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At fixed density, the number of distinguishable ways that N identical atoms can be packed into a
fixed volume is expected to rise exponentially, exp(vN), when the number N of atoms is very large.
Heretofore no satisfactory method has been available to evaluate the positive constant v. We pro-
pose such a method in classical statistical mechanics, utilizing the formalism and some basic results
from the "inherent structure" theory of condensed phases. It requires data concerning (a) the mean

potential energy of amorphous packings, (b) the mean logarithm of the normal-mode frequencies for
both crystalline and for amorphous packings, and (c) a smooth extrapolation of the liquid-phase
thermodynamic energy through the supercooled regime to absolute zero. We have applied this
method to the soft-sphere model with r ' pair potentials, drawing upon published cornputer-
simulation results. We find for this model that v=0.07+0.06, where most of the estimated error
arises from uncertainty in the data currently available for (a) above.

I. INTRODUCTION

An important open problem is to find the number of
ways that identical particles or molecules can be arranged
in space to form mechanically stable packings. Regular
crystalline arrangements offer a few possibilities, but for
large numbers of particles the overwhelming majority of
the packings would be amorphous. This paper proposes a
method for estimating the numbers of particle packings,
which is based upon the "inherent structure" formalism
for condensed phases of matter.

The inherent structure picture of condensed phases
identifies three contributions to the Helmholtz free energy
F(N, V, T): the number of minima A(N, V) on the
potential-energy hypersurface N(x&, . . . , x~) of N parti-
cles, the (thermally weighted) mean energy 4~ of the
packings corresponding to the respective minima, and the
vibrational free energy F"' (N, V, T), measuring the mean
configurational hypervolume available to thermally in-
duced vibrational distortions of each of the packings. '

Formally, the packings may be found by selection of a
representative collection of instantaneous configurations
from the equilibrium phase and employment of each one
of them as the initial condition for a steepest-descent tra-
jectory. Except for a set of measure zero, these trajec-
tories must terminate at a local minimum of N. Experi-
mentally, this procedure corresponds to repeated instan-
taneous (anneal-free) quenching of the equilibrium phase.
An advantage of the inherent structure formalism is that
the study of any of the condensed phases, whether crystal-
line, vitreous, or liquid, may be accomplished within a
common conceptual framework.

The three previously identified components of the free
energy may differ in their relative importance according
to the phase in question. In the crystalline phase at any
given density there is usually only one relevant minimum,
and in the absence of strong thermal fluctuations, the stat-
ic crystal energy and the harmonic part of the vibrational
free energy are the most important components of the free

energy. In the equilibrium liquid, on the other hand, the
thermal fluctuations are so strong that the vibrational free
energy may make the most important contribution to the
free energy. The strongly supercooled liquid presents a
circumstance where all three components may make im-
portant contributions to the free energy. The supercooled
liquid may be subject only to weak vibrational fluctua-
tions, like the crystal, but with an inherent structure com-
posed of not one but many packings, like the equilibrium
liquid. The total number of minima (or, equivalently, the
number of corresponding packings) Q enters into the free
energy, as we shall show below, as an entropy v, defined
on a per-particle basis as v=ln(Q/N!)/N. For strongly
supercooled simple liquids, we will show that v, the
"packing entropy, " indeed makes a relatively more impor-
tant contribution to the free energy. Therefore we under-
take in this work the enumeration of the packings corre-
sponding to the minima of 4 for a simple model liquid.

We outline the plan of this work as follows. In Sec. II
we review the inherent structure formalism, display expli-
citly the three components of the free energy, and discuss
the physical significance of the packing entropy. In Sec.
III we estimate the packing entropy from published ther-
modynamic data calculated for the liquid and crystalline
phases of a soft-sphere model. We conclude this work in
Sec. IV with a discussion of other estimates for the pack-
ing entropy, and of its relevance for the study of glasses
and supercooled liquids.

II. THE THERMODYNAMIC SIGNIFICANCE
OF THE PACKING ENTROPY

The inherent structure analysis of the free energy has
been discussed in detail previously. ' Here, we merely out-
line the steps in order to define our terms.

The potential-energy hypersurface @(x|,. . . , x~) may
be viewed as the union of basins each containing one of
the minima identifiable by the procedure discussed in the
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Introduction and elsewhere. ' Each basin B~ contains all
the points of C(x], . . . , x]v) which also lie on a steepest-
descent path to the minimum @» g

——cIk(x] p. . . , x]v, g)
contained in B~ E. very point on &b(x„. . . , x]v) is thus
accounted for, except those on the boundaries of B~
which constitute a set of zero measure. Normally the
canonical classical partition function Q]vvr appears as

Q~vz(N. ——!A )
' f dx], . . . , dx]v

X exp[ —C (x„.. . , x~)/k, T],

where A is the de Broglie wavelength, written as
A=(h /27rmk&T)' . Now we may rewrite Qz] r thus

Q]viz'=A f d(]](»expIN[cr(())») P»/kgT

F"—' ( T,P» ) /Nkg T]I, (2)

where (]](» ——kIk»/N. The distinguishable potential energy
minima are distributed by depth (t » according to
exp[No(P )]. The vibrational free energy is calculated
from the partition function of the configurations con-
tained in each basin, averaged arithmetically over all the
basins B~ encountered with depth (t(», as follows

exp[ —F"' (T dqq(fkeT]=( f dxq' dxxexp[ —(qP(x&, . . . , xx( —d'q lq(kTe]
Bg

4q

The free energy of an infinite system (N, V~oo,
p =N /V =const) may be found by evaluating the in-
tegrand in Eq. (2) at its global maximum. We denote by

P» the choice of [t]» which equivalently maximizes the ex-
pression

cr( P» ) P» /kg T —F /Nk~ T—

In principle, P» depends upon both the density and the
temperature. However, for a large class of simple atomic
liquids (in equilibrium), including the soft-sphere liquid
discussed herein, ()]» is in practice essentially temperature
independent. ' For these liquids there is substantially a
unique inherent structure valid at all temperatures (above
freezing) with mean per-particle potential energy
(N» &/N) equal to ()!(». This corresponds to a sharp uni-
modal distribution exp[Ncr(P»)] in P» whose maximum
asymptotically for large X equals the distinguishable
number of packings Q/Nt. . Therefore we can equally well
define v to be the value of o. at this maximum
[max»] o(P»)). ' For the liquid (A, ), the free energy

Fq(N, V, T) becomes

Fg/NkgT =31nA —v+Nq g/NkgT+Fg' /NkgT .

The crystalline phase for these systems corresponds con-
figurationally to the basin surrounding a single distin-
guishable minimum (disregarding crystal defects), namely,
the zero-temperature crystal. The contribution of o([t»)
to the crystalline free energy F&(N, V, T) therefore van-
ishes, and we write

Fz /Nk~ T =P» z/Nk~ T +31nA+ Fz' /Nkg T, (5)

where Nq& is the zero-temperature crystal energy. For
the low-temperature (harmonic) crystal, the vibrational
free energy reduces to the usual expression,

The unsubscripted brackets indicate the usual ensemble
average, and 6 will serve to indicate generally the iso-
thermal difference between a property of the liquid phase
(A, ) and the same property of the crystalline phase (X). In
principle we require the above quantities at one tempera-
ture only since v depends only on density or pressure but
not temperature. We admit that the vibrational free ener-

gy F~', and therefore AF", is at least as difficult to
evaluate as F~ itself for the high temperatures encoun-
tered by the equilibrium liquid. However, if it is legiti-
mate to extrapolate stable liquid properties to the super-
cooled liquid, we find that F~' simplifies considerably.
In particular, as T approaches zero, we find (classically)

3N
Fq' /Nk&T = —g In[co„(2m'mk~T) ' ], (8)

N „ 4q

where cu„are the normal-mode frequencies of the packing
with per-particle energy (][]», subject to periodic boundary
conditions. The residual excess (over the crystal) entropy
of the inherent structure of the liquid is S"'=limy oAS,
and the packing entropy v is found from

v= S"'/Nk~+ 6 into,

where

(9)

The low-temperature crystalline phase serves as a
reasonable choice for a reference state for the calculation
of v, since its partition function may be easily calculated
from Eqs. (5) and (6) for a large class of simple atomic
models. In terms of the entropy difference AS =S~—S&,
provided there is a temperature range over which this
difference can be defined, we have

AS/Nkg v+(5(cIk) /k. 4»)/Nk~T bF b/NkaT

3''
Fr' /Nk~T =—g 1 [ n(2ckm]mk T) s'~ ],N „

(6)
3(N —1)

b, into:—lim bF"'"/Nka T =—g ((inca„)~ —inca„) .
T~O

where ~„are the normal-mode frequencies of the crystal,
subject to the usual periodic boundary conditions.

We stress that Eq. (9) is a classical mechanical result only.
Stated alternatively, the classical residual excess entropy
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Knowledge of AS for some particular temperature T1 and
AC„ for all temperatures between zero and T1 is enough
to determine S"'. Since the heat-capacity data are usually
reported only as a discrete function of temperature, we
find it convenient to express AC, as the best fit of a poly-
nomial in T to the relevant data. Nonintegral powers of
T are generally required to describe the high-temperature
dependence of C„~, but since T1 would not be much
higher than the freezing temperature, a polynomial fit
should adequately describe the classical AC, for tempera-
tures below T1. We evaluate S"' from an expression of
the following form:

L
S""/Nk~ bS(T, )/Nk~ —g c——l(k~ Ti )' .

1=1
(1 la)

This approach is general and may be accomplished experi-
mentally, provided the inherent structure of the liquid can
be attained. However, in the next section, we determine
b,S(Ti)/Nks and the coefficients ct from the thermo-
dynamic properties calculated from computer-simulation
data reported by Hoover et a/. for a soft-sphere system.
For the same system Stillinger and Weber have calculat-
ed 6 inca, which allows us to complete our estimation of v.

contains only a vibrational contribution (b, ln~) and a
contribution (v) due to the multitude of packing options.
We expect that the packing entropy v will usually make a
significant contribution to the residual excess entropy,
particularly if the constituent particles have rotational or
conformational degrees of freedom.

Our program for evaluating v from Eq. (9) requires
both an independent evaluation of Alnco from normal
mode analysis and of S"' from calorimetric data. The
latter evaluation follows directly from the relation be-
tween the constant-volume heat capacity C, and the en-
tropy S, namely C, = TBS/BT, which then leads to

k~ Tl
S"'/Nks ——b S ( T, ) /Nkg —j d (ks T)b C, /Nks T .

(10)

cr = (I + I)b at+ i /l . (1 lb)

The internal energies of an equilibrium soft-sphere
liquid and of the crystalline phases are implicit in the
pressure equation-of-state data published by Hoover
et a/. The potential energy 4 of N soft spheres is de-
fined by

N(N —1)/2e=
12

(12)

where o. is the diameter, e is the energy for a pair at con-
tact, and r,J is the distance between any pair i,j of parti-
cles. Since N is homogeneous in distance, the following
special relationship is found between the internal energy
(N) and the equation of state:

(N)/NksT =
4 (pV/NksT —1) . (13)

Another consequence of the distance scaling is that the
equation of state may be expressed in terms of a single di-
mensionless variable p', which Hoover et al. defined as
p* =po(e/4k& T)''We define. the reduced temperature
by T*=—(p* ) /4 =k' T/e(po), and .reexpress the
equation-of-state data as a function of T*. Table I shows
the reduced internal energy (0&)*:—(0&)/Nc(po. ) as a
function of T*, as deduced from Hoover's equation-of-
state data and Eq. (13). The reduced internal energy for
the zero-temperature liquid @

q ~ is taken from the
calculation of Stillinger and Weber, for which they find

packing energy, and a constraint of harmonic mode
equipartition a& ~ ———,kz. If in addition we fit

M
3(ao, C'„—/'N, a, r= —,k, )

m=0

to (@)z, then by

a(e) /N
aT

the coefficients ci in Eq. (11a) become

III. EVALUATION OF S' AND v
FOR A SOFT-SPHERE LIQUID

In this section we follow the steps outlined above to
find both the residual and packing entropy of the inherent
structure of a soft-sphere liquid. We first require AC, for
temperatures between zero and Tf„„;„g,which therefore
requires the heat capacity for the supercooled liquid. Al-
though we do not immediately have such data, we do have
accurate internal energies (4)q for the equilibrium liquid
at temperatures above Tf„„;„gas well as the mean pack-
ing energy Nq, which corresponds to the liquid quenched
without annealing to zero temperature. The temperature
dependence of (4)q/N in the supercooled region can be
approximated by fitting the polynomial

m=0

to (N)~. This requires the constraint aQ
= (@)g(T=0)/N'=@~ ~/N for the known amorphous

1.0412
0.833 71
0.711 18
0.610 35
0.381 04
0.25000
0.120 56
0.0

2.6908

2.3666
2.0529
1.8744
1.6927
1.5119

3.2458
3.0003
2.8458
2.7103

1.75+0.01

0.602

0.646

TABLE I. Thermodynamic data for the soft-sphere system
at constant density. The data for T )0 are taken from Tables
I and III of Ref. 6. The value for C&~x ——(C&)x(0) is inferred
from (C&)x(T*)—2

T* for T*=0.12056. The value for

C&~q=(N)i(0) is taken from Ref. 7. Except for 4&~q, all the
values correspond to the infinite-system equilibrium phase. The
freezing temperature is found from Ref. 6 to be, in reduced
units, Tf*, „„~——0.57224.

AS /Nkg
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TABLE II. Coefficients of the polynomial fit to internal energy data. The polynomial

P(T*)=g oa (T*) was fitted to the data (4) (TJ*), j=1, . . . , J by minimizing the sum

[P(T*)—(4)*(T*)]. The best fits for both phases were found with M=5. For all cases with~j=1 j j
M=5, the sum over j is less than 10 . The coefficient a& is equal to 2 in all cases.

a3
a4
a5

ap g ——1.74

0.959015
—2.192 336

1.589 868
—0.408 254

ap g
——1.75

0.828 270
—1.905 855

1.361 418
—0.345 452

ap g ——1.76

0.697 620
—1.619648

1.133221
—0.282 726

a„=1.5119

0.092 606
—1.881 561

3.547 898
—1.886 303

~——201+1 from the mean energy of 47 independent
q, A,

packings quenched from an %=256 soft-sphere liquid, at
density po =0.81841.

The relation between the packing entropy and the resi-
dual excess entropy was derived for an infinite system,
and a consistent calculation of S"' would use infinite-
system data. Hoover et al. corrected both their original
%=500 equation-of-state and entropy data for system-
size effects, and report their data as infinite-system data.
However, the @

q ~ found from the N= 256 calculation of
Stillinger and Weber is not subject to the corrections dis-
cussed by Hoover et al. There are in principle size
corrections to this T=O quantity, but they are completely
unknown at present.

In order to explore the sensitivity of the coefficients

Ia ~) to the uncertainty of 4&z ~, we determined P~(T*)
over the range of acceptable values for N~ ~. We tabulate
the resulting coefficients in Table II. We plot the interpo-
lated (4) (minus the harmonic potential energy) for the
supercooled liquid in Fig. 1, calling attention thereby to
the importance of the anharmonic terms in (4&)~ even for
very low temperatures. The effect of the uncertainty of
ao ~ on C, ~(T*)/X k~ is shown in Fig. 2.

The fits P~(T*) and P&(T*) allow us to calculate
S""/Xkz, when we have ES for a given temperature.
Hoover et al. report the entropy for both phases at two
common temperatures T~ and T~. We have listed the en-
tropy difference b,S/Xks in Table I for the two tempera-
tures. With hS, the coefficients listed in Table II, and Eq.
(11), we calculate S"'/Nks, and list their values in Table

O
O

8
O

O
O

1.0 1.5

T/ Tfreezsnp T/P fr e ezinp

FIG. 1. The anharmonic contribution 5N to the excess (over
ideal gas) reduced internal energy for the soft-sphere liquid.
The solid line represents 5N*, defined here by
5%*:—(4&)q —(C&~ q+ z

T*). The coefficients t a z) for
Pq(T*)—= (N)q are found in Table II. The plots are essentially
the same for all three choices of ap q found in Table II. The tri-
angles represent the internal energy data for the liquid listed in
Table I.

FIG. 2. Excess (over ideal gas) constant-volume heat capacity
per particle C„/Nks, found from 8 ( 4 ) /d T

, ma (T*) '. The coefficients [a ) are found in

Table II. The crosses represent C„~/Nk&. The solid curve
represents C, q/Nks, from the I a qJ corresponding to
ap g= 1.75. The upper and lower dashed curves depict C, z/Nkz
calculated from the I a q I corresponding to ao ~ = 1.74 and
ap z ——1.76, respectively.
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TABLE III. Estimates for the residual excess entropy. In
each case S""is calculated from Eq. (11) and the data in Tables
I and II. The values S(' ), S(o), and S(+) correspond to choosing

Nq q ——1.74, 1.75, and 1.76, respectively.

0.61034
0.833 71

S(' )/Nkg

0.044
0.046

S("o') /Nkg

0.099
0.102

S("+)/Nkg

0.157
0.160

III. If there were no uncertainty associated with the fit of
the polynomials to the energy data, the residual entropy
calculated at T = T& would equal that at T =T]. The ac-
tual differences are not zero but they are small, in accord
with a good fit of the polynomials to the data. The uncer-
tainty in S"' due to the uncertainty in 4~ ~ is, on the oth-
er hand, substantial, overwhelming all other contributions
to the uncertainty. We conclude that the residual excess
entropy of the inherent structure of this soft-sphere liquid
1S

in reduced units. Again, the greatest part of the relatively
large uncertainty in v is due to the uncertainty in the
packing energy Nq ~, which presumably could be substan-
tially diminished by more exhaustive simulation for the
soft-sphere liquid.

S"'/Nkg ——0.10+0.06 .

To deduce the packing entropy v from the residual en-

tropy, we use Eq. (8) and require b, incr. System-size
corrections are absent in this quantity since they are only
additive for the respective harmonic free energies. Stil-
linger and Weber have calculated the harmonic
F"' /Nk~ T [Eqs. (6) and (8)] for both the crystal and the
liquid, from which we find Aln~= —0.033 in reduced
units. We conclude that the packing entropy of the in-
herent structure of the soft-sphere liquid is

v =0.07+0.06,

with short-ranged attractions, and repulsions which
asymptotically (in the high-density limit) follow the soft-
sphere model of Eq. (12). These estimates were made by
directly counting the number of packings found in small
(N=32) systems. No system-size corrections were at-
tempted. They found v (which for these systems is
density-dependent in a nontrivial way) about twice that
calculated here for soft spheres, although the large uncer-
tainties in both estimates preclude a decisive quantitative
comparison. They also observed that v appeared to de-
crease with increasing density. This finding is consistent
with the lower value which we report for the soft-sphere
v, since at high densities the effects of the repulsive forces
dominate those of the attractive forces.

In the preceding section we suggested that v might be
determined by experiment, at least for some suitable sub-
stances. We note that v must be strongly material depen-
dent. One way to determine the residual entropy [cf. Eq.
(10)] for a simple atomic liquid would be to supercool the
liquid in steps, down to nearly zero temperature, in order
to obtain b.c„(T)directly. The supercooled liquid eventu-
ally vitrifies, but as long as the crystal does not nucleate,
near zero temperature the amorphous solid should be one
of the many typical packings which would have been ob-
tained by an instantaneous quench of the liquid. To the
extent that the packings are narrowly distributed about a
single mean energy, the properties of the amorphous solid
obtained by supercooling should not significantly deviate
from those of the inherent structure, which is an ensemble
of the typical packings. In any case, systematic correc-
tions could be formulated for the temperature dependence
of Nz due to the width of the packing distribution, and
therefore of any temperature dependence of inherent
structures.

IV. DISCUSSION

One immediate use of v is for the estimation of F~' at
any temperature for which Fq and k&~q are known [cf.
Eq. (4)], or for hF"' when bS, b, (4&), and hC&"' are
known [cf. Eq. (7)]. For example, for v, Eq. (7) and Table
I, we find —~"' /Nk~T =0.42+0.07 for T*=0.61035,
( Tr*„„;„s——0.57224), which is over a tenfold increase
above —6 inca=0. 033, and which accounts for nearly two
thirds of AS/1Vkz at this temperature. This gives us a
way to quantify the strong anharmonic distortions of the
packings concomitant with the equilibrium soft-sphere
liquid. Further, this result indicates that for this model,
the difference between the vibrational distortions of,
respectively, the crystal and the inherent structure of the
liquid present at the freezing temperature makes the
largest contribution to the entropy of fusion
( Sr„„,„=0.89+0.02).

There are other approaches to the estimation of the
packing entropy. For example, Stillinger and Weber have
made rough estimates of v for simple atomic systems '

ln(T/ T&„,„„)

FIG. 3 ~ Constant-pressure heat capacity per particle
C~ q/Nk~, including ideal gas contributions, calculated from the
solid curve in Fig. 2 and Eq. (14).
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Cape and Woodcock have studied the supercooled soft-
sphere liquid by computer simulation. " Their simulation
corresponds substantially to the experiment described
above. By integrating the heat capacity (at constant pres-
sure) over the temperature range of the supercooled liquid,
they found S""/Nks ——0.29+0.07. This gives
v=0.26+0.07, according to Eq. (9). Cape and Woodcock
apparently did not attempt to quench to a (zero tempera-
ture) amorphous potential energy minimum; they do not
report a Nq ~. However, we regard this parameter as an
important component in the estimation of v. We also
note that their equation of state for the equilibrium phases
varies slightly from the values reported by Hoover et al.
As we illustrate in Fig. 2, even small errors in the low-
temperature heat capacity are sufficient to induce large
uncertainties in S"' and therefore v. For example, an in-
terpolated C„based on Nq ~

——1.77 would have given S"'
within the uncertainty bounds reported by Cape and
Woodcock; however this packing energy appears to be
outside the range suggested by the Stillinger-Weber calcu-
lation.

We may also compare our interpolated C, for the su-
percooled liquid with the Cape-Woodcock calculation for
C& by exploiting the relation special to the soft-sphere
liquid:"

4( C„ /Nks —5)
C& /Nkg = Cv ~Nkvd + (20( 4 ) /Nks T —16C„/Nks +25 )

(14)

Here, both C„and Cz include ideal gas contributions,
whereas we did not include such contributions in Eqs. (10)
and (11). Although Cape and Woodcock did not tabulate
C~, they plotted it against ln(ks T!e) in Fig. 2 of Ref. 11.
We plot our own derived Cz against ln(T/Tr„„, „s) in
Fig. 3 for comparison. The comparison reveals a strong
qualitative similarity between the two estimates for C~.
Specifically, we note that the position, height, and breadth
of the two peaks are similar. This supports our belief
that, in spite of the differing estimates for v, the interpo-
lation between the mean packing energy of the inherent
structure and the internal energy of the equilibrium liquid
provides an accurate description of the internal energy of
the (rapidly) supercooled liquid for this simple soft-sphere
system.

The peaks in the heat capacities reported both here and
by Cape and Woodcock are too broad to correspond to the
heat-capacity anomalies usually associated with phase
transitions. However, they probably indicate a substantial
yet smooth increase in the spatial coherence in the super-
cooled liquid as it vitrifies. This is consistent with our
comments in an earlier study of another simple atomic su-
percooled liquid. In that study, we investigated the ener-
getic behavior of a supercooled liquid as it followed a
steepest-descent path leading to a typical stable amor-
phous packing. There too we saw indications of increas-
ingly collective spatial rearrangements among the parti-
cles as the liquid followed the path to its end point.

The nearest physically realizable analogues to the in-

herent structure of the soft-sphere system are probably the
pure one-component metallic glasses formed from sub-
stances whose crystal structure is close packed. There-
fore, these glasses should be the best candidates for an ex-
perimental determination of v. Both seem to be best
described, by experiment and by computer simulation, as
randomly close-packed structures, with predominantly
face-centered-cubic or hexagonal-close-packed short-
ranged order but no intermediate-ranged microcrystalline
order. ' ' Neither is a true glass former in any conven-
tional sense;"' ' neither exhibits a well-defined sharp
glass transition (cf. Figs. 2 and 3). Both seem to produce
amorphous solid whose structure and energies are both
narrowly and unimodally distributed, corresponding to an
underlying temperature-independent inherent structure.
The mechanically stable amorphous solids produced by
rapid quenches of simple metallic liquids are therefore
most likely to be the packings representative of a
temperature-independent inherent structure of the metal-
lic liquid. If the configurational residual excess entropy
and harmonic free-energy difference can be accurately
measured, then we should have in hand an experimental
determination of the packing entropy for these disordered
materials.

True glass formers are more complex materials which
often display a polyamorphism inconsistent with the as-
sumption of amorphous packings narrowly distributed in
energy. ' ' Even in a one-component glass former
like sulfur, there should be a broad distribution of in-
herent structures, depending upon the instantaneous dis-
tribution of rings and chains of sulfur atoms in the pre-
quenched liquid. ' Peritectic transition-metal glasses may
display either a random close-packed structure or an
orientationally ordered quasicrystal structure. Equation
(9) could not be applied naively to either of such po-
lyamorphic systems. Also, eutectic metal-metalloid
glasses may not be polyamorphic in the sense described
above, but there is no single reference crystal. ' An es-
timation for v in this case might require an experimental
realization of Eq. (4), a task operationally more difficult
than that for Eq. (9).

In conclusion, we have shown in principle how to esti-
mate the packing entropy for amorphous deposits, and
therefore, how to estimate the number of packings which
constitute the inherent structure of the liquid. This has
been applied to the inverse-twelfth-power soft-spheres
model. Knowledge of the packing entropy allows us to
estimate the vibrational free energy for a wide range of
temperatures, and therefore to assess the importance of
the anharmonic distortions of the inherent structure
present at liquid-phase temperatures. Knowledge of the
mean packing energy of the quenched liquid together with
the internal energy of the equilibrium liquid allows us to
make an interpolation which reproduces the internal ener-

gy of the supercooled liquid reasonably well. For simple
one-component metallic glasses, an experimental deter-
mination of the packing entropy could be accomplished
with sufficiently accurate thermodynamic and normal-
mode data.
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