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The general cluster theory of inhomogeneous fluids is applied to the determination of ion and mean 
P?tential distributions in the ~nterfa~ial region between electrolytic solutions and metallic electrodes (spe­
~lfically mercury), as well as m.collo.ldal suspensions. The relevant electrostatic problem involving distinct 
mner and outer Helmholtz reglOns IS solved in closed form. Summation of the linearized cyclic clusters 
approp~ate. to dilute solutions demonstrates for the first time the limitations of local Debye-Hiickel activity 
correctlOns m the method called "local thermodynamic balance." An explicit adsorption isotherm formalism 
results .from proper t.reatment of cluster vertices confined to the inner Helmholtz plane; thir permits proper 
de~uctlOn of the "discreteness-of-charge" effect, as well as nonelectrostatic ion size effects in this plane. 
I~ IS furthermore shown that. accounting for ion size to lowest order in the diffuse layer necessarily contra­
dIctS the local thermodynamIc balance approach. The systematic cluster theory formulation of the colloid 
stability problem also suggests hitherto unused corrections to the relevant double-layer free energies. 

I. INTRODUCTION 

THE primary purpose of this paper is to show how 
the general cluster theory of fluids in external force 

fields may be applied to the molecular formulation of 
the electrical double-layer structure, and colloid sta­
bility problems. On the basis of the best currently 
available physical model, the unaveraged potential 
energy is calculated precisely, and in conjunction with 
the statistical mechanical formalism, it is utilized first 
in description of the outer Helmholtz region under 
dilute concentration conditions, and then to specifica­
tion of the inner layer adsorption isotherm. These 
applications yield corrections to the intuitive classical 
equations, and provide criteria for the breakdown of 
local thermodynamic formulations. 

The working equations derived below specify the 
diffuse charge layer structure at low electrolyte con­
centration, which is the only circumstance under which 
this region contributes substantially to measured differ-

* This paper was presented at the Mechanisms of Electrode 
Reactions symposium during the American Chemical Society 
meeting in Atlantic City, September 1962. 

t Supported by the National Science Foundation; summer 
visitor at the Bell Telephone Laboratories, 1962. 

ential capacitance, or to the relevant free energy of 
uncoagulated hydrophobic colloids. On the other hand, 
the description of the adsorbed layer in the inner 
Helmholtz region extends to high ambient electrolyte 
concentration, due to complete treatment of ion size 
effects, and the resulting adsorption isotherm should 
apply over a wide range of experimental conditions. 

In view of the fact that substrate surfaces are re­
garded as smooth (i.e., no specific adsorption sites), 
and that definite inner and outer regions are distin­
guished, this work applies primarily to the water­
mercury interface. One must of course bear in mind 
that this is experimentally the most intensively inves­
tigated case, but in principle our method can be ex­
tended to include models with specific adsorption sites. 

The first object in the following text (Sec. II) in­
volves examination of the electrostatic problem. We 
reiterate the basic notions of the "inner" and "outer" 
Helmholtz regions at the substrate-aqueous solution 
interface, and exhibit in closed Bessel integral form the 
electrostatic potentials of mean force (in pure solvent) 
induced by ions. We thereby avoid the necessity of 
working with multiple image sums. 

In Sec. III, the two principal results of the inhomoge-
1911 
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neous fluid cluster theory are recalled, which give the 
local singlet densities and osmotic pressure in terms of 
suitably defined generalizations of the Mayer irreducible 
cluster integrals of imperfect gas theory. In view of the 
now well-established fact that only cyclic diagrams 
linearized in the Coulomb interaction contribute to the 
dilute solution (Debye-Huckel) limit of both bulk1 

and interfacia!2 properties, the necessary reductions are 
performed on the singlet density expressions. It is then 
established that in the diffuse outer Helmholtz layer, 
the local Debye-Huckel activity corrections apply in 
this limit (to within negligible screened image potential 
terms) in spite of the fact that they fundamentally in­
volve pair correlations over distances comparable to 
the diffuse layer thickness. 

The phenomenon of inner-layer ion adsorption pro­
vides the subject of analysis in Sec. IV. A theory of 
the adsorption isotherm is developed from the same 
starting point as for the diffuse layer, but the spatial 
separation of inner and outer regions allows statistical 
decoupling of these two regions in all but a very simple 
way. Furthermore, the proximity of adsorbed ions to 
their own images allows once again electrostatic con­
tributions to be treated as small perturbations, although 
the adsorbed assembly might even be near the close­
packed condition. Using these reductions, the adsorp­
tion equations involve only knowledge of the equation 
of state and pair distribution functions for the two­
dimensional system of completely discharged ions. The 
result exhibits the so-called "discreteness-of-charge" 
effect, often attributed ultimately to Frumkin.3-6 

After having postulated in Sec. IV that short-range 
(nonelectrostatic) interactions may reasonably be dis­
regarded between pairs of ions, one each in the inner 
and outer layers, we return in V to an examination of 
the role that these short-range forces have in deter­
mining the structure of the diffuse charge layer. It is 
shown that even in lowest order (beyond the limiting 
Debye-Huckel regime) that ion size destroys the local­
ity property of activity corrections in the Prigogine 
method of local thermodynamic balance.7 The necessary 
revision in this order is obtained explicitly. 

The last section, VI, is devoted to the free-energy 
properties of double layers, which are especially im­
portant in questions of colloidal stability. The develop­
ment hinges on use of the standard dilute solution 
version of the local osmotic pressure series. We re­
establish the Verwey and Overbeek expression.s But 

1 J. E. Mayer, J. Chern. Phys. 18, 1426 (1950). 
2 F. P. Buff and F. H. Stillinger, J. Chern. Phys. 25, 312 (1956). 
3 A. N. Frumkin, Usp. Khim. 4, 938 (1935). 
4 O. A. Esin and B. F. Markov, Acta Physicochim. U.R.S.S. 

10, 353 (1939). 
6 O. A. Esin and V. Shikov, Zh. Fiz. Khim. 17, 236 (1943). 
6 D. C. Grahame, Z. Elektrochem. 62, 264 (1958). 
71. Prigogine, P. Mazur, and R. Defay, J. Chim. Phys. 50, 

146 (1953). 
8 E. J. W. Verwey and J. Th. G. Overbeek, Theory of the Sta­

bility of Lyophobic Colloids (Elsevier Publishing Company, Inc., 
New York, 1948). 

in addition it is demonstrated that local Debye­
Huckel nonideality and screened image corrections may 
rigorously be applied (analogous to the activity and 
image corrections encountered in Sec. III), and the 
contribution of the adsorbed ions are related to the 
corresponding uncharged two-dimensional assembly 
spreading pressure and pair distribution. 

II. ELECTROSTATICS 

In order to explain features of differential capaci­
tance curves for the mercury-aqueous solution inter­
face, it has been suggested9 that a layer of water mole­
cules, with low effective dielectric constant, and a 
thickness comparable to molecular dimensions, is inter­
posed between the surface of the metallic phase, and 
the bulk of the aqueous solution. The possibility that 
the permanent dipole orientation for these interfacial 
molecules may not be free to contribute to the dielectric 
response to an applied field is strongly suggested by 
large measured adsorption heats of water onto mer­
cury.lO Mott, Parsons, and Watts-Tobin9 have pointed 
out that observed insensitivity of differential capaci­
tance (for cathodic polarizations) to the nature of 
cations present may be understood by postulating that 
the solution-side boundary of this region, at which the 
dielectric constant suddenly rises to approximately the 
bulk water value, lies no farther from the mercury than 
the plane of closest approach of unadsorbed (hence 
fully hydrated) ions. 

For the present calculations, we here adopt such a 
model of local dielectric behavior. Figure 1 shows, for 
the planar interface, that we consider there to be two 
planes of discontinuity in dielectric constant. The first, 
from which normal distances to the interface are 
measured, corresponds to the change from infinite di­
electric constant in the mercury phase to a value Ko 
within the inner region (numbered I) of water anoma­
lously oriented next to the mercury. Subsequently, the 
dielectric constant is assumed to rise abruptly at Z=hd 

to a larger value K equal to that appropriate to the 
interior of the solution phase. 

Two other planes are shown in Fig. 1. In cases where 
specific adsorption of some ion (such as iodide) is 
known to occur, it is convenient to suppose that the 
strong bonds, whose existence is thus implied, between 
these ions and the mercury have very definite length, 
and thereby constrain the adsorbed ions to lie essen­
tially with coplanar centers at Za (often called the inner 
Helmholtz plane). Ions which either do not adsorb or 
are not adsorbed, on the other hand, strongly bind at 
least a single shell of water molecules. To retain an 
intact hydration sheath, these latter freely mobile ions 
could not possibly be as close to the mercury as Za, but 

9 N. F. Mott, R. Parsons, and R. J. Watts-Tobin, Phil. Mag. 
7, 483 (1962). 

10 C. Kemball, Proc. Roy. Soc. (London) A190, 117 (1947). 
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the closest available distance ho must amount roughly 
to the sum of the ion radius and water molecule di­
ameter. Thus, the average charge density in the aqueous 
phase (z>O) can be nonvanishing only at Z=Za, and 
for Z greater than ho (the outer Helmholtz plane). 

As drawn in Fig. 1, ho>hd, and hl"2za, though the 
precise relations between these lengths are not subjects 
of investigation in this article. Proper answers to such 
detailed structural questions, as well as possible re­
placement of our dielectric discontinuity model, must 
await development of a reasonably convincing statis­
tical mechanical theory of interfacial dielectric prop­
erties, possibly along the lines introduced by Kirk­
woodY In any event, it is doubtful that even the most 
careful measurements of differential capacitance can 
distinguish any but the grossest of:features of inter­
facial dielectric behavior, and for the present, our 
model should entirely suffice. We might remark here, 
however, that explicit electrostatic potential solutions 
analogous to those given below, can also be found for 
certain other dielectric constant distributions in the 
interfacial region. 

The statistical mechanical theory in the next, and 
following, sections requires the electrostatic interactions 
of ions, regarded as point charges, when they are placed 
at arbitrary available positions: at Za, or z>ho. Kirk­
wood12 recognized long ago that finite ion size gives 
rise to deviations from point-ion interactions, in a 
dielectric medium, but "these deviations are significant 
only for relatively small separations between the ions. 
We simply absorb these contributions in the "short­
range interactions." 

The electrostatic potential 1/;( r) in the aqueous phase, 
for a fixed set of ion positions, arises from three sources. 
The first two are, respectively, the ions on the adsorp­
tion plane Z=Za in Region I of low dielectric con­
stant, and ions in Region II with high dielectric con­
stant. The third is equivalent to specifying the boundary 
condition for the electrostatic problem to be solved, at 
z=o and Z= 00. We suppose that 

1/;(Z=O) =A, (1) 

where A is some constant (whose precise value has no 
bearing on double-layer structure), and that 

(2) 

asymptotically as z~ 00. Here, N is the unit vector in 
the Z direction, and the constant u is equal to the amount 
of charge that would have to be transferred (per unit 
area) between two initially shorted, identical planar 
electrodes, parallel to one another, to set up this second 
boundary condition in the intervening space. 

The linearity of our electrostatic problem implies 

11 J. G. Kirkwood, J. Chern. Phys. 7, 911 (1939). 
12 J. G. Kirkwood, Chern. Revs. 19, 275 (1936). 

that 1/;(r) may be expressed 

Na Nd 

1/;(r) =1/;(e)(r)+ L1/;(a)(r, rj)+ L1/;(cI)(r, rj). (3) 
;-1 j-1 

The first term is just the solution to Laplace's equation 
in Regions I and II, corresponding to the boundary con­
ditions (1) and (2) 

1/;r(8)(r) =A- (47ru/Ko)z (O~Z~hd) 

1/;1l(8)(r) =A-47ru[(hd/Ko) + (z-hd)/K] (z>hd). 

(4) 

(Here, and in the following, the subscripts I and II on 
1/;'s denote functional forms when r is restricted to the 
corresponding regions.) The quantities 1/;(a)(r, rj) and 
1/;(cI) (r, rj) represent the potentials due to ions with 
charges f:j at r;, respectively, on the adsorption plane 
and in the solution (z> ho). 1/;(a) and 1/;(d) are solutions 
to the corresponding Poisson equations subject to 
the boundary conditions (1) and (2), but where 
these latter are modified by setting A =0, u=O. 

First consider a charge adsorbed at Za. We obtain 
1/;(a) by the standard method of Fourier-Bessel inte­
grals.13 Assume, for Regions I and II, the integral 
expansions 

h(a)(r, rj) =Kf:
j l co

{exp( -k I Z-Zj I) 
o 0 .. 

+A(a)(k) exp( -kz)+B(a)(k) exp(kz) } Jo(ksj)dk, 

1/;ll(a)(r, rj)= f:jlcoc(a)(k) exp(-kz) J o (ksi ) dk, (5) 
K 0 

where, of course, Zj=za,~and 

is the length of the projection of r- ri onto the inter­
face. 

The functions A (a), B(a), and C(a) may be evaluated 
as usual by observing the customary electrostatic 
boundary conditions at the planes z=O and Z=hd. One 
finds: 

A(a)(k) = 

exp(zk)- exp(-zk) 
C(a) (k) = (1+0) a a , 

1-0 exp( -2hdk) 
(6) 

where we have set 

0= (K-Ko)/(K+Ko). 

13 W. R. Smythe, Static and Dynamic Electricity (McGraw-Hili 
Book Company, Inc., New York, 1950), p. 182. 
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Substitution of these results back into (5) yields: 

¥tI(a)(r, rj) =~ Jo(ksj) exp( -k I Z-Za I) t.]'" { 
Ko 0 

1-0 exp[ -2(ha-za)kJ 

1-0 exp( -2hak) 

X exp[ - (z+za)kJ 

exp(zak) - exp( -zak) (k )} k 
-0 exp Z d, 

exp(2hak) - 0 

¥tu(a) (r, rj) = [2Ej/ (K + Ko) J 

X]'" Jo(ksj) exp(zak) - exp( -zak) exp( -kz)dk. (7) 
D 1-0 exp( -2hak) 

In the case of an ion in Region II, one assumes the 
potential to have the form: 

¥tll(a)(r, rj) = Ej]'" Jo(ksj) {exp( - I Z-Zj I k) 
K 0 

+A(d)(k) exp( -zk) }dk, 

¥tI(d)(r, rj) =~]'" Jo(ksj ) {B(d)(k) exp(zk) 
Ko 0 

+C(d)(k) exp( -zk) }dk. (8) 

Application of the boundary conditions at z=O and 
Z = hd, as before, leads to 

1- 0 exp(2hak) 
A(d)(k)=- exp(-zok) 

1-0 exp( -2hdk) 3 , 

B(d)(k) = (1-0) exp( -zjk) 
1-0 exp( -2hdk)' 

Our closed solutions therefore constitute a convenient 
way of summing images of all orders. 

In considering ¥ted), an ion far from the interface has 
Zj large, and the only portion of A (d) (k) which can 
contribute significantly to the first of Eqs. (8) is that 
portion near k=O. But in this region (at least through 
linear terms in k), the first of Eqs. (9) may be replaced 
by: 

A(d)(k)'"'"'- exp{-2[zj+(K-Ko)hd/Ko]kj, (11) 

leading to an elementary integral: 

tlm(d) (r, rj) '"'"' (Eil K) 

X{I r-rj 1-1_ I r-rj+2[zj+(K-Ko)hd/KoJN I-I}. 
(12) 

This is precisely the form of the single-image solution 
to a point charge and single dielectric discontinuity 
problem. Thus, to an ion sufficiently far from the 
mercury surface, the variation in dielectric constant 
near the surface has the apparent effect only of shifting 
the metal-water surface from z=O toI5 

Z= - (K-Ko)ha/Ko. 

This type of asymptotic result is not restricted to 
our model, exhibited in Fig. 1, but with an arbitrary 
K (z) which approaches the bulk solution dielectric 
constant K( 00) as Z increases, the apparent position 
of the mercury-water surface to a far removed ion is 
Zo, the unique solution to 

1
Z

0 dz fCO[ 1 1 ] 0= --+ ----- dz 
-co K(z) zo K(z) K( 00) . 

(13) 

C(d)(k) = (0-1) exp( -zjk) 
1-0 exp( -2hdk) 

For dilute electrolytes, most diffuse layer ions will be 
(9) sufficiently far from the interface z=o that the asymp­

totic expressions should apply. 
Substituting into Eqs. (8), one has: 

¥tI(d)(r, r;) =[2Ej/(K+Ko)] 

]
'" exp[k(z-zj)J- exp[ -k(z+zj)J 

X 0 Jo(ksj) 1-0 exp( -2hdk) dk, 

¥tn(d)(r, rj) = ;~'" Jo(ksj) {exp ( -k I Z-Zj I) 

1-8 exp(2hdk) } 
1- 0 exp( -2hdk) exp[ -k(z+zj) J dk. (to) 

Equations (8) and (10) constitute the exact closed 
form solution to the relevant electrostatic problems. 
These inner and outer region potentials have often been 
examined from the point of view of images.5 •14 It is 
interesting to note that these multiple image solutions 
can be recovered from the present results by means of 
expanding the integrand denominators in infinite series. 

14 B. V. Ershler, Zh. Fiz. Khim. 20, 679 (1946). 

III. DILUTE SOLUTIONS 

There are two principal results that may be derived 
in the equilibrium cluster theory of inhomogeneous 
fluids. I6 They are, respectively, series expansions of the 
singlet densities Pa(r) for the various species a=1" '/I 

in the system, and of a local pressure quantity whose 
spatial integral yields the grand partition function. In 
the case of electrolytes, we may adopt an approach 
from general solution theory,17 and by interpreting the 
"interactions" between sets of ions as potentials of 
mean force (at infinite dilution), the local pressure 
becomes a local osmotic pressure II (r). 

In the customary boldface multicomponent cluster 

15 This phenomenon is entirely analogous to that of observing a 
table top through a plate of glass: the illusion is that the table top 
has been shifted upward, but it appears undistorted. 

16 F. H. Stillinger and F. P. Buff, J. Chern. Phys. 37, 1 (1962). 
17 W. G. McMillan and J. E. Mayer, J. Chern. Phys. 13, 276 

(1945); J. G. Kirkwood and F. P. Buff, ibid. 19, 774 (1951). 
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theory notation,18 the general expressions are: 

{ 
W (1)(r1) f 

Pa(r1)=YaexP a
kT 

+~(n!)-l San(I"'n+l) 

IT (r1) 

=kT't{pa(r1)[I- L n) fSan(1 •• ·n+l) 
<>=1 n (n+l n1 

XP8(2) (r2) .. 'P8(n+1) (rn+1)dr2' • • drn+1]}, (15) 

Ya is the absolute activity of !Species a, which is related 
to the chemical potential JLa by 

Ya=h3 exp(JLa/kT)/(27rmakT) 3/2, 

in standard notation. Wa (1)(r1) in Eq. (14) stands for 
the singlet potential of mean force acting on an ion of 
type a, at position r1, in pure solvent, and includes 
both electrostatic and nonelectrostatic contributions. 
San(1·· ·n+l) is the irreducible cluster sum for n+l 
particles at positions r1'" r n+1, which are species 
a, 8(2), 8(3), "', 8(n+l), respectively. If the poten­
tials of mean force (excepting the external field parts) 
for such sets of ions may be decomposed into pair 
contributions Wa ,9(2) only, then it is known that the 
contributing terms in San consist of sums of products 
of Mayer j bonds: 

ja,9(r1, r2) = exp[ - Wa,9(2) (r1, r2)/kTJ-l, (16) 

which correspond uniquely to irreducible (at least 
doubly connected) graphs. 

In the homogeneous fluid limit, Eqs. (14) and (15) 
pass over into a relation between density and chemical 
potential, and the virial expansion for solution osmotic 
pressure. One sees that the necessary generalization for 
regions of static inhomogeneity (the double-layer region 
in the present investigation) amounts to insertion of 
position-dependent densities P8(r) under the integrals. 
In the case of both (14) and (15), one clearly sees that 
particle interactions, which manifest themselves through 
nonvanishing of the San, demand that the point func­
tions Pa(r) and IT(r) depend generally not only on 
the local densities at the point r of observation, but on 
the densities at neighboring positions as well. Because 
both (14) and (15) are rigorous expansions (at least 
within the convergence limits of cluster theory), they 
may be taken as the starting point for consistent and 
complete (no unevaluated phenomenological param-

18 E, Meeron, J. Chern. Phys. 27, 1238 (1957). 

eters) gradient expansions of the Cahn-Hilliard-Hart 
type.16 ,19 ,20 

The local osmotic pressure IT (r) has a free-energy 
property. Its integral over the double-layer region, 
with the bulk value of IT subtracted for convergence, 
gives the free energy of the double layer. We return to 
application of (15) only in the last section, under the 
heading of colloid stability. 

In order to make explicit use of Eqs. (14) and (15) 
it is of course necessary to have the various ion pair 
mean potentials at infinite dilution, Wa ,9(2) (r1, r 2). In 
the previous section, we obtained the solution to the 
electrostatic problem involved in arbitrary placing of a 
set of ions; an elementary electrostatic theorem21 sub­
sequently provides the corresponding electrostatic free 
energy for fixed ions suspended in pure solvent as one­
half the spatial integral of the product of charge density 
and electrostatic potential. Because the ions are treated 
as point charges in that calculation, we must be careful 
to include corrections 'PaS(r1, r2) (they are short-range) 
due to ion size and solvent molecular structure. We 
finally obtain a total potential of mean force in pure 
solvent, W(N), for N = Na+Nd ions distributed between 
inner (Z=Za) and outer (z?:.ho) regions, of the form 

Na 

W(N) (Na, Nd) = L {U8(i)(Zi) +Ei[W(l) (Zi) +~I(·)(Zi) Jl 
i~l 

Nd 

+ LE;[W(l) (Zj) +~II(·) (Zj) J 
j~l 

Na 

+ L ['P8(i)8(i·)(ri, ri') +EiEi·W(2) (ri, ri') J 
i<i'~l 

Na Nd 

+ LLEiEjW(2) (ri, rj) 
Flj=l 

Nd 

+ L ['P8(J)8(J') (rj, rj') +EjEj,W(2) (rj, rj')]. (17) 
j<j!=l 

In this expression we have the singlet (W(l)) and pair 
(W(2)) unit charge interaction energies, defined by 

W(l) (Zi) = (Ei)-llim{[~I(a)(r, ri), ~II(d)(r, ri) J 

-[(Ko I r-ri 1)-\ (K I r-ri l)-lJI, 

W(2) (ri, rj) 

= (Ej)-l[~I(a) (ri, rj)' ~II(a) (ri, rj), ~II(d) (ri, rj) J, 

where the various choices indicated correspond to the 
different ways of placing ions in Regions I and II. In 
obtaining Eq. (17), we have used the fact that Jo(O) = 
1. The functions U8(i) (Zi) are the nonelectrostatic part 
of the ions' singlet potentials of mean force. Consistent 

19 J. W. Cahn and J. E. Hilliard, J. Chern. Phys. 28,258 (1958). 
20 E. W. Hart, Phys. Rev. 113, 412 (1959). 
21 J. A. Stratton, Electromagnetic Theory (McGraw-Hill Book 

Company Inc., New York, 1941), p. 106. 
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, I I\'------;Ir-----'I 
REGION I (KO) REGION II (K) 

FIG. 1. Diagram of the relative positions of the planes of di­
electric constant discontinuity (z=Q and z=htJ), of ion adsorp­
tion (z=z.), and of closest approach of unadsorbed ions (z=ho). 

with the model of Fig. 1, U rises from zero to essentially 
infinity as Zi decreases below ho; for ions which adsorb 
specifically on the mercury surface, U has additionally 
a narrow and deep minimum at Za, leading to the inner 
layer (see Fig. 2). Of course no U6(Z) is an infinitely 
high barrier for za<a<ho, but it is assumed to be 
sufficiently large in this range to confine all ions in 
Region I essentially to the plane Z=Za. 

In view of the marked spatial separation between 
the N a adsorbed ions and those N d ions in the Region 
II, Eq. (17) has been written without any short-range 
interaction between pairs of ions, one of which is in 
each region. Although our general formalism is fully 
capable of handling the more elaborate case with in­
clusion of such further short-range interactions, it seems 
worthwhile to investigate the simpler case, since it is 
fully consistent with the geometry of our model, and 
since very little is known about the form cp's should take 
for pair separations spanning the outer Helmholtz 
plane, ho. 

In the light of these preliminary observations, we 
pass now to reduction of the ion density equations (14) 
in the diffuse layer Region II, in the low concentration 
limit. In Region II, the several Ua(z) of course are 
assumed to vanish. The fundamental cluster summation 
basis of this Debye-Hiickel limit was exhibited in a 
classical paper on bulk electrolyte properties by Mayer,l 
and the relevance of the linearized cyclic diagrams to 
electrolyte interfacial problems has also been estab­
lished.2 Therefore, we need include only ring clusters 
in each San, in which the Mayer 1 bonds, Eq. (16), are 
linearized with respect to the electrostatic part of 
WaIP), and short-range contributions dropped: 

First, within the ring cluster approximation, we re-

+! f: t 11a6(2)(12)/>6(2)(2)" 'p6(n+l) (n+1) 
n=l6(2) ... 6(n+l)=l 

X16(n+l)a(n+1, 1)dr2" .drn+1}, (19) 

where by addition and subtraction of the square of an 
1 bond, the ring sum is taken to begin with the "two­
sided polygon." To within terms consistent with the 
linearization, this does not modify the value of the first 
integral in Eq. (19), and so the 1a{l in its integrand 
may, in this approximation, be dropped. 

We now use (18) and (19) to obtain 

Pa(Zl) =Ya exp{ - :~[W(!)(Zl) +~(Zl) ] 

+~1 dr2[Kw(2) (12) JK
2
(2) x(2, 1)}, (20) 

2KkT II 411' 

where ~(Zl) is the average electrostatic potential at 
position Zl, satisfying the Poisson equation 

411' y 

'\I2~(Z) = -- LEaPa(Z) ; 
K a=! 

(21) 

we select the arbitrary zero for this mean potential so 
that 

lim~(z) =0. 
z->co 

~(Z) arises by combining the linearized first integral in 

z 

u 

FIG. 2. Plot of the nonelectrostatic part of the singlet potential 
of mean force for ions of type a, according to the model. The deep 
and narrow potential well is not present for unadsorbed species. 
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DOUBLE-LAYER STRUCTURE 1917 

(19) with Vtn(e). The function x(2, 1) represents sum­
mation and integration over all but one link of the ring 
graphs; its multiple convolution character is evident by 
iterating its determining integral equation 

x(2, 1) = KW(2) (2, 1) 

-/ [KW(2) (2, 3)J
K2

(3) x(3, l)dra. (22) 
II 41r 

K(Z) is the local value of the Debye-Hiickel parameter 

K2(Z) =41r "tEo,2Pa(Z)/KkT. (23) 
_I 

By virture of the fact that w(2)(2,1) satisfies a 
Poisson equation with a single source term, Eq. (22) 
may be considerably simplified by application of the 
Laplace differential operator to both sides: 

V'22X(2, 1) =-41r8(r2-rl)-K2(2)x(2, 1), (24) 

where 8 (r2- rl) is the three-dimensional Dirac delta 
function. In the bulk of the electrolyte phase, the solu­
tion to Eq. (24) is the famous spherically symmetric 
shielded Coulomb potential, and of course KW(2) (2,3) 
is just l/r23. When rl is in the interfacial region, though, 
X and W(2) are no longer functions just of pair distance, 
so the integral remaining in Eq. (20) is not so simple. 
It may however be reduced by using Eq. (24) to 
replace K2(2)x(2, 1) by 

V'h(2, 1)+41r8(r2-rl) =V'22[X(2, 1)-Kw(2)(2, In 

After this is inserted in Eq. (20), a partial integration 
transformation (Green's second identity22) may be 
performed. One finds 

Pa(ZI) =Ya exp{ -Ea[W(l) (Zl) + \Ii (Zl) J/kT + 10 (Zl) 

-(Ea2/2KkT) lim [X(r2, rl)-Kw(2)(r2, rl)JI. (25) 

In this expression, 10 is the surface integral over the 
outer Helmholtz plane (OHP) that arises23 

10 (ZI) = (E,N87rKkT) 

1 ds·{[Kw(2)(2, 1) JV£x(2, 1)-KW(2)(2, 1)J 
OHP 

-[V2Kw(2)(2, I)J[X(2, 1)-KW(2)(2, 1)JI. (26) 

Generally, one would require numerical solution for 
W(2) and X before the local density expression (25) 
could be evaluated. In the dilute solution limit, how­
ever, to which the ring cluster approximation only 
strictly applies, matters are especially simple. We have 
already noted that under this circumstance Region I 
has only the effect of shifting the metal surface (z=O), 
so far as most ions in the wide diffuse charge region are 

22 O. D. Kellogg, Foundations of Potential Theory (Dover Pub-
lications, Inc., New York, .1953), p. ?15.. . 

23 Here and in the followmg, ds mdlcates mt~gr~tlO~ over some 
specified two-dimensional surface, to be dlstingwshed from 
volume integrations dr. 

concerned. Therefore, to the extent that it is required 
to obtain charge distributions which lead to correct 
dilute solution observables such as differential capaci­
tance, we may use this simplification for W(I) and W(2) 
without thereby affecting those dilute solution results 
at all. For convenience in writing in the remainder of 
this section, therefore, shift the origin Z = 0 to make 
Zo in Eq. (13) vanish. Then 

EaW(l) (ZI) =-Ea
2/4Kz1, 

Kw(2)(rl, r2) = (rI2)-1- (r12*)-r, 

rI2*= I r2- r l+2z1N I; (27) 

these are characteristic of the single effective image 
approximation. 

For evaluation of the limit in Eq. (25), X is required. 
Since the diffuse portion of the double layer is wide in 
dilute solutions, K(Z) is a slowly varying function of 
position. This is precisely the condition under which a 
WKB solution to partial differential equation (24) is 
physically meaningful.24 Consistent with the foregoing, 
we solve it subject to the boundary condition that X is 
to vanish on the new z=O plane. One readily finds 

X(rl, r2) = exp[ -K(rl, r2)r12J!r12 

- exp[ -K(rl, r2)rI2*J/r12*, 

(28) 

Thus, the WKB solution is very simply a shielded 
version of K W(2) (rl, r2), albeit with a locally averaged K 

as exponential decay "constant." Aside from a reversal 
of sign for the image term, this solution also arises in 
the theory of ionic solution surface tension, which is 
described in Ref. 2. 

We may now use our WKB solution to evaluate 
the last term in Eq. (25). Also, this solution allows 
estimation of the magnitude of the surface integral 
10( Zl), with the conclusion that it is of higher order in 
electrolyte concentration than the limit term; as a 
result, it is permissible to disregard 10 in dilute solu­
tions. We finally obtain from (25) : 

Pa(ZI) =y" exp{Ea[ -\li(ZI) + (Ea/4Kz1) exp[ -2K(ZI)ZlJ 

+ (Ea/2K) K(Zl) J/kTI. (29) 

The terms on the right side are easily identifiable as 
the effects on an a ion of: (1) the mean electrostatic 
potential at position Zl, (2) the ion's own shielded 
image, (3) the local activity constant correction at 
position ZI. 

Since Eq. (29) refers only to the outer Helmholtz 
region, z~ho, and since in many applications the 
screened image term is small in this region by compari­
son with the \Ii term, one may reasonably drop it. The 

24 P. M. Morse and H. Feshbach, Methods of Theoretical Physics 
(McGraw-Hili Book Company, Inc., New York, 1953), Vol. II, 
p.1105. 
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resulting expression is one encountered in the method 
of local thermodynamic balance,7 whereby the relations 
between local densities, mean potentials, and activities 
are dictated by extension of thermodynamic reasoning 
to the microscopic domain. However, in the event that 
the electrode, including adsorbed ions, is uncharged 
(the "electrocapillary maximum"), it is the image terms 
which yield dominant local concentration variations in 
the outer Helmholtz region of dilute solutions. In this 
case these image terms produce the entire contribution 
to such properties as the surface tension,2 whereas 
local thermodynamic balance yields nothing. This 
observation supplies one criterion for applicability of 
local thermodynamic balance; another arises in Sec. V 
in examination of ion size effects. 

On the basis of Eq. (29), we conclude that in spite 
of the fact that the activity correction for an ion at Zl 
is due to its average charge cloud extending over 
distances comparable with the entire diffuse layer 
thickness, in the dilute solution limit the pointwise use 
of bulk solution activity coefficients, as suggested by 
local thermodynamic balance, is rigorously valid. 

The set of relations (29), in conjunction with the 
Poisson equation (21), constitute a nonlinear coupled 
set of equations which, with a suitable specification of 
boundary conditions, may be solved iteratively. In the 
case of a single symmetrical electrolyte (ion charges 
±e), the Poisson equation (21) may be somewhat 
more explicitly presented in which the Ya are eliminated 
[since one is only in teres ted in the ratios pa (Zl) / Pa ( 00 ) ] 

V2[eif(zl) /kT] = K2( (0) exp([e2/2KkT] I K(Zl) - K( 00 ) 

+ exp[ -2K(Zl)Zl]/2zd) sinh[eif(zl)/kT]. (30) 

This way of writing clearly shows the manner in which 
shielded image and local activity corrections modify the 
standard nonlinear Poisson-Boltzmann equation [in 
which the second factor on the right-hand side of Eq. 
(30) is missing]. Because the interposition of the inner 
region prevents Zl even from getting as small as ho 
(remembering the coordinate system origin shift), the 
shielded image term is seldom significant in deter­
mining if, consistent with the preceding remarks. 

The modified Poisson-Boltzmann equation (30) and 
the density expressions (29) are implicit in several 
existing calculations on double-layer structure.25 .26 For 
a number of applications it has in the past been felt 
desirable to include the possibility of dielectric satura­
tion and electrostriction as modifying effects on the 
double layer.27 It must be strongly emphasized at this 
point, however, that it is only under our assumed con­
ditions of linear and composition-independent dielectric 
behavior that our rigorous demonstration of dilute 
solution local thermodynamic balance goes through. 
The manner in which saturation and electrostriction 

2/;A. L. Loeb, J. Colloid Sci. 6,75 (1951). 
26 S. Levine and G. M. Bell, J. Phys. Chern. 64,1188 (1960). 
27 M. J. Sparnaay, Rec. Trav. Chirn. Pays-Bas 77, 872 (1958). 

must be handled within the context of cluster theory, 
since they generate many-body mean potentials of 
arbitrarily high order, has never been solved. Conse­
quently, we can add nothing at this time in the way of 
rigorous microscopic justification of the ad hoc pre­
scriptions that have been used to account for these 
phenomena, although this problem will be the object 
of future investigation. In passing, it is perhaps worth­
while exhibiting the resulting form of the Poisson­
Boltzmann equation, after extension to include these 
generalizations by means of a complete and consistent 
local thermodynamics 

a2if(r) 
KTV2if(r) + (KN-KT)--2-az 

=-47ri:ea{pa(r)-E.(apai)) _ .}. 
a~l a T.i!'i • .p 

(31) 

We have used the mean electric field E=-vif to 
define a differential dielectric tensor with generally 
different composition-, field-, and temperature-depend­
ent normal (KN) and tangential (KT) components: 

(aD/aEhi;;i~=KNNN+KT(l-NN), (32) 

where D is the dielectric displacement vector, and 
where 1 is the unit dyadic tensor. In the event that 
KN is a function of I E I = E, and not of invariants 
constructed from higher-order spatial derivatives of if, 
one can show that KT is simply related to KN: 

KT= (aEKN/aEhMif;· 

The mean field derivatives in (31) and (32) are to be 
calculated under conditions of constant augmented 
electrochemical potential: 

.aa=~a[Pl(r)·· ·pp(r) ]+eaif(r) 

_~ fE(aD) .dE' 
47r 0 apa T.E'.Vi.pp . 

Equation (31) refers to the more general spherical 
interface (z still the normal direction), rather than just 
the planar situation treated in the rest of this paper. 
The deduction of Eq. (31) from a general variational 
formulation of electrocapillarity will be reserved for 
later publication. The problem of how to generalize the 
image and activity terms in the set of density relations 
(29), so as to preserve consistency with the funda­
mental principles of statistical mechanics, is entirely 
unknown at present. 

IV. ADSORPTION ISOTHERM 

Thus far, the ion densities in the diffuse portion of 
the double layer have been assumed sufficiently small, 
that the ion sizes (i.e., the short-range mean potentials 
CPafJ) would have negligible effect on the mean electro­
static potential and density distributions in this region. 
But in the case that one or more species of ion have a 
strong tendency to adsorb on the mercury surface, 
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these ions may be quite crowded on the inner Helm­
holtz plane, and still be in equilibrium with a dilute 
diffuse region. For this reason, it is desirable to develop 
the application of the fundamental relation (14) to the 
set of adsorbed ions, in such a way that the mutual 
exclusion effect of these particles becomes fully clarified. 

The key element in manipulation of the density 
equations to yield adsorption isotherms is that electro­
static interactions for ion pairs, at least one member of 
which is at za, are weak, on account of the proximity 
of such ions to the conducting surface Z = O. Conse­
quently, we account for interactions between one ion 
in Region I and another in Region II only through the 
linearized leading particle-pair cluster integral in Eq. 
(14), and within Region I we take 

j",{1(rl, r2)""!exp[ -cp",{1(rl, r2)/kT]-1) 

-e",e{1 exp[ -'I'a{1(rl, r2)/kT]w(2)(rl, r2)/kT, (33) 

where the terms correspond to the j bond for just the 
short-range part of the ion-ion interaction, and to an 
electrostatic perturbation, respectively. 

In view of the large occupation of the adsorption 
plane, with a consequent primary role given to size 
effects, it is mandatory to retain all short-range bond 
contributions in each S",n, but since the W(2)'S are being 
regarded as weak perturbations, we need to account 
only for linear correction terms in W(2) in each San. 

The fact that the potential wells giving rise to adsorp­
tion, when they exist for a given species a, are very 
deep and narrow, implies that virtually all adsorbed 
ions are confined to a small neighborhood za-E<z< 
za+E, of the adsorption plane Za, where E is some small 
positive number which we may suppose satisfies the 
conditions 

(34) 

This inherent narrowness of the adsorption zone leads 
to a very useful reduction of Eq. (14). Thus, the 
number of ions of type a per unit area that are adsorbed 
may be denoted by 

(35) 

which is independent of lateral position. 
Consistent with previous remarks, we consider all 

vertices of the San to be confined to the adsorption 
region, with the single exception of the two-ion electro­
statically linearized clusters. For such constrained 
cluster integrals, variation of vertex positions normal 
to the interface, within the narrow zone, causes no 
significant variation of S",n, so the various po(r) may be 
replaced by the constant poads (which then may be 
taken outside the integrals), and subsequently the 
position integrations are confined to just the Z=Za 
plane. 

The ion-pair cluster integrals may be split into two 
parts, corresponding to interaction with the diffuse 

layer in Region II, and with other ions in Region I. 
We may again make the appropriate po(r)~poads re­
placememts. When combined with 1{;I(e) and an integral 
of the form 

- ~ tE{1p{1adsj W(2) (s) ds, 
kT (1=1 I.H.P. 

(36) 

the diffuse layer interaction part gives precisely 
-e",lJ;(za)/kT. If furthermore we define a length param­
eter, 

(37) 

then the fundamental Eq. (14) transforms into an 
adsorption equation: 

We must now compute the remaining set of planar 
cluster integrals through first order in W(2) (s). For 
simplicity, we assume that only one species (a) can 
adsorb. The unperturbed cluster sum may be denoted 
by H(Pa Rds ). In any cluster sum S",n (for n+ 1 a ions at 
Za), the electrostatic perturbation could act between 
any of the 

(n+ 1) !j2!(n-1)! 

distinct pairs of vertices. On account of translational 
invariance in the adsorption plane, it is in each case 
possible to renumber vertices so that the perturbation 
acts between Particles 1 and 2. Consequently, the total 
perturbation may be written as 

t[(n+1) (paRdS)n] 
n=l 2(n-1)! 

f[ -Ea2w(2) (S)] [-cpaa(S)] 
X kT exp kT Tn_l(S)ds. 

Because of the original irreducible character of the San, 
the quantities T n-l (s) consist of products of unper­
turbed j bonds, which have associated graphs of n-1 
free vertices that are rooted at both 1 and 2 (separated 
by s), and which are at least singly connected in the 
free vertices, and are without articulation points.28 For 
convenience, we also set 

To(s) =1. (40) 

The T diagrams are precisely those that are generated 
by the pair distribution function Paa(2.0) (s) for the 

28 Explanation of the terminology and techniques of cluster 
theory appear in: G. E. Uhlenbeck and G. W. Ford, "The Theory 
of Linear Graphs with Applications to the Theory of the Virial 
Development of the Properties of Gases," in Studies in Statistical 
Mechanics, edited by J. deBoer and G. E. Uhlenbeck (Inter­
science Publishers, Inc., New York, 1962), Vol. I. 
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two-dimensional fluid whose particles interact with just 
the short-range (superscript "0") mean potential for 
pairs of adsorbed ex ions.28 The numerical factors pre­
ceding each integral in Eq. (39) are not quite correct, 
though, unless first a density derivative is applied. 
Finally, therefore, Eq. (38) in the case of single-ion 
adsorption takes the form: 

Paads = (yala) exp{H(paadS) -ealP(za)/kT 

_ ea2jdSw(2J (s) [!(Opaa(2.0) (I S 1»_ ads]}. (41) 
kT 2 OPaads Pa 

For many applications, the pre-exponential factor 
Yala may effectively be eliminated, since the primary 
interest is in the variation of Paads with applied poten­
tial, or ambient electrolyte concentration in the dilute 
bulk solution range. The simplest and most traditional 
way of introducing ion-ion short-range forces into the 
theory is to suppose tha t ~aa ( s) is the rigid-sphere 
potential (with a sphere diameter a, however, not 
necessarily equal to the hydrated ion size in solution, 
due to the anomalous nature of water in Region I). 
For this model, the ions in the adsorption plane form 
a two-dimensional rigid-sphere gas, and for such a 
system, a very accurate evaluation of H is available 
from the work of Helfand, Frisch, and Lebowitz29: 

H(p) = log(1-y)+y(2y-3)/(1-y)2, 

y=7rpa2/4. (42) 

For single-ion adsorption this should provide a much 
better account of H than, say, the rather crude Flory­
Huggins volume fraction statistics employed by Levine, 
Bell, and Calvert.30 The electrostatic perturbation 
W(2)(S) is available from numerical integration of the 
first of Eqs. (7) for pairs of positions on the inner 
Helmholtz plane separated by s. The pair distributions 
Paa(2.0)(s) for the "uncharged" adsorbed ions are thus 
the only unevaluated quantities in the adsorption equa­
tion (41). There exist a number of standard techniques 
for computing these functions,31 and undoubtedly tabu­
lated values will eventually become generally available. 
In the interim period, it is probably sufficient to use 
the step-function approximation: 

Paa(2.0)(s) =0 s<a, 

(43) 

in which case the integral in Eq. (41) reduces to an 
expression used by Levine, Bell, and Calvert.3o 

The more exact expression (41) in its unapproxi­
mated form constitutes an adsorption isotherm taking 

29 E. Helfand, H. L. Frisch, and J. L. Lebowitz, J. Chern. Phys. 
34, 1037 (1961). 

30 S. Levine, G. M. Bell, and D. Calvert, Can. J. Chern. 40, 518 
(1962) . 

31 T. L. Hill, Statistical Mechanics (McGraw-Hill Book Com­
pany, Inc., New York, 1956), Chap. 6. 

full account of the so-called "discreteness-of-charge 
effect."6.3o The manner in which two-dimensional dis­
tribution functions naturally arise in this application 
of cluster theory to the double layer shows that one can 
in principle account for the effect of finite ion size on 
adsorption without introducing artificial lattice struc­
tures on the adsorption plane for making elaborate 
(but in the case of mercury, rather spurious) discrete­
charge potential calculations.14 

By a slight elaboration of our combinatorial argu­
ments, it is easily possible to derive a generalization of 
Eq. (41) to the case of several ionic species simul­
taneously adsorbing on the same plane. One finds 

P •... ~ (y.I.) exp( H (","', "', P."') 

-ealP(za)/kT- (kT)-lp~J dSW(2)(S) 

X ( .~,[ a",;:~:: s) ] _ """"PI") ). ( 44) 

where apr is the Kronecker delta. In the event that all 
adsorbed species may be regarded as spheres of the 
same size, the H in (44) reduces to the same function 
as before, but evaluated at the total adsorbed ion 
density. 

V. SIZE EFFECTS IN THE DIFFUSE REGION 

The adsorption equations adduced in the previous 
section are affected by the charge distribution in the 
diffuse region of the double layer only by the value of 
the mean potential at the adsorption plane, lP(Za) , a 
quantity which must be self-consistently determined by 
the charge distribution in both inner and outer regions. 
As stated earlier, the adsorbed ions might well be closely 
crowded together, while at the same time those in the 
diffuse region are at sufficiently low concentration that 
their short-range forces seldom come into play. We wish 
now, however, to indicate briefly the way in which the 
considerations of Sec. III would have to be extended 
in order to account for the lowest-order effects of ion 
size (i.e., their short-range forces) as electrolyte con­
centration in the Region II is increased. 

One recognizes that there are basically two dimen­
sionless parameters that may be used to classify the 
range of applicability of electrolyte calculations. If we 
let b stand for a typical length characteristic of the ion 
sizes, then these two parameters may be taken as 

Al = e2/DkTb, 

A2=K( 00 )b. 

The calculations of Sec. III were predicated upon the 
assumption that terms of lowest nonvanishing order in 
both Al and A2 were sufficient to describe the diffuse 
region. The extension presently under consideration 
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still works to lowest order in AI, but retains two leading 
orders in A2. 

It has already been recognized that the ring clusters 
yield the proper local activity corrections without ion 
size. In the same spirit as for the adsorption isotherm 
calculation, we regard these clusters as the "unper­
turbed" quantity, and then add in the effect of the cpa{3 
to the lowest order. Now, though, the roles of long- and 
short-range interactions are reversed. 

We therefore require two modifications of the pre­
vious calculation: 

(1) in each link of the cyclic cluster integrals in the 
last term of Eq. (19), the size-independent approxi­
mate f function shown in Eq. (18) must be replaced 
by the second term in Eq. (33), which has the effect 
of removing the singularity at r12=Oj 

(2) both terms in Eq. (33) must be considered in 
the pair integrals in Eq. (19). The resulting theory 
should thereupon be correct through the requisite 
orders.32 

As before, we assume for convenience that the short­
range forces between all pairs of ions have hard-sphere 
character, with the same repulsive diameter 

CPa{3(rl, r2) =cp(r12) = 00 rl2<b 

=0 rl2~bj (45) 

in view of hydration difference between Regions I and 
II, b should probably be chosen larger than its corre­
sponding value a on the adsorption plane. 

The final result is found to be 

p.( r,) ~ y. ,xp( -(,./ k T) [w«' ("') +,1._ (r,) J+ B (,,) 

+~ r dr2{Kw(2) (12) exp[_cp(12)]} 
2KkTJn kT 

x[ "~) J(2, 1) ). (46) 

which is closely analogous to (and reduces to) the pre­
vious Eq. (20). Now, x(2, 1) is the solution to a size­
modified version of Eq. (21) 

x(2, 1) =K exp[ -<f>(21)/kT]w(2) (21) 

-L{Kexp[ -Cp~:)]W(2)(23)} 

[
K2( 3)] 

X ~ x(3, l)dr a. (47) 

The mean electrostatic potential denoted now by 
1/icav( rl) differs from that used previously, 1/i(ZI), in 
that the associated charge distribution producing it is 

32 It may be shown that more complicated clusters than the 
rings, such as a ring with a single short-range bond cross link, are 
all of higher order in one or both of hl and h2 than it is necessary 
to retain. 

the mean double-layer charge minus the charge that 
would lie, on the average, within the spherical cavity 
of radius b surrounding the point rIj of course 

1/icav( rl) =1/icav(Zl) 

due to the symmetry of our problem. Finally, B(ZI) 
represents an activitylike correction due just to the 
rigid spherical ion cores: 

p(Z2) = tPa(Z2) j 
a=l 

Because the product 

exp[ -cp(rI2)/kT]w(2) (rl' r2), 

unlike W(2) (rl' r2) itself, is not a Green's function for 
the Laplace differential operator, it is no longer possible 
to perform the partial integrations which allowed Eq. 
(20) ultimately to be transformed into the Eq. (29), 
involving true local activity corrections. Thus the in­
clusion of ion size, even to lowest contributing order 
in A2, invalidates the method of local thermodynamic 
balance even if image terms are negligible. On the basis 
of our extended density distribution results, Eq. (46), 
we see that all three terms: 1/icav(rl), B(ZI), and the 
x(2, 1) integral, depend not on just the mean potential 
and mean densities at rl, but instead involve these 
distributions over at least a finite spatial extension 
about ri. This more complicated functional dependence 
extends into every succeeding order. Diffuse layer 
theories which properly account for ion size are there­
fore necessarily nonlocal in nature. Of course, the 
Poisson equation (21) for the physically important 
mean potential1/i always remains valid. 

Unfortunately it is not possible to make many 
general statements about the effect that ion size has 
upon potential and ion distributions in the diffuse 
layer. It is known that if the 1/icav term is retained in 
place of 1/i as the only important modification of Eq. 
(29), that the resulting charge and potential distribu­
tions change even their qualitative nature as the di­
mensionless quantity A2 becomes of order 1.33 ,34 Because 
an infinity of potential and charge distributions in the 
diffuse layer would yield the same values for typically 
measured macroscopic quantities (such as differential 
capacitance) there is at present no logical justification 
for supposing that the monotonically decaying (as ZI 
increases) solutions for 1/i(ZI) and Pa(ZI) of the local 

33 F. H. Stillinger and J. G. Kirkwood, J. Chern. Phys. 33, 
1282 (1960). 

34 V. S. Krylov and V. G. Levich, Zh. Fiz. Khirn. 37, 106 
(1963) • 
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balance theory bear any recognizable relation to the 
true state of affairs above, say, 1 mole/liter in uni­
univalent aqueous electrolytes. 

VI. COLLOID STABILITY 

Finally, we apply the inhomogeneous fluid cluster 
theory to the colloid stability problem. Here, it is 
required to calculate the free energy of the total (and 
often interfering) set of electrical double layers sur­
rounding colloid particles suspended in the aqueous 
electrolyte medium.8 We shall be interested in a dilute 
solution theory corresponding to the calculation of Secs. 
III and IV. 

Figure 3 displays schematically a set of colloid par­
ticles, for which we assume that it is adsorption of ions, 
on the total surface Sa, which imparts charge to prevent 
coagulation. The ions in the diffuse layer lie outside 
another surface So; thus Sa and So are the respective 
analogs of the inner and outer Helmholtz planes used 
previously. 

As before, even if ions outside So are dilute, the ions 
at Sa may be quite crowded, so although ion size will 
be neglected between pairs in the diffuse layers, it must 
again be taken into account for adsorbed ions. We 
continue to suppose that no short-range forces are 
operative across So. 

Although our Fig. 3 perhaps realistically shows the 
particles as somewhat irregular in shape, electrostatic 
calculations such as performed in Sec. II, and which 
underlie any subsequent detailed statistical mechanical 
calculations, are necessarily restricted to very simple 
geometries. We initially assume, though, that for any 
problem of interest, the w(!)'s and W(2)'S are available. 
Furthermore, we suppose that colloid charge is due only 
to adsorbed ions, so that in calculation of w(!) and W(2), 

the dielectric displacement will be continuous across 
the water-colloid surface.a5 

From the thermodynamic identification procedure 
in the theory of the grand partition function,16 we find 
that the extra interfacial free-energy F of the electro­
lyte (beyond what it would exhibit if it were not 
invaded by colloid particles), may be obtained by 
computing the integral 

F= jCIT(r1)-As(rdlI(oo)]dr1' (49) 

where IT(r1) is the local osmotic pressure given in 
Eq. (15) as an inhomogeneous fluid cluster sum, and 
IT ( 00) is the osmotic pressure of the homogeneous 
electrolyte at a position far away from colloid particles. 
A.(r1) is a unit step function which discontinuously 
jumps from 0 to 1 in crossing an arbitrary dividing 
surface 5, parallel to the colloid surface, when going 
from the colloid to the solution phase; since it is pri-

3Ii In Sec. II, this boundary condition would have been equiva­
lent to setting u=O. 

marily colloid particle position dependence of F which 
is significant for the stability problem, and since varia­
tions in position of S can only add constants to F, we 
may for convenience identify S with So. 

The calculation of IT (r1) follows closely the pro­
cedure given in Secs. III and IV, so that all details 
need not be reiterated. It is however worth noting that 
in F, electrostatic contributions to the set of pair 
clusters (in which the Coulomb part of the f bonds 
are treated in linear fashion as before), may be first 
identified as 

! jpel(r1) W(2) (r1, r2)Pel(r2)dr1dr2, (50) 

where 

Peter) = tEaPa(r) , 
a=1 

which is the total electrostatic charge interaction 
energy integral. Subsequently, the expression (50) may 
be transformed to 

~jD(r1) ·E(r1)drl 
811" 

(51) 

(where D and E are the local mean dielectric displace­
ment, and electric field), by means of Poisson's equa­
tion and partial integration. 

It is ultimately found that 

F=jD.Edrl 
811" 
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FIG. 3. Colloid particles suspended in aqueous electrolyte. S. 
is the ion adsorption surface, and So is the surface of closest ap­
proach for unadsorbed ions. 
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The first integral, over all space, is of course the double­
layer field free energy (51). The second integral over 
the Region (II) accessible to unadsorbed ions, has as 
its integrand (aside from J) the local value of the 
osmotic pressure deviation, in the dilute solution 
Debye-Hiickel form. The electrostatic images produced 
by ions in the large colloid particles yield a contribu­
tion to this integral also, denoted by J (rl), which is 
unanticipated by the bulk osmotic pressure theory. 
Since these images have rapidly declining effects as 
one recedes into Region II from the surface So, it is 
perhaps adequate to adopt the form of J appropriate to 
a single platelike particle, which (if it is metallic) 
demands2 

1 ( 1 1 1) J(rl) =-- -+-+- exp( -u), 
u3 2u u2 u3 

(53) 

Finally, IIa (s) is a local two-dimensional spreading 
pressure on Sa for the adsorbed ions, for which it has 
been assumed there is but one type, a: 

IIa (SI) = r~~'dZl{II(rl)-!p'l(rl) 

X f W(2) (rl, r2)pel(r2)dr2} 

-? IIa (0) (p" ads) +! ( E"p" ad. ) ~ 

X f dSI2W(2) (SI2) {8P:ads[P""::~~SI2) J-l }; (54) 

analogous to our previous calculations, the distance ZI 

is measured normal to the surface Sa at position SI. In 
deriving the result following the arrow in (54), it has 
been postulated that at least locally the adsorbed 
system may be regarded as flat and homogeneous. 
IIa(O) is the hypothetical spreading pressure for the 
adsorbed set of ions, assuming they interact only 
through their short-range forces. 

In the same manner as led previously to Eq. (42), 
IIa(O) may be assigned an explicit form if it is proper 
to assume that the short-range forces acting on surface 
Sa are those for rigid spheres of diameter a. The 

Helfand-Frisch-Lebowitz theory29 leads to: 

IIa(O) (p"ads) =kTp"sd9[1-1I"p"sdoa2/4)--2. (55) 

Equations (52)-(55) constitute a microscopically 
explicit prescription for finding double-layer free energy 
in colloidal suspensions. The field free-energy term in 
(52), as well as the ideal solution part of the osmotic 
pressure in Region II, have traditionally been em­
ployed since Verwey and Overbeek's original calcula­
tions.8 Our consistent analysis suggests local activity 
and image corrections in the diffuse charge region as 
additional contributions. Furthermore, we have ob­
tained explicit expressions for the adsorbed ion portion 
of the interfacial free energy. Having thus obtained F 
by means of our approach, the colloid stability question 
is then answerable by means of standard calculations.8 

It has already been noted in Sec. II that dielectric 
saturation and electrostriction cannot at present be 
built into cluster theory in a completely natural and 
logical fashion. Again, though, it is possible to account 
approximately for these phenomena in the present 
double-layer free-energy calculation by a suggestion 
from the variational version of local thermodynamics. 
One finds that if the correct local densities are used in 
the remaining terms in Eq. (52), it is only necessary 
to replace the field free-energy term by: 

[
8D(E', rl)J J E' 

X apex T.E,.t,p~;ta·d, (56) 

where the field integration is to be carried out at fixed 
local composition. In view of the fact that the extended 
macroscopic description embodied in Eq. (56) includes 
electrostrictive terms (the composition derivatives of 
D), the resulting augmented theory accounts at least 
partially for mutual polarization effects between par­
ticles in the strong fields of the double layer region. 

As before, one can show that retention of lowest 
order ion size effects in Region II invalidates the use 
of an osmotic pressure, as appears in Eq. (52), with 
the same functional dependence on local concentra­
tions as exhibited by the bulk phase osmotic pressure. 
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