of the quench, an hierarchical domain 
clustering picture emerges to characterize vibrational anharmonicity in liquids. 

I. INTRODUCTION 

Statistical-mechanical descriptions of the structure and 
dynamics of the thermodynamic phase of a substance usual­
ly involve, as a strategy, the exclusion from further consider­
ation of all but the most important configurations. For ex­
ample, in a crystalline solid at low temperatures, one usually 
selects out of all the configurations which the solid might 
assume only those involving displacements of the zero-tem­
perature crystal which are consistent with the harmonic ap­
proximation to the potential energy. The selection of the 
important configurations in other condensed phases is both 
complicated and special to each phase. In order to unify this 
selection process, a phase-independent and formally exact 
procedure has been devised which separates configurations 
into two contributions. lOne contribution, the "inherent 
structure" of the phase, consists of the mechanically stable 
packings which each correspond to a minimum on the po­
tential energy hypersurface. The remainder amounts to the 
thermal fluctuations about these packings. This separation 
procedure provides a comprehensive conceptual framework 
in which to identify, e.g., the important structural differ­
ences between different phases. 2 

The studies of liquids and solids which have exploited 
this classification procedure have focused on the details of 
the inherent structure of the respective phases. l

--6 In this 
study we instead stress the details of the thermal fluctuations 
in a simple liquid in order to understand more fully the con­
nection between the directly measurable equilibrium proper­
ties and the inherent structure of the liquid. The fluctuations 
in a liquid are not easily described by simple analytic means, 
and so we employ molecular-dynamics computer simula­
tions, which we outline in Sec. II. In Sec. III we examine the 
complicated shape of the multidimensional path which con­
nects a typical configuration of the liquid with a typical con­
figuration contributing to the inherent structure. In Sec. IV 
we expose the structural consequences of the fluctuations 
with a careful comparison of the pair correlation functions 
of, respectively, the eqUilibrium liquid and its underlying 
inherent structure. We complete this study in Sec. V with a 

discussion of these results. We conclude this Introduction 
with a review of the separation procedure. 

The identification of the inherent structure of a phase 
begins with a mapping which connects any configuration 
(r I ... r N ) of the N particles to the stable packing correspond­
ing to a nearby local minimum (rl ... rN) on the potential 
energy hypersurface ~(r I ... r N ). The mapping is constructed 
by solving the steepest descent equations 7 

rj = - Vj~(rl ... rN)' i = l...N. (1) 

This mapping can be used to identify a basin on ~ which 
contains all the configurations lying on some steepest-des­
cent trajectory to the given packing. These basins cover the 
configuration space without gaps or overlap. The number of 
distinct minima on ~, and so also of basins, rises exponen­
tially with N. The contributions to the free energy of the 
packings and of the displacements corresponding to the ba­
sin surrounding each of the minima can be made explicit by 
writing the exact classical canonical partition function QNVT 

as7 

QNVT =A i 3N J d¢q 

X exp{N [ 0'( ¢q) - {3¢q - {3 Iv ( {3,¢q) ] } , 

{3 = lIkp T, AT = ( {3h 2/21Tm) 1/2, 

¢q = $(r1 ... rN )/N. (2) 

The distinct potential energy minima are distributed by 
depth ¢q according to exp[NO'(¢q)]. The basins Ba around 
each of the minima ¢~ contribute to Iv ( {3,¢q) , the vibration­
al free energy per particle, written as 

exp [ - {3N Iv ( {3,¢q) ] 

= (La drl··.drN exp{ - {3 [$(rl· .. rN) - N¢q]} )¢q . 

(3) 

The brackets ( ... ) ",' indicate the arithmetic mean of the inte­
grals evaluated in each of the appropriate basins Ba for the 
given depth ¢q. In the thermodynamic limit (N, V ..... 00, con-

J. Chem. Phys. 85 (10).15 November 1986 0021-9606/86/226027-07$02.10 @ 1986 American Institute of Physics 6027 
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.112.66.66 On: Fri, 21 Mar 2014 02:51:16



6028 R. A. LaViolette and F. H. Stillinger: Inherent structure of simple liquids 

stant N lV), the integrand in Eq. (2) will become sharply 
peaked as only the most typical of the basins contribute sig­
nificantly to QNVT.7 The inherent structure of a phase at a 
specified thermodynamic state thus consists essentially of 
the packings (rj ... rN) which correspond to these typical ba­
sins. The equilibrium state consists of vibrational distortions 
of these packings. 

In the low-temperature crystalline phase, thermal fluc­
tuations are usually so small that the inherent structure 
(which in this case consists only of the zero-temperature 
crystal) together with only small-amplitude harmonic dis­
tortions provide an accurate approximation to the free ener­
gy. The appropriate inherent structure together with only 
harmonic distortions also should be expected to supply an 
accurate estimate of the free energy of, e.g., glasses, gels, and 
strongly associated liquids near their respective triple 
points.8

-
1O However, as we indicate below, the thermal fluc­

tuations in simple unassociated liquids correspond to large 
and anharmonic distortions of the packings for those more 
loosely bound systems; hence the inherent structure together 
with only harmonic distortions provide in this case a poor 
approximation to the short-ranged order and the free ener­
gy. In an earlier study of a simple liquid we identified the 
"single-atom return-distance" distribution as a rough probe 
of the shape of the basin. 2 As the solid melts, this distribution 
undergoes a sudden change in functional form, from that 
characteristic of substantially quadratic basins to one indica­
tive of drastically different shape. In another study of the 
same model substance, we compared the pair correlation 
function of the equilibrium liquid with that of its inherent 
structure. As we indicate in Sec. IV, thermal fluctuations in 
the liquid conceal important qualitative features of the order 
in the inherent structure. This contrasts with reports that a 
similar comparison for a model of liquid water shows no 
such qualitative obliteration of the order. 10,11 In Secs. III and 
IV we reveal in greater detail, respectively, the shape ofba­
sins and the effect of thermal fluctuations on the pair correla­
tion functions. 

II. MOLECULAR DYNAMICS CALCULATIONS 

In this study we restrict our attention to a model for <I> 
appropriate for the heavier rare-gas elements. In our model 
each pair of atoms interacts according to the "vS" potential 

v(r<a) =Aexp[(r-a)-I](r-12-r-5) , 

v(r>a) = 0, 

a = 2.464918 193, A = 6.767 441448. 

This pair potential is a finited-ranged version of the vener­
able Lennard-Jones 12-6 potential. I2 Two advantages ac­
company the vS model in contrast to the Lennard-Jones 
case. First, the global minimum of 

corresponds to a face-centered-cubic crystal, which is also 
the observed structure of the rare-gas solids at zero tempera­
ture and pressure. Second, numerical studies are facilitated 
since the interactions are smoothly truncated at finite dis­
tance a with v (r) infinitely differentiable at all positive r. The 

vS model has been employed and discussed in earlier stud­
ies. 2,6.13 

The liquid states were simulated by solving Newton's 
equations with the Gear-Nordsieck fifth order predictor­
corrector algorithm. 14 The time step was adjusted so that the 
fluctuations and drift of the total energy always remained 
below one part per million. Constant-volume periodic 
boundary conditions were applied in all the calculations. 
The density, N IV = 1.06627, was chosen so that the pres­
sure would be positive at all temperatures. At this density, 
the vS solid melts at reduced temperature T = 2.40. We used 
reduced units throughout these calculations, so that the 
mass and diameter of the vS atom, along with the pair-poten­
tial depth, were each set equal to unity. However, we report 
the length of the dynamical trajectories in units appropriate 
to argon. 

III. BASIN GEOMETRY 

We report in detail one steepest-descent trajectory from 
a liquid configuration to its nearest stable packing in order to 
display the shape of a portion of a typical basin. To produce 
such a display, we first selected a configuration from the end 
of aSps molecular-dynamics trajectory of N = 1008 vS 
atoms interacting in a box of reduced dimension 
7.690 96 X 7.612 08 X 16.147 66. This box accommodates an 
undeformed face-centered-cubic crystal for the N particles 
(for which <I> = - 7219.3749). The temperature of the re­
sulting equilibrated liquid was T = S.3, about twice the 
melting temperature at this density. The potential energy of 
the initial configuration was <I> = 832.907 10. The steepest­
descent trajectory was numerically approximated by Euler's 
algorithm 15 

rj(t+at) =rj(t) -atVj<l>[rl(t) ... rN(t)]. (4) 

Initially, at = 0.001. If the potential energy should ever in­
crease, the configuration at time (t + at) would be rejected, 
at would be diminished, and the algorithm would be reap­
plied until the condition <I>(t + at) <<I>(t) had been satis­
fied. This rejection technique was necessary only at the be­
ginning and at the end of the trajectory. In the latter case, the 
trajectory was terminated when at fell below 10-9

• At this 
point we found the potential energy to have declined to 
<I> = - 6474.943S. The magnitude of the gradient, defined 
by 

I V <I> I = [jtl (Vj<l»2 rz 
fell to I V <I> I = 2X 10-7

• We regard this to be the requisite 
local minimum of <1>. We required 38 100 evaluations each of 
the potential energy and of its gradient during the search for 
this minimum, not including the sections of the trajectory 
which were repeated with smaller initial at to test the repro­
ducibility of the trajectory. Normally, just to locate the po­
tential minimum, we would have employed an algorithm 
which would have required only about 100 evaluations of the 
energy and its gradient combined. 16 However, we chose the 
less efficient Euler algorithm in order to display the basin 
geometry on a refined scale. We also chose a large system in 
order to secure a packing which with high probability would 

J. Chem. Phys., Vol. 85, No.1 0, 15 November 1986  This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.112.66.66 On: Fri, 21 Mar 2014 02:51:16



R. A. LaViolette and F. H. Stillinger: Inherent structure of simple liquids 6029 

!~-------------------------------c 

- ... ~ <:> 
>< <:> 

g ~-------~--------~------~------~ 6-
o 10 20 40 30 

FIG. 1. The path length X as a function of the steepest-descent virtualtime t. 
The sharp bend near t = 25 is a reproducible feature. 

be closely representative of the inherent structure of the liq­
uid. In fact, the potential energy per particle of the specific 
minimum found is in excellent accord with the mean poten­
tial energy of the inherent structure reported for smaller sys­
tems in earlier studies.2 

At each step of the steepest-descent trajectory we re­
corded both the potential energy and the magnitude of its 
gradient. From the latter we produced the length of the path 
from the initial liquid configuration to the packed structure. 
The path length X(t) is defined by 

it [N ]112 
X(t) = dS.L i'; 

o .= 1 

According to the steepest-descent equations, X(t) can be 
written as 

X(t) = f dsl V <I> I . 

We write the total path length as xq = lim X(t). Figure 1 
t~oo 

shows X (t). In order to reveal clearly the anharmonic shape 
of the basin along the steepest-descent path, we compare 
both <I> and I V <I> I to their respective isotropic harmonic os­
cillator (IHO) approximations along the steepest-descent 
path. The steepest-descent equations for an isotropic har­
monic oscillator, 

Uj = - AUi> i = L.N 

(where U j = rj - r1), yield 

IV<I>llHo = A IX - Xql 
and 

(5) 

(6) 

(7) 

We found A = 0.725 ± 0.00 1 from a least-squares fit of the 
first 100 points of the computed I V <I> I as a function of 
xq - X. In each of Figs. 2, 3, and 4we show <1>, <l>IHO' IV<I>I, 

8~----------------------------~ ci 

• 8 .; 

............ 

... _ ................. ----....•.......•.•.................... 

~~~~E=~~ ____ -L ____ ~ 
0.00 0.02 0.04 0.06 0.08 

)(f-X 

0.02 0.04 0.06 0.08 

Xf_X 

FIG. 2. Panel (a) shows the potential energy as a function of the shifted 
path length, where both el>andX - X· have been divided by N = 1008. The 
solid curve is the computed el>1 N, and the dotted curve is el>IHO IN [see Eq. 
(6) J. Panel (b) shows the magnitude of the gradient as a function of the 
shifted path length, where both have been divided by N = 1008. The solid 
curve is the computed I Vel> II N, and the dotted curve is I Vel> I IHO IN [see Eq. 
(7) J. The plots ofel>lN and I Vel> liN each display some algorithm-depen­
dent oscillatory errors in the initial stage of the quench. 

and I V <I> I IHO as a function of the shifted path length X q - X. 
The nonlinearity of the forces is evident for displacements 
along the path as small asX IN = 0.0002. It should be noted 
in passing that even for anisotropic quadratic surfaces, I V <I> I 
would be a monotonic function of path length, in contradic­
tion with results in Figs. 2(b), 3(b), and 4(b). 

We compared the calculated path length to the root­
mean-squared "return distance" 

[
1 N ]112 

8R = -- L (rj -1'1)2 
Nj=1 
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FIG. 3. Expanded view of the neighborhood of the origin for the plots in 
Fig. 2. 

between the initial liquid configuration and the packing. In 
the case of a single isotropic harmonic basin, 

oR = X rHO / p;r exactly. Our calculated X q / p;r is actually 
about 50R. Although X q /.IN would be greater than or equal 
to oR for an anisotropic harmonic basin, we believe that this 
large discrepancy is due mainly to the extreme anharmoni­
city of the basin compelling the steepest-descent path to fol­
Iowa meandering route down to the minimum. 

IV. PAIR CORRELATIONS 

If the thermal fluctuations in a liquid were substantially 
accounted for by merely harmonic distortions of the under­
lying stable packings, we would expect the liquid pair corre-

lation function to follow that of the inherent structure, ex­
cept with shorter and broader peaks, and shallower wells. 
We would then hope that the equilibrium liquid pair correla­
tion function might be constructed from the convolution of 
the inherent-structure pair correlation function with a 
broadening function of the pair distances. Gaussian broad­
ening functions have in fact been employed as filters of low­
temperature fluctuations in experimental studies of the 
structure of crystals and glasses. 17 

On the basis of the presumably typical results discussed 
in the last section, the basin surrounding any of the minima 
contributing to the inherent structure of a simple liquid 
above its melting point is evidently strongly anharmonic 
along nearly all of each of the relevant steepest-descent 
paths. However, for temperatures well below the glass tran­
sition of the supercooled liquid, the correspondingly short· 
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FIG. 4. Further-expanded view of the neighborhood of the origin for the 
plots in Fig. 2. 
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ened return paths and diminished broadening of the pair 
correlation function of the pacldngs might be adequately ap­
proximated by a narrow convolution. To investigate this 
possibility, we supercooled a liquid (with the same density as 
above) of N = 256 v5 atoms interacting in a cubic box of 
length 6.215 2394. The box accommodates an undeformed 
face-centered-cubic crystal. The initial temperature of the 
equilibrated liquid was T = 3.00, about 25% above the melt­
ing temperature at this density, and was cooled in steps until 
the temperature was T = 0.15, less than one-third the glass 
transition temperature at this density. IS Figure 5 shows the 
potential energy of both the thermally fluctuating configura­
tions in the glass and the corresponding stable packings gen­
erated from steepest descent along the 20 ps molecular-dy­
namics trajectory. The inherent structure of this glass is 
probably not representative of that of the equilibrium liquid, 
since only two packings are included. The temperature-inde­
pendent inherent structures observed in earlier studies apply 
strictly only to the equilibrium phases. 

The fact that the trajectory crosses a basin boundary 
after 6.8 ps shows that the configurations sample anhar­
monic regions of the basins even at this low temperature. The 
root-mean-square return distance (62 R ) 112, averaged for the 
portions of the trajectory over each of the two basins encoun­
tered, provides another measure of anharmonicity. For each 
basin, (62R ) 1/2is, respectively, 0.29 ± 0.02 and 0.26 ± 0.01. 
Although these distances are only about half of those of the 
equilibrium liquid, they are half again as great as the maxi­
mum root-mean-squared return distance for fluctuations 
about an undefective crystal near its melting point.2 We re­
gard the~e large excursions from the amorphous packings by 
the atoms in the glassy phase as an indication of the anhar-
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co~------~--------~--------~------~ 
10 10 15 20 

FIG. 5. The potential energy per particle of the instantaneous prequenched 
(upper cluster of points) and quenched (line and crosses) configurations in 
the glass at T = 0.15, as a function oftime in picoseconds. The units of time 
are appropriate for argon. The "inherent structure" of the glass consists in 
this case of only two configurations. The crosses correspond to the 
quenched configuration with a per particle potential energy 
4>/N = - 6.433 27, the line to the quenched configuration with 
4>/N = - 6.436 64. 

I\JV~ 
:::; 11===="==='.1..' ____ --11 ___ ---'-' __ ---.J 

0.0 1.0 ~.() :1.0 

FIG. 6. The pair·correlation function of the glass at T = 0.15 and its inher. 
ent structure. The crosses correspond tog(r), the solid line tog"(r). 

monicity of even those motions remaining at low tempera­
ture in the respective basins. 

In spite of the indications of anharmonicity, a compari­
son of the pair correlation functions of, respectively, the 
glass and its inherent structure (shown in Fig. 6) shows no 
qualitative change in the structure between the two. The na­
ture of the broadening operation which transforms the in­
herent-structure pair correlation function g'l(f'l) into the 
corresponding pair correlation function g (r) of the thermal­
ly fluctuating glass is exposed by the joint distribution 
N(r,f'l) of the pair distances rand f'l. The distribution is 
constructed by scoring the frequency of the pre- and post­
quench pair ( I r i - rj I, I r7 - rJ I ) for all pairs of atoms i and j, 
for each sample. We regard N (r,f'l) as the two-body general­
ization of the single-atom return-distance distribution.2 This 
joint pair distribution was constructed, as were the pair cor­
relation functions, from 100 samples taken from the molecu­
lar dynamics trajectory. Figure 7 shows N(r,f'l) from two 
perspectives, and it is substantially symmetric about the 45° 
line on this scale. 

This picture changes drastically in the case of a thermo­
dynamically stable liquid. In Figs. 8 and 9 we show, respec­
tively, g'l(f'l) and g(r), and N(r,f'l) for the slightly super­
cooled liquid at T = 1.94. The strong, anharmonic thermal 
fluctuations in the liquid remove much of the short-range 
order present in the liquid's inherent structure. The qualita­
tive loss of order can be seen immediately by comparing 
especially the first and second neighbor peaks of, respective­
ly, g'l(f'l) andg(r). The previous 45° symmetry of N(r,f'l) is 
broken, especially for the nearest-neighbor distances. The 
asymmetry now present in N (r,f'l) corresponds to the major­
ity of nearest-neighbor distances in the packings increasing 
upon heating to the liquid. This antisocial tendency is consis­
tent with the well-established dominance of repulsive forces 
between neighbors in "van der Waals" liquids 19 like v5. Note 
however that N(r,f'l) also shows a small proportion of pairs 
initially present between first and second peaks of g'l which 
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FIG. 7. Two views of N(r,r q
) for the glass at T= 0.15. 

have been driven inward to the nearest-neighbor position as 
a result of the heating process. The complex shape of the 
N(r,r'I) surface provides some insight into the failure of ear­
lier attempts to map g'l(r'I) into g(r) by a convolution of 

O~==~~==~ ____ -L ____ ~ ____ ~ __ ~~ __ ~ 
0.0 1.0 2.0 .J.O 

FIG. 8. The pair-correlation function of the liquid at T = 1.94 and its inher­
ent structure. The crosses correspond to g( r), the solid line to g q (r). 

FIG. 9. Two views of N(r,r q
) for the liquid at T = 1.94. The perspectives 

are identical to those in Fig. 7. 

g'l(r'I) with positive real functions. 20 No simple convolution 
of g'l (r'I) could have reproduced this highly asymmetric dis­
tribution of pair distances in the liquid. 

V. DISCUSSION 

The vibrational distortions of the packings which con­
stitute the inherent structure of either a van der Waals liquid 
or its glass are characterized by large, asymmetrically dis­
tributed displacements. The anharmonicity of the basins 
surrounding the corresponding potential energy minima 
stands in contrast to the substantially quadratic shape of the 
basin containing the crystal minimum. Our depiction of the 
topography of the basins agrees with and refines our earlier 
study of the multidimensional geometric aspects of the sol­
id-liquid transition. 2 In both that study and the present one 
we have shown how these topographical differences are con­
nected to the structural differences between the correspond­
ing packings. In this way we lay the ground for a unified 
treatment of crystalline, vitreous, and liquid phases. 

While we recognize the marked quantitative differences 
between g(r) and g'l(r q

), both the liquid and its inherent 
structure possess only short-ranged order. In fact, the inher­
ent structure resembles4 in many respects the random close­
packed structures of hard spheres which Bema121 and others 
employed as models of the short-ranged order in equilibrium 
liquids. This suggests that we have in the inherent structure 
not only a formal correspondence to the liquid, but also an 
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ingredient essential to the structure of the liquid. For the 
liquid, however, the transformation from the inherent struc­
ture to the vibrationally deformed configurations is compli­
cated, as both the typical steepest-descent path and the 
graph of N(r,r') show. 

The geometric complexity of the steepest descent path 
constructed in this study for 1008 particles in three dimen­
sions qualitatively resembles that uncovered earlier (but ex­
amined in much less detail) for a different model with 780 
particles in two dimensions.7 In both cases, the paths in­
volved many seemingly irregular changes in slope before the 
basin bottom was finally encountered. It seems attractive to 
suppose that an hierarchical sequence of collective processes 
occurs in both cases. In a typical liquid-state starting config­
uration, thermal fluctuations will have stirred the particles 
so that many nearest-neighbor pairs are substantially dis­
placed from the pair-potential minimum and hence subject 
to strong pair forces. The earliest stage of the steepest des­
cent would quickly relieve these large and localized pair 
stresses. Subsequently, neighboring pairs would organize to 
the extent possible into larger stress-free groupings. As vir­
tual time for the steepest descent proceeded, the stress-free 
clusters or domains would collectively reorient and often 
merge with neighboring domains. This would eliminate in­
terdomain boundary stresses and result in a larger mean do­
main size. The characteristic feature is that larger and larger 
collective units move coherently as the basin bottom is ap­
proached. Eventually the domains lock into a structure that 
is incapable of further stress relief: the local potential mini­
mum has been achieved. 

For two-dimensional fluids, the domain structure is 
easily revealed using Voronoi polygon analysis. 7 The do­
mains consist of crystallites with local sixfold coordination, 
and these grow in size as thermal fluctuations are removed 
by the steepest descent mapping. In three dimensions the 
possible domain crystallite structures and the type of bound­
ary defects are much more numerous, making interpretation 
of quench paths less straightforward. In any case, typical 
quenches from the liquid state (with hierarchical domain 
coarsening) must be qualitatively different from those that 
start with the crystalline state (with a single macroscopic 
domain during the entire quench). The drastic change in the 

return-distance distribution accompanying melting, report­
ed earlier,2 reflects this distinction. 

It should be possible to invent a numerical measure of 
the liquid-quench hierarchical coarsening. Evidently what is 
required is a function sensitive to the spatial coherence 
length of instantaneous particle motions during the course of 
the steepest descent path. Future quench studies should at­
tempt to incorporate such a running measure of collectivity. 
The results would also be useful in devising mathematical 
models for the basin vibrational free energy Iv defined in 
Eq. (3). 
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