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BACKGROUND 

Thermal motions in high-temperature liquids permit rapid and effective explora- 
tion of alternative molecular packings. But such exploration becomes increasingly 
sluggish if  the liquid is supercooled, and it largely ceases if further cooling passes 
through a glass transition. This paper proposes and studies a new type of statistical 
mechanical model that is intended to explain such phenomena. These models possess 
several conceptual ingredients that seem not to have been considered before in the 
extensive theoretical literature devoted to supercooling and glass formation.’“ 
Although many of their features have yet to be worked out in quantitative detail, the 
early results reported here indicate success in describing qualitatively both static 
structure and relaxation behavior in real glasses. Furthermore, as discussed below, 
these models can in principle also be used to discuss the kinetics of crystal-phase 
nucleation from the supercooled liquid or vitreous solid states. 

The inverse of the shear viscosity ?( T )  provides a rough but convenient measure at  
absolute temperature T of the mean rate a t  which a liquid undergoes spontaneous 
structural change at  the molecular level. For many substances the Tammann- 
Vogel-Fulcher (TVF) equation’ 

provides a satisfactory fit to viscosity measurements, with positive constants A,  8, and 
To. The apparent activation enthalpy AH’ and entropy AS’ can be formally extracted 
from the TVF equation: 

AH‘ BT 
kBT ( T  - To)2 
_ _ _  - 

B 
InA 

AS‘ BT 
kB ( T  - To)2 T - To 
-- - (3) 

Both of these quantities diverge as Tdecreases toward To. This suggests in turn that as 
T decreases, geometricatly larger and larger zones of activation must be involved to 
permit macroscopic shear flow to take place. Evidently particles constituting the 
system manage to become well packed in domains of increasing size, so that flow and 
other relaxation processes require “unbundling” of these larger domains in order to 
permit repacking in an alternative way. 

This point of view focuses attention on the temperature-variable mean size of 
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well-packed domains as a relevant physical parameter, an attribute not explicitly clear 
in other models for glasses. 

From this perspective we can now state several fundamental concepts upon which 
our new family of models will be based: 1) Any molecular configuration of the material 
system of interest can be resolved into particle domains that are well packed but 
spatially nonrepetitive. These domains have variable size, and in principle could 
encompass the entire system. 2) The set of possible domains may include a crystalline 
fragment, but in view of the nonrepetitiveness constraint only a few unit cells could be 
involvcd. Large well-packed domains of necessity then are amorphous. 3) Walls 
between contiguous domains usually will have positive misfit energy; that is, they are 
locations of poor packing. The exception to this rule would be the properly registered 
contacts between pairs of the small crystalline domains, which together then would 
form a larger crystal fragment. The perfect macroscopic crystal formally will be 
regarded as a periodic array consisting just of the special crystal fragment domains. 4) 
Transitions occur as thermal motion spontaneously unbundles and repacks particles 
into different domain patterns. 

TILING MODELS 

We will now convert the four informal statements written above into a precise 
statistical mechanical model. For simplicity of exposition and of visualization we will 
confine attention to two dimensions, although the extension to the more realistic case of 
three dimensions is quite straightforward. 

Let the region occupied by the system be covered by a square lattice of N sites with 
unit spacing. We will suppose that the “well-packed but spatially nonrepetitive” 
particle domains are squares with integer sides (1  x 1 , 2  x 2, . . . ), and that these 
must tile the lattice, that is, cover it without gaps or overlaps. For some positive integer 
a we will also suppose that any a x LI square i n  the tiling represents a crystalline 
fragment but that all other square sizes represent well-packed amorphous domains. 
The allowed system configurations are all the distinct tilings of the given lattice. 
Periodic boundary conditions will apply. 

The potential energy for any configuration will be assigned the form (A, /A 2 0 )  

Here nj is the numbcr of j x j squares, and N,, is the number of pairs of a x a squares 
that are in full contact along a common side. The coupling constant X represents 
mismatch energy per unit length of boundary between pairs of amorphous domains, 
between an amorphous and a crystalline domain, or between a pair of misregistered 
crystallinc domains. The other coupling constant fi  is present to favor crystallization, 
and indeed if 

/ . l>h>O (5)  

the ground-state configuration for @ consists of a periodic registered array just of a x a 
squares filling the entire macroscopic lattice. FIGURES 1 A & 1 B show the crystalline 
and typical amorphous domain patterns, respectively. 
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Static thermodynamic properties of the tiling model can be obtained from the 
canonical partition function (0 = I /k ,T) .  Thus 

provided that the system is ergodic and that sufficient time is available for equilibra- 
tion to have occurred at  the prevailing temperature. If the inequality shown in equation 
5 is satisfied, Z would reflect the existence of a melting transition at  some temperature 

In view of primary interest in the glass transition, we elect to suppress crystalliza- 
T m .  

tion altogether by setting p equal to zero. Consequently 

where Q is the number of tilings possible with the given numbers n,, n2 . , . of squares of 
various sizes. 

A 

a 

B 

FIGURE 1. (A) A registered periodic arrangement of a x a squares representing the perfect 
macroscopic crystal. (B) A typical pattern of domains in thc amorphous state. 

Next we must specify the transitions allowed between configurations, and their 
respective rates. These will be selected according to a principle of parsimony, namely 
that they be a minimal set of transitions that assures ergodicity (any configuration can 
be reached from any other). Squares will be permitted both to fragment into smaller 
squares, and to aggregate into larger squares. The specific rules are given below. 

Fragmentation: ( p q )  x ( p q )  can fragment into p 2  q x q’s if and only if p is a 
smallest prime factor of pq. (The rate for this transition will be denoted by r f ( p q ) . )  
Thus a 6 x 6 can transform into four 3 x 3’s by a single fragmentation transition, but 
not into nine 2 x 2’s. Squares of prime-number size such as 7 x 7 can only fragment 
fully into 1 x 1’s. 

Aggregation: p 2  q x q’s in a square arrangement can eliminate a common 
boundary to form ( p q )  x ( p q )  if and only if p is a smallest prime factor of pq. (The 
rate will be denoted by r a ( p q ) . )  This is obviously the reverse of the above fragmenta- 
tion process. 
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Any tiling can be converted to the “vacuum state” consisting entirely of 1 x 1’s 
simply by implementing a series of fragmentations. Likewise, any other tiling can be 
created out of the vacuum by a suitable sequence of aggregations. This guarantees 
ergodicity. 

The aggregation rates will be assigned the generic form 

where 

O < a < l  (9) 

and vo  is a fundamental attempt frequency. The parameter a represents the probability 
that any given unit length of boundary is suitable for aggregation, and its exponent in 
equation 8 is the total length of boundary that would be annihilated by the 
aggregation. 

Rates must satisfy detailed balance, of course. Consequently we have 

r f ( p q )  = Y o C r 2 ~ ~ ( p - ~ )  exp ( -PA@) 

A@ = 2Xpq(p - 1) 

(10) 

where A@ is the potential energy increment incurred by the fragmentation transition 

(11) 

At high temperature the system will typically be tiled by a mixture of squares 
mostly of small size. As temperature declines, larger squares become more prominent, 
but equations 8 and 10 show that transition rates are then substantially slowed. It is the 
blocking of structural change by large squares, particularly those with prime-number 
sizes, that make the present model attractive for describing glass transitions. 

PARTITION FUNCTION EVALUATION 

The combinatorial factor Q required for evaluation of the partition function can be 
obtained by a sequential filling process for the lattice, placing squares in the system one 
a t  a time in random order. Suppose that a fraction l of the system’s area has been 
covered at  some intermediate stage, with use of the same fraction of each of the 
available numbers nj of squares of various sizes. Suppose the next square to be added 
has size I x 1, and let E , ( l )  denote the expected number of ways it could be fitted onto 
the partially filled lattice without overlap. Then Q can be obtained as the product of 
such factors for the entire filling sequence. 

The Flory or mean field approximation’ sets 

E d 0  = (1  - EY2N (12) 

which assumes that a common attrition factor 1 - E is applicable for each unit of area 
to be covered by the 1 x 1 square. This leads to the estimate 

( n j / N )  [ln(N/n,) + I ]  - 1 
j z  I 

In  the spirit of the scaled particle theory” it would seem reasonable that the I x 1 
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square's boundary length (linear in 1 )  as well as its area (quadratic in I )  should appear 
as exponents in an accurate E,(.$) expression. Consequently we consider the following 
generalization of equation 12 

E d 8  = [F(4)Y [W)1"  (14) 

Two relations are available to determine F and G. The first is that equation 12 is 
actually an exact expression for I = 1. The second emerges in the large-I limit, where 
successful placement requires that all other squares be confined to a reduced 
macroscopic area, and thereby compressed to a higher effective filling fraction. One 
finds 

F ( ( )  = ( 1  - () [ 1  -(I  - p 1 ) ( ] - ( l - @ o ) / ( l - ~ 1 )  

G(E) = [1-(1 - pl)~](l-@o)/(I-@~) 

(15) 

and 

(16) 

TABLE I. Predicted Values of N-IlnQ for Uniform Tiling with 1 x I Squares 
1 Mean Field" Improvedb 

1 
2 
3 
4 
5 
6 
I 
8 
9 

10 
100 

1000 

0.000 
-0.403 
-0.645 
-0.764 
-0.831 
-0.873 
-0.900 
-0.919 
-0.933 
-0.944 
-0.999 
- 1.000 

0.000 
-0.173 
-0.244 
-0.260 
-0.258 
-0.249 
-0.238 
-0.227 
-0.217 
-0.207 

-0.007 
-0.046 

where the pk are moments of the size distribution for squares 

p k  = lk(nl/N) 
I >  I 

This improved combinatorial argument subsequently yields 

That use of the improved combinatorics versus the mean field approximation may 
be important for our tiling model is illustrated by TABLE 1. It shows the respective 
mean field and improved values for W ' I n Q  in the event that the system were being 
tiled uniformly with 1 x I squares. In the large-system limit that is of primary concern, 
this quantity should be identically zero for all 1. Although both approximations give 
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zero for I = 1 ,  both also drift to negative values for larger 1. This imprecision is clearly 
worse for the mean field case, especially for large squares that ought to be significant 
for the tiling model a t  low temperature. The improved combinatorics a t  least has the 
feature that it approaches the correct result in the large4 limit, in contrast to the mean 
field approximation. 

When the 0 expression equation 18 is placed in the partition function equation 7, 
the equilibrium state a t  given p may be identified by locating the maximum term. This 
results in the following expression for the equilibrium mean concentrations of the 
squares 

(n , (P) ) IN = exp [A,(P)12 + A ,  + A m 1  (19) 

Consequently 

and 

and A,(p) must be determined by the fixed total area condition p2 = 1 .  
In view of the fact that the moments p,, and pl depend on the concentrations, and 

that at the same time the concentrations depend on these moments, self-consistent 
numerical solutions must be sought a t  each temperature. TABLE 2 provides some 
results so obtained. 

In  the high-temperature regime for which 

pX < P,X = 0.323 106 608 8. . . . 
each of A,, A , ,  and A, is negative. Equation 19 then shows that the concentrations 
decrease monotonically with increasing 1. TABLE 2, however, demonstrates that as @ 
increases from zero to Bc, drifts continuously upward to zero. Continuation past 
0, would cause A2 to become positive; the concentrations in equation 19 would no 
longer be monotonically decreasing with I, but would manifest a sudden appearance of 
squares near the maximum possible size (edge length proportional to N i l 2 ) .  Hencep, is 
a condensation point a t  which the system in principle becomes macroscopically 
unstable with respect to the elimination of misfit boundary. 

(22) 

TABLE 2. Self-consistent Numerical Solutions 

PA A, A ,  
0.00 -0.37501 -0.27591 

0.10 -0.24844 -0.52538 
0.15 -0.18848 -0.65374 
0.20 -0,13090 -0.78553 
0.25 -0.07582 -0.92229 
0.30 -0.02337 - 1.06728 
0.323 1066 0.00000 -1.13941 

0.05 -0.31065 -0.39962 

Aa 

-0.18259 
-0.19763 
-0.21415 
-0.23264 
-0.25399 

-0.29526 

-0.16875 

-0.28015 

PI 

0.69843 
0.67668 
0.65357 
0.62874 
0.60163 
0.57122 
0.53527 
0.5151 4 

_____ PO 

0.56246 
0.53417 
0.5049 1 
0.47447 
0.4 4 2 4 8 
0.40826 
0.37026 
0.35029 
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TABLE 3. Equilibrium Concentrations (n , (P)) /N for Squares with 1s 10 

I (n1(0) ) lN  nl(P,) ) IN ~____ ~ -~ ~ 

1 
2 
3 

4.406 x lo-’ 
1.085 x 10.’ 
1.263 x lo-’ 
6.943 x 
1.803 x 10-5 
2.211 x lo-’ 
1.281 x 
3.506 x 
4.532 x lo-’’ 
2.761 x lo-’* 

2.382 x lo-’ 
7.622 x lo-.’ 
2.439 x lo-’ 

2.498 x lo-’ 
1.994 x lo-‘ 

8.186 x lo-’ 

8.383 x 

7.806 x 1 0 - ~  

2.558 x 

2.620 x lo-’ 

TABLE 3 shows equilibrium concentrations of squares computed from equation 19, 
with Is 10, at  /3 = 0 and p,. The effect of temperature reduction on large squares is 
particularly noticeable. 

It should be mentioned in passing that the Flory or mean field approximation also 
leads to a condensation point, but a t  a substantially lower temperature 

@,A = 0.628 028 3600 (mean field) (23) 

To the extent that TABLE 1 suggests that the improved combinatorics has not entirely 
rectified the error in the mean field approximation, we might expect an exact solution 
for the model to display a condensation point a t  a temperature even higher (smaller PA) 
than that given by equation 22. 

The moment quantity p,  substantially gives the mean energy, and heat capacity 
follows from p differentiation. FIGURE 2 shows a plot of this heat capacity for 
temperatures above the condensation point (0 5 0 I &). 

CONDENSED STATE 

Although the preceding analysis appears to predict correctly the occurrence of the 
transition point, it is not reliable for indicating the structure of the condensed state 
itself. The reason is that one macroscopic square (or a small number of order unity of 
such squares) occupying a substantial fraction of the entire system area cannot be part 
of an essentially continuous filling operation. Yet precisely such continuous filling 
forms the basis of both the mean field and the improved estimates for the combinato- 
rial quantity 9. It is necessary to place macroscopic squares in the system first, then use 
the preceding continuous filling procedure as before to tile the remaining multiply 
connected region. 

The end result of this generalization is that if the system shape is itself square, the 
condensed state consists just of the single tile of maximum size N’/* x N’’’. With 
periodic boundary conditions this has degeneracy N because the corner of the tile can 
be located at  any one of the N lattice sites. As the temperature decreases through the 
condensation point the system would (if equilibrium were obtained) discontinuously 
transform into a single well-packed amorphous domain. The mean energy on a per-site 
basis would drop discontinuously from 1.0303 h just above the transition temperature 
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P A  
FIGURE 2. Heat capacity per unit area for p 5 0,. 

to zero below. This transition is unequivocally first order, with an entropy change 

In the event that the system shape is not square, the condensed state may exhibit 
two or more macroscopic tiles, and the degeneracy of the corresponding ground state 
may be larger than N .  A particularly interesting case arises when the system is 
rectangular, with a rational side ratio close to the irrational “golden mean,” 0 = ( 5 ’ j 2  + 
1)/2. The ground-state tiling then requires a hierarchy of square sizes, descending 
from the largest possible size down to the microscopic regime. One possible arrange- 
ment is shown in FIGURE 3. There are N places for the largest square, (NIB)”’ for the 
next largest, and two choices for each succeeding level in the size descent. The overall 
degeneracy of the ground state will be proportional to N4, where 

ASINk,  = 0.3329. 

3 In 2 q = - + -  
2 21110 

= 2.2202.. . . (24) 

Although this degeneracy is substantially larger than that for the square-shaped 
system, it does not alter the conclusion that in the infinite system limit the configura- 
tional entropy per particle of the condensed state is zero. 

GLASS TRANSITION 

Although the preceding has assumed thermal equilibration, the tiling model is 
useful precisely because it cannot equilibrate below the condensation temperature. A 
high-temperature configuration containing only microscopic squares could in principle 
reach the ground (condensed) state by allowed transitions, and this might be possible 
via many different sequences of intermediate configurations. Equations 8 and 10, 
however, show that impossibly small rates would be involved, with the pure number 0 4 
LY < 1 raised at least to a power comparable to N’’’. 
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Therefore, as temperature declines toward and through the condensation point the 
texture of the tiling will coarsen, but kinetic arrest will certainly prevent the 
appearance of macroscopically large squares. The condensation point would never be 
observed as such, but would be inferred (for example) from positions of maxima in 
apparent heat capacities for slower and slower cooling rates. It is natural to expect that 
with a slow, finite cooling rate, the properties of the model would manifest a reasonably 
sharp “glass transition” in the neighborhood of the true condensation point. 

A typical glassy configuration would be kinetically strangled by large squares, but 
should still contain a few small inclusions of the type shown in FIGURE 4. The 2 x 2 
square at  the left in this structure can fragment into 1 x l’s, then another 2 x 2 can 
form at  the right, and then this sequence could reverse, and so forth. Such local 
oscillation would still have a respectably high rate below the condensation tempera- 
ture, but would be totally ineffective in producing overall structural relaxation. 
Instead, it represents for the tiling model a simple analogue to the “two-level” systems, 
which appear almost universally in low-temperature amorphous solids.”*’* 

Side-by-side coexistence of rapidly oscillating inclusions and of larger, more 
sluggish features in the tiling model glassy state suggests that a broad spectrum of 
relaxation times should be present. This spectral breadth may lead to a “stretched 
exponential,” or “KWW,” form for relaxation f ~ n c t i o n s . ’ ~  

COMPUTER SIMULATION 

In the near future, the most reliable source of information about kinetic properties 
of the tiling model is likely to be computer simulation. Consequently a Monte Carlo 

FIGURE 3. Condensed state tiling when the system shape is rectangular with the side ratio near 
the golden mean. 
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program for this purpose has been constructed and successfully tested. It embodies the 
transition rates shown in equations 8 and 10, and generates a stochastic sequence of 
tiling configurations appropriate to given initial conditions and the temperature of 
interest. At each Monte Carlo step it keeps full account of all possible transitions, and 
focuses on selecting the next configuration, while maintaining a record of the elapsed 
time. 

Test runs with the Monte Carlo program (with a = 0.98) have demonstrated the 
feasibility of simulating a two-dimensional system of size N = lo4. This should be large 
enough to infer accurately properties for the infinite system limit. In particular we 
have carried out extended runs a t  PA = 0.15 to assess the validity of the improved 
combinatorial method discussed above, and to verify that indeed it is superior to the 
mean field approximation. 

FIGURE 4. Randomly oscillating 
“two-state’’ inclusions expected in 
the low-temperature glass. 

Further simulation calculations will be directed to establishing the following: 1 ) 
equilibrium square concentrations and the heat capacity over the entire high- 
temperature range; 2) the location of the underlying condensation point; 3) the cooling 
rate dependence of the glass transition and of the properties of the glass state itself; and 
4) the time dependence of various linear and nonlinear relaxation functions, and how 
these vary with temperature near the condensation point. 

Finally, it appears feasible both to include the crystallization-inducing interactions 
shown in equation 4 and to simulate three-dimensional models. 

SUMMMARY 

As a liquid is supercooled toward and through a glass transition, the constituent 
molecules collectively experience increasing difficulty in executing rearrangements 
that lower the overall interaction energy. A conceptually simple lattice model is 
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introduced to represent this phenomenon. In its two-dimensional version the plane is 
tiled by squares with integer sides. Each tile represents a well-packed but nonrepetitive 
domain of molecules, and domain walls have positive mismatch energy. Subdivisions 
and aggregations of squares are kinetically allowed if and only if the smallest prime 
factors of square sides are involved. At equilibrium, cooling coarsens the texture of 
squares until a first-order transition point is reached, a t  which macroscopic squares 
appear. This transition, however, is totally inhibited kinetically, yielding instead an 
amorphous “glass” of microscopic but relatively large squares. Exploratory calcula- 
tions have been carried out that demonstrate the feasibility of using computer 
simulation to study kinetic properties of the model. 
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DISCUSSION OF THE PAPER 

R. G .  PALMER (Duke University, Durham, NC) :  My guess is that the glassy 
behavior of your model comes from the limited transitions allowed: the system is highly 
contrained dynamically. Would you see the thermodynamic phase transition if you 
allowed more types of transition? 

STILLINGER: Glassy behavior in the tiling model arises from a combination of three 
attributes: the sparse set of allowed transitions, the intrinsic slowness of those 
transitions that create or destroy large domains, and the restriction to domains with 
only square shapes. By relaxing the first two of these the opportunity for observing a 
vestige of the thermodynamic phase transition (at least on cooling from high 
temperature) would certainly be enhanced. In particular if the parameter 01 in 
equations 8 and I0 were set equal to unity, aggregation processes would be greatly 
facilitated. The system, however, still has the problem that most tilings with large 
squares will have those squares juxtaposed in ways inconsistent with further aggrega- 
tion. Unless a new set of transitions is allowed that involves restructuring domains 
inside nonsquare boundaries of arbitrary size, the system will still be kinetically unable 
to achieve the fully condensed state. 
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J. T. BENDLER (General Electric Research and Development Center, Schenectady, 
N Y ) :  Dr. Stillinger, can you say how the entropy factor, a,  was assigned in the 
simulations and how sensitive the stretched exponential is to it? 

STILLINGER: The parameter a was set equal to 0.98 in the simulation studies thus 
far carried out. It is not obvious how the stretched exponential relaxation behavior 
should depend on a, so further simulation studies are warranted. 

P. C. HOHENBERG (AT&T Bell Laboratories, Murray Hill, N J ) :  You indicated 
that there is a static transition in your model, from an approximate analytical 
calculation. How is this transition temperature related to the dynamic slowing-down 
transition? 

STILLINGER: Computer simulation reproducibly achieves thermal equilibrium a t  
temperatures greater than or equal to the condensation temperature T,. Cooling below 
T, eventually causes glassy behavior to emerge, the temperature range for which 
depends on the cooling rate. To the extent that a glass transition temperature Tg can be 
identified, T, > Tg.  

HONENBERG: I understood your answer to be Tdynamrc i Ts,a,,c. Is this right? 
STILLINGER: Yes. 
J .  C. PHILLIPS (AT& T Bell Laboratories, Murray Hill. N J ) :  Can you expect that 

this model contains a Tg as well as To? Will the specific heat exhibit the asymmetry 
usually observed in DTA experiments: S-shaped on cooling, peaked on heating? 

STILLINGER: Under the condition of a constant cooling rate, the tiling model 
exhibits a smooth continuation of mean energy versus temperature through the 
transition point T,. But especially with very slow cooling, this metastable continuation 
eventually halts when the prevailing arrangement of squares is blocked from further 
aggregation at any perceptible rate. At this point (“Tg”) the mean energy remains 
nearly constant as further cooling proceeds. 

Simulation on the tiling model has not yet been turned to the task of examining 
asymmetry in apparent heat capacity under cooling and heating conditions, respec- 
tively. There are some basic elements present, however, that might create such 
asymmetry. Upon cooling, aggregation requires neighboring squares to be in registry 
(in full contact along a shared side), whereas fragmentation has no analogous 
precondition. In addition, unfavorable Boltzmann factors are present only in fragmen- 
tation rates, not in aggregation rates. There is no reason to suppose that the 
time-dependent populations of squares of different sizes that appear on cooling would 
be identically mirrored upon heating at  the same rate. Any difference would affect the 
corresponding heat capacities. 

M. WEINBERG (Jet Propulsion Laboratory, Pasadena, CA):  If different geomet- 
rical units were used in the model, would there be qualitative changes in the results? 

STILLINGER: Some changes in the allowed shapes of domains should have little 
effect on qualitative properties. For example, replacing the underlying square grid with 
a triangular lattice would permit tiling with equilateral triangles, and if least prime 
factors of side lengths were again used to define permissible transitions, no substantial 
change in either equilibrium behavior or kinetic behavior would ensue. But if very 
complicated domain shapes were allowed (such as  elongated, nonconvex, and multiply 
connected shapes), with some selection of transitions to assure ergodicity, drastic 
changes would no doubt be possible, including elimination of the first-order condensa- 
tion point. 


