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The nature of structural order and basic kinetic processes in condensed phases theoretically 
can be clarified by quenching to mechanically stable particle packings, the relevant "inherent 
structure". Numerically locating these potential energy minima in realistic models for various 
substances is often a very demanding task. A class of many-body systems, "dynamical lattice 
gases," is introduced for which the steepest-descent quenching is particularly simple. The 
resulting packings place particles on sites of a regular array, the distribution of energies of 
those packings can be obtained from the solution of a related Ising model, and transition states 
between interconvertible packings are trivial to locate. Some elementary analytical results have 
been obtained for vibrational free energies of the packings. Some versions of these models, 
notably the quarter-filled face-centered-cubic case, are well suited for study of liquid-phase 
supercooling and formation of low-temperature amorphous solids. 

I. INTRODUCTION 

The canonical partition function Z N ({3) provides a con
nection between eqUilibrium thermodynamic properties at 
inverse temperature {3 = (k B T) -I and the atomic-scale in
teractions that operate between the N particles involved. As
suming that those particles are structureless and can be ade
quately described by classical statistical mechanics, Z N ({3) 
adopts the following standard form I: 

ZN({3) = (A~NN!)-I J dr l ••• J drN exp( -{3ct». 

(1.1 ) 

Here AT represents the mean thermal deBroglie wavelength 
for the particles (all assumed to be identical) , D is the space 
dimension, and ct> denotes the potential energy of interaction 
which depends only on the particle positions r 1 ••• rN' 

Except for low density or high temperature limiting 
cases, no general techniques are available to evaluate the 
multidimensional configuration integral in Eq. (1.1). Nev
ertheless the mathematical character of Z N ({3) can be illu
minated by a series of transformations which reduces it for
mally to a simple quadrature.2

-
5 This procedure will now be 

reviewed briefly to provide a clarifying basis for the remain
der of the paper. 

The potential energy <I> is bounded below, symmetric 
under particle interchange, and differentiable, when all of 
fl ••• fN are distinct. The shape of the <I> hypersurface over 
the DN-dimensional configuration space leads to a natural 
and exhaustive division of that space into "basins" B a' each 
one of which surrounds a single relative minimum a of the 
potential energy function <1>. The set of configurations 
fl ..• fN which compose Ba are just those starting points 
for a steepest-descent path on the ct> hypersurface which con
verge onto relative minimum a. 

Particle interchange symmetry implies that each basin 
B a is but one among N! equivalent basins that differ only by 
particle coordinate permutations. Taking this feature into 
account, Eq. (1.1) may be rewritten, 

ZN({3) =..1 iDNI' i exp[ -{3<1>(r)]dr 
a Ba 

= A iDN I' exp( - {3ct>a) 
a 

( 1.2) 

Here the primed a sum covers only inequivalent basins, and 
the DN-component vector r comprises all particle positions. 
The latter form in Eq. (1.2) separates <I> into its value at 
minimum a, namely <I> a' plus its positive deviation Aa <I> 
elsewhere within Ba' 

It is useful next to classify the relative minima by (J, their 
depth on a per particle basis: 

(J=<I>aIN. (1.3) 

In view of the fact that in the large-N limit the number of 
inequivalent minima is expected to rise exponentially with 
N, it is natural to introduce a distribution function for mini
ma with the form 

(1.4 ) 

where u is N = independent. 
A vibrational free energy per particle Iv ({3,(J) can be 

defined for those basins whose depths are arbitrarily close to 
(J (denoted by a doubly primed sum): 

exp[ -PNfu(P,(J)] ~{~" La exp[ -{3Aact>]dr}/~" 1. 

( 1.5) 

As the notation indicatesfu is expected to be independent of 
N in the large-N limit, but to retain a dependence on the 
depth of the group of basins considered. 

Employing definitions (1.3 )-( 1.5), it is straightfor
ward to convert the a sum in Eq. (1.2) to a (J integral: 

ZN (f3) ~A i DN f exp{ N [ u( (J) - P(J - Pfu (P,(J) ]}d(J . 

( 1.6) 

For any realistic interaction potential, the distribution of 
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basin depths, and therefore the ¢ integral in Eq. (1.6), will 
have finite upper and lower limits. 

Because N is large, the maximum of the integrand in Eq. 
(1.6) provides the leading-order contribution to this inte
gral. Specifically, 

where ¢m maximizes the right-hand side for any given /3. 
The quantity ¢m ({3) identifies the depth of that popUlation 
of basins within which the system is virtually certain to be 
found at the prevailing temperature. If the system were to 
undergo a first-order melting transition, ¢m would jump 
from a low value corresponding to crystalline arrangements 
of particles to a higher value corresponding to amorphous 
packings. 

Several theoretical benefits flow from this representa
tion of the many-body problem. One of these is the demon
stration (for simple atomic substances at least) that a virtu
ally temperature-independent inherent structure underlies 
the liquid phase, which is revealed by steepest-descent map
ping onto minima of 4>.6-8 Another is the extension of the 
Lindemann melting criterion for crystals to an analogous 
criterion for the freezing of liquids.9 A third benefit is that 
specific groups of atomic motions with bistable character 
can be identified in models for low-temperature amorphous 
deposits, thus providing contact with those properties of real 
amorphous materials which appear to be affected at low tem
perature by two-level systems.4.10 Finally, this approach 
seems to be useful in understanding basic molecular pro
cesses that control the behavior of dense chemically reactive 
liquids. 11-14 

Unfortunately, information remains scanty regarding 
basin geometries and the fundamental quantities u, lv, and 
¢m in Eq. (1.7). Thermodynamic, mechanical, and spectro
scopic measurements on real substances offer some guid
ance, and a variety of computer simulation studies provides 
an independent source of partial insight. 15.16 What has thus 
far been largely missing are analytically tractable models for 
which u'/v, and ¢m could be evaluated. The objective of this 
paper is to propose a class of such models, to demonstrate 
their properties in light of the preceding discussion, and to 
point out conceptual implications for real materials. 

Section II provides a general definition of the "dynami
cal lattice gas models," stressing that their potential energy 
minima can trivially be put into one-to-one correspondence 
with the discrete states of an associated Ising model. Section 
III restricts attention to a specific square planar model, and 
exhibits the exact u( ¢) for the half-monolayer density in 
terms of the closed-form solution for the two-dimensional 
square Ising model at zero field (first derived by OnsagerI7

). 

The role of vibrational motions in this latter specific case is 
analyzed in Sec. IV. Section V contains some concluding 
remarks concerning dynamical simulation, and extensions 
ofthe models to study glass transitions and low-temperature 
amorphous states in multicomponent systems and in sys
tems with structured particles. 

II. ADSORPTION MODELS 

We will be concerned from the outset with the case of N 
structureless particles that move in D-dimensional space, 
with Hamiltonian (H) consisting of the usual kinetic (K) 
and potential (4)) terms: 

H = K + <t> • (2.1) 

The potential energy has a single-particle part (4)0) and a 
particle interaction part (4)1)' Including a variable coupling 
constant (A.) for the latter, we write 

4> = 4>0 + ..1.4>1' (2.2) 

wherein 
N 

4>0(r1 ' •• r N ) = L U(rj ). (2.3) 
j= 1 

The single-particle potential U is intended to represent 
adsorption on (or absorption within) a periodic static sub
strate (or host) material. Consequently U(r) wiU itself be 
periodic, and we shall assume it is bounded, continuous, and 
at least twice differentiable. Within the finite D-dimensional 
volume available to the N particles, U{ r) will present some 
number M of replicas of a fundamental unit cell. 

For simplicity it will be presumed that U(r) possess 
only a single minimum within its unit cell, the "adsorption 
site," whose depth wiU be denoted - Uo. At low kinetic 
energies an isolated particle would execute nearly harmonic 
oscillations about that site, while at higher kinetic energies 
the motions would be anharmonic or even unbound to that 
site. If the coupling constant A. were set to zero so that 
<t> = 4>0' all minima of 4> would have the same depth 
- NUo, and would correspond to each of the N particles 

located exactly at an adsorption site. The number of such 4> 
minima is trivial to calculate: 

0 0 = M N • (2.4) 

In the limit oflarge M and N this can be put into the asymp
totically correct alternative form: 

O~N! exp(voN") , 

vo= 1 + In (MIN) . (2.5) 

The role of interparticle potential 4>1 is (a) to prevent 
multiple occupancy of sites by two or more particles (requir
ing N<M), and (b) to provide finite interactions between 
pairs of particles located within nearest-neighbor unit cells. 
The first of these requirements eliminates many of the parti. 
cle configurations which were counted in Eq. (2.4) as 4>0 
minima. In fact it is possible (see below) to choose 4>1 so that 
all configurations which are single-occupancy 4>0 minima 
continue to be relative minima with 4>1 present. That is, all 
configurations with single particles exactly at adsorption 
sites will still be mechanically stable, but 4> 1 will have broken 
the A. 0 depth degeneracy. Under this circumstance the 
diminished number of 4> minima is now 

o =M!/(M -N)! 

~N! exp( vN) , (2.6) 
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382 F. H. Stillinger: Lattice gases and condensed phases 

This agrees with the Vo expression (2.5) only through linear 
order in N / M. 

The interparticle interactions contained in <1>1 will in
volve only additive pair terms, and these will vanish identi
cally for all pairs of particles in cells more widely separated 
than nearest neighbors: 

(2.7) 

Here the (i,j) sum comprises all nearest-neighbor pairs. In 
order to guarantee that the single occupancy restriction be 
satisfied it suffices to let V become very large and positive 
for two particles in the same cell. Dynamically this means 
that if a particle has a trajectory intersecting the boundary of 
an already occupied cell, it must undergo specular reflection 
at that boundary. Within the portion ofthe full DN-dimen
sional configuration space which displays only single occu
pancy, we will demand that <I> 1 be bounded, continuous, and 
at least once differentiable. 

The coupling constant A. and the pair potential V must 
be chosen in a manner consistent with preservation of all 
single-occupancy <l>o-minimum configurations as <I> relative 
minima; and no new minima should be created. This will be 
achieved if (a) the gradient of Vvanishes for nearest-neigh
bor adsorption sites R;,Rj but at no other cell-interior loca
tions, (b) all D principal curvatures of U are positive at the 
adsorption site, (c) IA. 1 is sufficiently small. Section III ex
hibits a specific way to satisfy these requirements. 

Without loss of generality we can suppose that the near
est-neighbor potential for particles undisplaced from the ad
sorption sites is unity: 

(2.S) 

Consequently, the depths of the <I> minima are all described 
by 

(2.9) 

where Nil stands for the number of nearest-neighbor pairs of 
singly occupied adsorption sites. This is exactly the form of 
the energy expression which appears in the conventional dis
crete nearest-neighbor lattice gas models, and these in turn 
are equivalent to nearest-neighbor Ising models in suitable 
homogeneous external fields. IS In particular, the half-filled 
state (N = M /2) corresponds to a zero-field Ising model. A 
knowledge oflsing model thermodynamic properties, either 
from exact one- and two-dimensional solutions or from a 
variety of approximate methods for other dimensions and 
nonvanishing fields, can in principle be converted to the dis
tribution u( f/J) for the adsorption model. 

In Sec. III we will see by concrete illustration that V can 
be chosen so that the steepest-descent connections between 
arbitrary configurations and their associated minima never 
force particles to leave their cells. Consequently the multidi
mensional basins are just direct products of ND-dimensional 
cells. 

Let Il I • • • Il M be a set of Ising spin variables for the 
unit cells of the substrate, with values - 1 and + 1 referring 
respectively to the empty and the occupied states. Then the 
depths shown in Eq. (2.9) for the various <I> minima can 
equally well be written: 

M 

<1>" = - ;~I(1 +Il;) + (A./4) ~(1 +llj)(l +Ilj) 

where 

A = [(ZA./S) -11M, 

Ho= (zA./4) -1, 

J =A./4, 

(2.10) 

(2.11 ) 

and where z denotes the lattice coordination number. In 
view of the fact that N is fixed in the original adsorption 
model, only the last term in Eq. (2.10) varies with the con
figuration of Ising spins. 

Because we are dealing with the large-system limit, it is 
valid to replace the condition 

M 

L Il; =2N-M (2.12) 
;=1 

with 

(2.13) 

in the Ising model with unconstrained spins, provided that 
the correct external field HI is employed in the latter. Conse
quently we consider the following Ising model partition 
function: 

Z({3,H1 ) = }' exp [ -{3HI .f Il; -{3J Y 1l;llj] , 
G;'} I = I (:':f) 

(2.14 ) 

where J is specified in Eq. (2.11). The field HI differs from 
Hoin Eq. (2.11), and must be chosen to satisfy Eq. (2.13) at 
the temperature of interest. 

Starting with the Ising model partition function (2.14), 
standard thermodynamic manipulations provide the energy 
and entropy as functions of temperature. Eliminating tem
perature yields entropy as a function of internal energy. The 
connection between the adsorption model and the Ising 
model then gives u(f/J) for the former. 

III. SQUARE LATTICE 

The next stage requires specifying and analyzing a con
crete case. This will be done in two dimensions, with a single
particle adsorption potential U displaying the translational 
symmetry of the square lattice. Perhaps the simplest choice 
for U is the following: 

U(X,y) = COS(21TX) + cos(21TY) , (3.1 ) 

for which the fundamental cells are the unit squares with 
corners having integer coordinates. The adsorption sites 
have half-integer coordinates and potential depth - 2, i.e., 

Uo = 2. (3.2) 

Figure 1 provides a contour diagram for U. 
The single-occupancy condition will be enforced, of 

course. Within that portion of the full 2N-dimensional con
figuration space obeying this restriction, the interaction po
tential <1>1 will be assigned the form 
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t 
y 
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FIG. 1. Contour diagram for the square-lattice adsorption potential 
U(x,y). Moving outward from the center of the unit cell, the contours cor
respond respectively to U = - 1.5, - 1.0, - 0.5, 0.0, 0.5, 1.0, and 1.5. 

<1>1 = '} sin2( 1TX j ) sin2( 1T)Ij) sin2( 1TXj) sin2( 1T)Ij) , 
(;:1> 

(3.3) 

where as before the (i,j) sum covers the nearest-neighbor 
pairs. All of the pair terms are nonnegative, and each vanish
es quadratically (quartically) when either one of the two 
particles involved approaches an edge (comer) of the cell 
within which it resides. When the coupling constant A [Eq. 
(2.2) ] is negative, nearest-neighbor pairs are mutually stabi
lizing, and the corresponding Ising model is ferromagnetic. 
Positive A destabilizes such pairs, and the corresponding Is
ing model is antiferromagnetic. In this latter case, with 
N = M /2, the absolute <I> minimum will have depth - 2N 
and will have one of the two sublattices fully occupied creat
ing a checkerboard pattern. 

By using the elementary identity 

sin2t=HI-cos(2t)], (3.4) 

it is straightforward to show that interparticle interactions 
neither destroy nor create <I> minima, compared to those al
ready present in <1>0' provided: 

A<1/2. (3.5) 

The most destabilizing situation would involve positive A 
and a central particle with all four nearest-neighbor cells 
occupied exactly at their centers (the fiducial adsorption 
sites). Inequality (3.5) guarantees that even under this cir
cumstance the central particle continues to experience a 
force field directing it toward the center of its cell. 

The only real value of the external field HI for which the 
square Ising model has been solved exactly, is zero. Fortu
nately this provides an interesting case, namely the half
filled system. The corresponding results for the energy u and 
free energy/per Ising spin are as followSI7.19.20: 

u(/3) = - J coth(2,8J) {I + ! [2 tanh2(2,8J) 

(3.6) 

/3/(/3) = -In[2cosh(2,8J)] __ 1 [d()ln{![1 
21T ° 

+ (1 - ~ sin2 () 112]) , (3.7) 

where KI is the complete elliptic integral of the first kind, 
and 

K = _ 2 sinh(2{3J) . (3.8) 
cosh2(2{3J) 

The entropy per spin s follows from 

s(/3)/kB =/3 [u(/3) -/(/3)]. (3.9) 

Remembering that there are half as many particles in 
the adsorption model as there are Ising spins, we can finally 
make the identifications: 

t/J= -2+2u, 

(f = 2s/kB • (3.10) 

Figure 2 indicates the behavior of the resulting function 
u(t/J). Noteworthy features include reflection symmetry 
across a vertical axis through the maximum that arises from 
invariance of the square Ising model at zero field under sign 
change of J. Also, the ferromagnetic and antiferromagnetic 
Ising models have critical points which appear as singular 
points in u( t/J ), located at 

U C ~O.612 94 , 

t/Jc ~ - 1 ± 2- 1/21A I. (3.11) 

Owing to the logarithmically divergent heat capacity at the 
Ising model critical points, u has the following behavior near 
its singularities (3.11): 

2 

(</>+2)/';.. 

FIG. 2. The function u(~) for the square-planar adsorption model, inferred 
from the exact solution to the two-dimensional field-free Ising model. 

J. Chern. Phys., Vol. 88, No.1, 1 January 1988 
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.112.66.66 On: Mon, 31 Mar 2014 04:16:27



384 F. H. Stillinger: Lattice gases and condensed phases 

(3.12) 

where B > O. Notice also that u is singular at its endpoints, 
where u' diverges. 

Consistent with remarks in Sec. II, steepest-descent ba
sins for the square lattice model are all unit 2N-dimensional 
hypercubes. They contain saddle points (transition states) 
on their boundaries with associated reaction paths that cor
respond to allowed transitions of single particles between 
neighboring cells on the substrate. The number of such sad
dle points for any basin is exactly 4N - 2Nu . 

IV. VIBRATIONAL EFFECTS 

The vibrational partition function within any hypercu
bica1 basin B a for the square lattice model defined in Sec. III 
has the following form: 

Ya ({3) = ( dr exp{ -,8 [2N - ANn 
JBa 
+ CPo(r) +ACP1(r)]}, (4.1) 

where CPo and CPl are specified by Eqs. (2.3), (3.1), and 
(3.3). The basin depths for fixed N depend only on N w the 
number of occupied nearest-neighbor cells [see Eq. (2.9)]. 
Consequently the vibrational free energy Iv introduced in 
Eq. (1.5) can be obtained from the average of all Ya with 
fixed Nn=N(l/J + 2)/A: 

exp[ -,8NIv(,8,l/J)] = (Ya (,8»N" . (4.2) 

For any given basin of interest, the arrangement of theN 
particles in the unit cells of U will define a set of connected 
clusters {Cia}' Each connected cluster contains all particle 
pairs which either interact directly as nearest neighbors, or 
are indirectly connected through an intervening chain of 
nearest neighbors. It is clear that Ya factors into contribu
tions from separate connected clusters: 

Ya (,8) = IT y( Cia ,{3) . (4.3) 
i 

If connected cluster Cia contains n atoms, we can write 

y(Cia ,{3) = I drl ' .. I drn exp{ -,8[2n -Ann 

+ jtl U(rj ) +A <t) v(rj,rk )]} • (4.4) 

The individual particle integrations are restricted to unit 
cells specified by Cia' The specific pair interaction V for 
nearest neighbors in the square lattice model appears in Eq. 
(3.3), and one such term occurs for each ofthe nll links in 
the connected cluster. 

From the vibrational point of view the simplest case has 
Nil = 0, i.e., all pairs of particles are noninteracting. This 
can occur provided the system is no more than half filled. 
The only connected clusters then are single particles, and for 
those the corresponding configurational integraly( 1,{3) can 
be carried out in closed form: 

Ya (,8) = [y( l,{3)]N (Nll = 0) , (4.5) 

y(l,{3) = f dx f dy exp{ -,8 [2 + cos(2rrx) 

+ cos(21TJ')]} = {exp( - ,8)10(,8)}2 , (4.6) 

where 10 is the modified Bessel function.21 In this simple case 
we have l/J = - 2, so the corresponding vibrational free en
ergy is the following: 

,81v (,8, - 2) = 2{J - 2In 10(,8) . (4.7) 

From the known properties of the function 10 we can obtain 
the low temperature limit: 

,8/v(,8,-2)-ln(2rr,8) +0(,8-1), (4.8) 

which involves only small-amplitude harmonic motion in 
the vicinity of the cell center. In the opposite high tempera
ture limit, the entire square cell is accessible with equal prob
ability, and 

,8/v(,8,-2) =2/3+0(,82). (4.9) 

When Nil> 0 there must be at least one connected clus
ter containing two or more particles. The corresponding 
y( C,{3) integrals are not elementary, but several of their 
properties can be inferred. In the high temperature limit, 

y(C,{3) = 1-,8(2n -15Anll/16) + 0(,82), (4.10) 

which implies a corresponding result for Iv: 

,8/v(,8,l/J) = (,8/16)(2 - 15l/J) + 0(,82). (4.11) 

In the low temperature limit small amplitude harmonic mo
tions again obtain, and in this regime the n particles of a 
connected cluster C experience the following quadratic po
tential (measured from the potential minimum): 

n 

ff2 L [2 - AZj(C)][ (Ax})2 + (aYj )2] , ( 4.12) 
j=1 

wherezj is the number of nearest neighbors to particle j in the 
cluster. The simple form of expression (4.12) leads immedi
ately to 

n 

y(C,{3) - II [prr(2 - AZj>] -I. (4.13) 
j= 1 

By assembling results (4.2), (4.3), and (4.12) we ob
tain the general form for the low-temperature (harmonic) 
vibrational free energy: 

,8/v(,8,l/J)-ln(2rr,8) -N- 1 In(VI (l-AZj/2)-I) N" ' 

l/J= -2+ANll/N. (4.14) 

The last term on the right in this expression is temperature 
independent, has a sign opposite to that of A, and clearly 
shows the effect of particle pair interactions. 

The average at fixedNll in Eq. (4.14) includes all quali
fying particle assignments to cells on an equal a priori basis. 
It is not valid to reorder the logarithm, averaging, and prod
uct operations in this last term to effect "convenient" simpli
fications. The collection of particles coordination numbers Zj 
appearing in Eq. (4.14) is constrained by the obvious 
identity 

N 

L Zj = 2Nll · (4.15) 
j=1 

However, the numbers of occurrences of each of the possible 
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Zj values (0,1,2,3,4) can vary from one system configuration 
to the next. The individual products contributing to the aver
age in Eq. (4.14) likewise fluctuate. One should keep in 
mind that the average (and hence its logarithm) will be 
dominated by products with a distribution of Zj'S differing 
from the set of individual mean occurrence frequencies for 
these quantities. 

When A > 0, the antiferromagnetic case, both the high 
and low temperature limiting/" expressions, Eqs. (4.11) and 
( 4.14), show that the effect of interacting neighbors is to 
lower the vibrational free energy. This is easy to understand, 
since pair interactions reduce restoring forces toward cell 
centers that particles experience. The opposite occurs for 
A < 0, the ferromagnetic case, where restoring forces are en
hanced and /" is increased. 

Recalling the equilibrium criterion embodied in the 
variational Eq. (1.7), it is clear that t,6 variation of/" (at fixed 
P) can have an important influence on thermodynamic 
properties. The logarithmic heat capacity divergence of the 
field-free square Ising model stems from the logarithmically 
vanishing curvature at t,6 c of the u( t,6) function shown earlier 
in Eq. (3.12); sufficiently strong curvature of the/" function 
with respect to t,6 could modify the nature of the heat capac
ity divergence at the critical point. 

v. DISCUSSION 

Since the models under consideration have an underly
ing Hamiltonian, Eq. (2.1), the particles have a well-defined 
Newtonian dynamics. Consequently it is possible, in princi
ple, to study time-dependent relaxation processes and 
steady-state transport phenomena occurring in these dy
namicallattice gases. The simple nature of the potential en
ergy basins and of the transition states (saddle points) which 
connect them should be advantageous in attaining an under
standing of those irreversible phenomena. It should be 
stressed that the present class of dynamical lattice gases 
differs substantially from the various "kinetic Ising models" 
that have been proposed,22-24 but which involve only sto
chastic particle transitions between discrete locations. 

Molecular dynamics computer simulation should be 
easily applicable to the dynamical lattice gases. In some pre
vious molecular dynamics studies it has been illuminating, 
but computationally strenuous, to produce a running map of 
the dynamical configuration onto the relevant potential 
minima (by steepest-descent quenching on the potential en
ergy hypersurface).4,5,I0,25 By contrast, this mapping is 
trivial for the dynamical lattice gases: simply place all parti
cles at the centers of the cells in which they momentarily 
reside. One could use exact Ising model results (as explained 
in Sec. III) to provide checks on attainment of equilibrium 
and on finite-system-size effects in the molecular dynamics 
simulations. 

Supercooling, glass transitions, and low-temperature 
amorphous solids are important related topics which might 
benefit from dynamical lattice gas studies. In particular, at
tention should be focused on the case of the quarter-filled 

(N = M /4) face-centeredcubiclatticegaswithanappropri
ate three-dimensional "substrate" potential and with repul
sive nearest-neighbor interactions. The lowest-potential-en
ergy state for this case has one of the four simple-cubic 
sublattices fully occupied, the other three vacant, to produce 
a long-range-ordered "crystal." At high temperature the 
four sublattices exhibit equal average occupancies, and .the 
resulting "liquid" possesses only short range order, Under 
strict equilibrium conditions these two phases interconvert 
through a first-order melting or freezing transition. How
ever, if the liquid were cooled rapidly, nucleation could be 
avoided and a low temperature amorphous phase would re
sult. It would be valuable to establish how the structure of 
this amorphous material depends upon the details of the 
cooling schedule employed.26 

Real glass-forming substances typically contain several 
components, or may consist of molecules with asymmetrical 
and variable shapes. Our dynamical lattice gases can be ex
tended in both these directions. With several distinct compo
nents, the corresponding Ising model has spin greater than 
one-half. Asymmetrical molecules can also be translated 
into higher-spin Ising models. Polyatomic molecules that 
can occupy several contiguous sites however, would require 
an appropriate choice of nonadditive interactions in the Is
ing model version. 

Finally, we mention that dynamical lattice gases would 
offer a convenient testing ground for the extended Linde
mann criterion mentioned earlier.9 

For all of these reasons, further analytical and numeri
cal examination of dynamical lattice gas models seems am
ply motivated. 
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