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Many integral equations for numerically predicting pair correlation functions 112
) in classical 

fluids have been proposed, each based on its own "closure approximation." We have 
investigated a procedure for evaluating such closures, particularly their capacity to describe 
clustering under the influence of attractive interparticle forces. Our approach utilizes the 
Gaussian core model in a large closed system which, under sign change of the coupling 
constant A, undergoes a collapse to form a single compact aggregate with known properties. In 
the infinite system limit this phenomenon causes inverse temperature ({3) expansions, such as 
that for 112

), to diverge. By contrast available closures lead to convergent expansions for the 
Gaussian core model, but with a "critical point" on the negative real {3A axis. Specific 
calculations have been performed illustrating this behavior for the BGYK and the PY integral 
equations. We suggest that the proximity of the artifactual negative-axis critical point to the 
origin (where the collapse singularity should actually appear) provides a measure of accuracy 
of closure approximations. 

I. INTRODUCTION 

Under conditions of thermal equilibrium the properties 
of classical many-body systems can be determined from the 
low-order spatial distribution functions for the constituent 
particles. These properties include all thermodynamic quan­
tities, as well as radiation diffraction patterns. Statistical me­
chanical theory provides the logical connection between the 
spatial distribution functions of all orders and the basic in­
terparticle interactions that operate in the material system of 
interest. 1,2 

The theory of molecular distribution functions originat­
ed over half a century ago,3,4 and has enjoyed a rich and 
diverse subsequent evolution. I.2,s In order to reduce formal 
theory to a tractable form that is capable of producing nu­
merical results for specific model systems it has inevitably 
been necessary to invoke some type of closure approxima­
tion. For fluids composed of spherically symmetric particles 
with additive pair interactions, these closure approxima­
tions have been directed toward determining the pair corre­
lation function 112

) (r) which gives the distribution of particle 
pair separations r. 

Several tests of the accuracy of closure approximations 
are available. One concerns the extent to which thermody­
namic consistency relations are satisfied as required, e.g., by 
the identity of virial and compressibility equations of state. 6 

With the advent of powerful digital computers which allow 
accurate and detailed simulations of models, direct compari­
sons have also become possible between analytical predic­
tions and simulation results for distribution functions.7 It is 
the purpose of this paper to advocate and to apply yet an­
other kind of test. 

A large number of closure approximations can be found 
in the literature directed at determining 1I2)(r). These in­
clude among many others the Kirkwood superposition ap­
proximation,I,8 the Percus-Yevick (PY) approximation9 

and its extension by Verlet (PY2),10 the hypernetted chain 
(HNC) approximation, II and the mean spherical model 

(MSM).12 We have limited our own detailed study to the 
first two of these. 

Our approach rests upon the existence of a catastrophic 
instability that develops as the coupling constant changes 
sign in a family of models with bounded pair interactions. 
The following Sec. II explains this instability for a specific 
case, the so-called Gaussian core model. 13 Sections III and 
IV, respectively, discuss the Kirkwood superposition ap­
proximation (in connection with the Born-Green-Yvon lo­
cal stress equation), and the Percus-Yevick approximation. 
Section V presents some numerical results for 112

) showing 
how use of either of these closures misrepresents the collapse 
phenomenon as a kind of critical point on the negative cou­
pling constant axis (or equivalently on the negative axis for 
the inverse temperature variable {3 = 1/ k B n. The final dis­
cussion in Sec. VI stresses our belief that none of the other 
closures that have been advanced have the correct functional 
form to reproduce the collapse singularity. 

II. GAUSSIAN CORE MODEL 

The Gaussian core model l3 possesses the following in­
teraction potential: 

(2.1 ) 

where positions of the N particles are denoted by vectors r i' A 
is a coupling constant, and r ij is the scalar distance between 
particles i andj. When A> 0 the particles are mutually repel­
ling, and at moderate densities many of the properties of this 
model resemble those for models with more realistic pair 
interactions. In particular the Gaussian t;:ore model exhibits 
a conventional freezing transition as the temperature is 
lowered into the face-centered-cubic or the body-centered­
cubic structure at low or at high density. respectively.13-IS 
Extensive molecular dynamics simulations have been car­
ried out for the Gaussian core model with A > 0,14.16.17 

If the number N of particles is large, changing the sign of 
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A produces an instability wherein all particles mutually at­
tract and collapse to a tightly bound and compact aggregate. 
In this collapsed state the usual extensive thermodynamic 
properties are no longer proportional to N, but to N 2

• The 
collapse phenomenon develops even for very small negative 
A, namely of order N -I In N according to the simple argu­
ment presented in Appendix A. 

A major mathematical virtue of the Gaussian core mod­
el is that exact high-temperature series can be exhibited for 
its thermodynamic properties and distribution functions in 
the large-system limit. 18 The natural expansion parameter is 

II (r) = exp( - r); 

her) = (1!2)exp( - 2r) + p(1rI2)3/2exp( - rI2); 

her) = (1!6)exp( - 3r) +p[(1T12)3/2exp( - 3r12) 

/3A, and owing to the collapse instability that occurs at 
/3A = 0 in the large-system limit, these are asymptotic series 
with vanishing radius of convergence. In the case of the pair 
correlation function we have 

g.2)(r,/3A) -1 + f (- /3A)"fn (r), (2.2) 
n=l 

where explicit calculation produces the following forms for 
the leading-order coefficient functions (p = N IV, the num­
ber density): 

(2.3) 

(2.4) 

+ (1T13 )3/2exp( - 2r 13)] + p2( ~ 13 )3/2exp( - r 13); (2.S) 

her) = (1!24)exp( - 4r) + pr/2[2-5/2 exp( - Sr12) 

+ 3-3/2exp( - Sr13) + (l/24)exp( - 3r14) + (1!32)exp( - r» 

+p2r [3- 3/2 exp( -4rI3) + (3/2)S-3/2 exp( -2rIS) 

+ 2(S-3/2)exp( - 3r1S) + (l/16)exp( - r)] +p3(ffJ/2/8)exp( - rI4). (2.6) 

For any positive density p one expects to be able to find 
pair correlation functions from any reasonable approximate 
theory, at least for small positive values of /3A. Furthermore 
these solutions should exhibit the qualitative characteristics 
expected for a stable fluid, namely, bounded and continuous 
short-range order that quickly decays away with increasing 
distance r to bring g.2) to its limiting value unity. However no 
such solutions should exist for negative /3A if the approxi­
mate theory is functionally powerful enough to capture the 
collapse phenomenon, even if only qualitatively. Unfortu­
nately we shall see below that this latter requirement tends 
not to be obeyed. 

III. KIRKWOOD SUPERPOSITION APPROXIMATION 

The Born-Green-Yvon integrodifferential equation for 
the pair correlation function has the following form 19

: 

- V1lng.2)(r12 ) = f3VIV< 2)(r12) +p/3 J dc3[V 1V<2)(r13 )] 

(3.1) 

where V<2) represents the pair interaction, and g.3) is the triplet 
correlation function. Normally the latter is unknown just as 
is the desired g.2), but it is even more complicated. 

Quite generally we can write the identity: 

g.3)(C1,C2,C3) =g.2) ( r12 )g(2)(r13 )g.2) ( r23 )K(c l'C2,C3), 
(3.2) 

where K is nonnegative and symmetric under interchange of 
particle positions. The Kirkwood superposition approxima-

tion sets K identically equal to unity. 1,8 By using this approx­
imation in Eq. (3.1) one obtains a nonlinear integrodifferen­
tial equation containing only the one unknown function g.2): 

- V I In g.2)(rI2 ) = f3V IV<2)(r12 ) + p/3 

X J dC3 [V IV<2)(r13) ]g(2)(r13 )g.2)(r23)· 

(3.3) 

When the specific Gaussian form A exp( - r) is inserted 
for v(2)(r), and bipolar coordinates are used for simplifica­
tion, Eq. (3.3) reduces to the following form: 

It is straightforward to deduce (by substitution) a /3A 
series for the solution to Eq. (3.4). The result formally has 
the structure displayed by the exact high-temperature series 
given earlier in Eq. (2.2). Indeed the coefficient functions 
ftJz andh are again found to have the precise forms shown 
in Eqs. (2.3)-(2.S). However, a discrepancy (affecting only 
one contributing term) arises in the fourth-order coefficient, 
which for the Kirkwood approximation (K) becomes 
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/~K)(r) = (l/24)exp( - 4r) + p,r/2[2-S/2 exp( - 5r/2) 

+ 3-3/2 exp( - 5r13) + (1I24)exp( - 3r14) + (1I32)exp( - r)] 

+ p2,r[3-3/2 exp( - 4r13) + (3/2)5- 3/2 exp( - 2r15) 

+ (113)5- 112 exp( - 3r15) + (1I16)exp( - r)] +p3(.,r/2/S)exp( - rI4). (3.5) 

IV. PERCUS-YEVICK APPROXIMATION 

The direct correlation function c( r) is defined implicitly 
in terms of Fl2) by the Ornstein-Zernike relation:20 

Fl2)(r12 ) -1 =c(rI2 ) +p f dr3c(r13 )[Fl2)(r23 ) -1]. 

(4.1 ) 

Conventional wisdom holds that c(r) has shorter range than 
Fl2) (r) - 1 and for that reason is more "fundamental." 

The Percus-Yevick approximation takes c(r) to be the 
following combination9

: 

(4.2) 

Hence Eq. (4.1) becomes 

exp[pV<2)(r12 ) ]Fl2)(r12 ) - I 

= p f dr3{1 - exp[pV<2)(r13 )]} 

xFl2)(r13 )[Fl2)(r23 ) - 1]. (4.3) 

As in the preceding case of the Kirkwood superposition ap­
proximation, the result is a nonlinear functional equation 
containing only the single unknown quantity Fl2). 

As before, it is possible to generate a p;. series for the 
solution to the Percus-Yevick integral equation. To do so it 
is necessary to replace V<2) in Eq. (4.3) with the Gaussian pair 
interaction ;. exp ( - r) and to iterate about the infinite­
temperature limit. A formal series of the type (2.2) then 
arises. Just as was the case with the Kirkwood approxima­
tion the first three coefficient functionS/I'};'}; are exact, but 
the fourth-order term fails to agree with the exact form 
shown in Eq. (2.6). We find instead that the Percus-Yevick 
(PY) approximation leads to the result 

/~PY)(r) = (l/24)exp( - 4r) +p,r/2[2-S/2 exp( - 5r/2) 

+ 3-3/2 exp( - 5r13) + (l/24)exp( - 3r14) + (l/32)exp( - r)] 

+p2,r[3-3/2 exp( -4rI3) + (3/2)5- 3/2 exp( -2rI5) 

+2(5-3/2 )exp( -3rI5)] +p3(1T9/2/S)exp( -rI4)], (4.4) 

which differs from Eq. (2.6) only by virtue of a missing termp2(,r 116)exp( - r). 

V. NUMERICAL SOLUTIONS 

One of the primary tasks in the present project is to 
obtain numerical Fl2

) solutions for the approximate Born­
Green-Yvon-Kirkwood (BGYK) and the Percus-Yevick 
(PY) equations. This is done first for positive values of the 
parameter p;., followed by continuous change in this quanti­
ty toward and into negative values to see to what extent the 
collapse phenomenon is represented. A variety of numerical 
algorithms is available for this study; we have employed a 
Newton-Raphson technique21 for the BGYK case, and an 
iterative Fourier transform approach22 for the PY case. 

Figure 1 shows a typical Fl2) result for positive p;.. Spe­
cifically, this result was obtained by solving the BGYK 
equation for p;. = 6.6667, P = 1.0. Highly damped oscilla­
tory short-range order is present, and substantial particle 
interpenetration is revealed by the fact that Fl2) (0) ::::; 0.2. So­
lutions for the PY equation in this regime are quite similar to 
their BGYK counterparts. 

As p;. declines toward zero from positive values (p held 
constant), the numerical Fl2) functions uniformly approach 
unity at all r. This is expected on physical grounds and is 
consistent with the series expansions for the two cases. 

We have found both for the BGYK and the PY approxi­
mations that the Fl2

) solutions smoothly continue at fixed p 
from positive p;., through the origin, into the negative re­
gime of p;.. Figure 2 exhibits the BGYK solution obtained 

1.2,--------------------------------, 

p 

1.0 

0.8 

I 
o . 6 ~ 

I 
0.4r .: 

I •• 

0.2~~_? ____ ~ ____ ~ ______ ~ ____ -L ____ ~ 
4 

FIG. 1. Pair correlation function for the Gaussian core model, obtained by 
solving the BGYK equation at {M = 6.6667, P = 1.0. 
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FIG. 2. Pair correlation function for the Gaussian core model, obtained by 
solving the BGYK equation at pJ. = - 0.0500, P = 1.0. 

for /3}., = - 0.0500, P = 1.0, showing monotonic decay to 
unity with increasing r. Once again the PY solutions have 
quite similar character. 

The attractive pair interactions present with /3}., < 0 fail 
to produce collapse in the BGYK and PY approximations, 
but instead produce a modest local density enhancement. 
Tentatively this can be understood from the /3}., series for the 
two cases. Series results given in Secs. II-IV above indicate 
thatg.2)(r) - 1 is composed of Gaussian contributions with 
various weights and spatial ranges, both for the exact func­
tion, and for the BGYK and PY approximations. When 
/3}., > 0 these contributions occur with alternating signs, and 
the resulting partial cancellation is r dependent in such a way 
as to produce damped oscillations. But when /3}., < 0, at least 
through O[ (/3}.,)4], the various Gaussian contributions all 
have positive signs and reinforce one another. That the 
BG YK and PY approximations smoothly continue from the 
positive to the negative /3)., axis indicates that the corre­
sponding series have a nonzero radius of convergence. By 

1.4 

\ 
* 
** 
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4 

FIG. 3. Numerical pair correlation function for the BGYK equation for 
PJ. = - 0.145 99,p = 1.0. 

3.0~~~~~~~--~~~~--~~~ 

2.5 

p 
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1.5 I--

i \. 

O~~--~"-~~~==~====~ 
lO 

FIG. 4. Numerical pair correlation functions for the PY equation with 
pA. = - 0.100 (lower curve) and - 0.735 (upper curve) for p = 0.1. 

contrast, the exact series for the infinite system limit must be 
divergent, reflecting the existence of a collapse-related essen­
tial singularity at /3}., = O. 

As /3}., becomes more and more negative in the two ap­
proximations, the corresponding g.2) results display an in­
creasing tendency toward local density enhancement (clus­
tering), both regarding the magnitude of g.2) at r = 0 and the 
rate of monotonic decay with increasing distance. Figure 3 
shows the numerical BGYK solution for /3}., = - 0.145 99, 
P = 1.0. Comparison with Fig. 2 makes obvious the buildup 
both in magnitude and in range of the clustering tendency. 

Figure 4 displays analogous numerical results for the 
PY equation, with /3}., = - 0.100 and - 0.735 at the lower 
density p = 0.1. 

Evidently the BGYK and PY approximations replace 
the vivid system-consuming collapse phenomenon with a 
pale imitation. At least for the /3}., < 0 regime these approxi­
mations render the many-body system less cooperative than 
it should be. 

We have been able only to obtain numerical g.2) solu­
tions for the BGYK and PY equations for negative values of 
/3}., that are nearer to the origin than some negative critical 
limit (/3}.,) c' This limit depends strongly on density p, but 
turns out to be nearly the same for the BGYK and PY ap­
proximations. Table I lists our estimates for these critical 
coupling constants. 

The numerical evidence for both approximations and at 
the three densities considered (p = 0.1,0.4, 1.0) indicates 
that g.2)(r, /3}.,) approaches a well-defined limit as /3}., ap­
proaches (/3}.,) c from above. However, the quantity 

ag.2) (r, /3)., ) 

a(/3}") 
(5.1 ) 

TABLE I. Numerical estimates of the critical coupling constants for the 
two approximate theories. 

p BGYK <PA.) c PY <PJ.) c 

0.1 - 0.7312 -0.75 
0.4 -0.2964 -0.305 
1.0 - 0.1460 - 0.148 
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appears to diverge at ({3).) c' roughly as [ ({3).) 
- ({3).) c) -1/2. The critical coupling constants shown in 

Table I can be located by using this observation. Given this 
apparent branch point behavior it is then not surprising that 
we were unable ever to find real g2) solutions for 
{3). < ({3).) c' We suspect (but have not proved) that these 
critical coupling constants are the radii of convergence of the 
corresponding g2) power series. 

The isothermal compressibility K T is related to the pair 
correlation function through the well-known identity:23 

(5.2) 

The integral in the right member provides a direct measure 
of the local clustering tendency, and so is a natural quantity 
to examine in the present context. Figure 5 shows a plot of 
).K T vs).{3 along a portion of the negative axis, for the BG YK 
case at p = 1.0. We see that).K T takes a downward plunge as 
{3). approaches the critical value - 0.1460 from above. 

The data shown in Fig. 5 numerically can be fitted well 
with an expression of the form 

A + B6. + C6. 1/2
, 

6. ={3). - ({3).)c' (5.3) 

where A, B, and C are adjustable parameters. Analogous 
BGYK data for the other two densities considered (0.1,0.4) 
likewise are represented well by the same form. We have not 
been able to improve the fits by using In 6. in place of 6. 1/2 

(this is a significantly poorer fit function atp = 0.1 and 1.0). 
In any case the compressibility seems formally to have a 
branch-point singularity at ({3).) c' 

In several respects the critical coupling constant points 
on the negative {3). axis for the BGYK and PY approxima­
tions resemble conventional critical points. Near these 
points g2)(r) develops relatively long-range behavior, and 
various thermodynamic quantities and distribution func­
tions appear to exhibit critical singularities of branch-point 
character. However the specific critical singularities in­
volved do not seem to be closely related to those that describe 
conventional critical phenomena, even after accounting for 
possible distinctions between the "mean-field" or "classical" 

o. 0 ,-~~--~~~~~~~~~-----,.-----, 

m -0.5 

b 

-1. 5 
k 

- 2.0 
p 

p 

-2.5 '-----~~~~~~~~~~~--'-~-

-0.16 -0.14 -0.12 -0.10 -0.08 -0.06 -0.04 

beta·lambda 

FIG. 5. Plot of the local density enhancementmeasureA.KT [see Eq. (S.2)] 
vs {3A. for the BGYK approximation at p = 1.0. 

values ofthe critical exponents, and the more realistic "non­
classical" exponents.24 In this context it should be empha­
sized that the Percus-Yevick25 and the hypernetted-chain26 

approximations for g2) are known to give qualitatively poor 
results at conventional critical points. 

VI. DISCUSSION 

Equation (B 14) in Appendix B displays the explicit 
form of the accurate superposition correction factor K for 
the collapsed state, showing how drastically it differs from 
the constant unity proposed by Kirkwood's superposition 
approximation. Under the circumstances it is hardly surpris­
ing that the BGYK integral equation for g2) fails to account 
correctly for the collapse phenomenon. It is not obvious to us 
that there exists an alternative functional of g2) with which 
to approximate g3) that (a) continues to be exact (as does 
the Kirkwood approximation) in the positive-({3).), low­
density limit, (b) yields Eq. (B13) for the Gaussian core 
model collapsed state, and (c) leads to a numerically feasible 
analog to the BG YK equation. 

Just as we see how badly the Kirkwood superposition 
approximation breaks down for the collapsed state, we can 
also see that the Percus-Yevick approximation is inappro­
priate. Starting with the Ornstein-Zernike equation (4.1), 
and inserting the g2) expression in Eq. (BlO), we find that 
the Fourier transform C(k) of the direct correlation func­
tion c(r) is 

C(k) = f dr exp(ik·r)c(r) 

= 0 (k = 0) 

Vexp( - k 2/21{3).IN) 

1 +pVexp( -k2/21{3).IN) 
(k#O). (6.1) 

On account of the presence of the large quantity Vin numer­
ator and denominator, this function will substantially equal 
the constantp - 1 for a wide range of nonvanishing k's around 
the origin. 

By contrast the Percus-Yevick approximation for the 
direct correlation function, Eq. (4.2), leads to 

Cpy (r) = V [1 - exp( - 1{3). I) ] (1{3). IN 1211')3/2 

Xexp( -1{3).INrI2). (6.2) 

In this expression we have replaced v(2)(r) by its value at the 
origin because of the extreme narrowness of the Gaussian 
factor. The Fourier transform is readily found to be (for all 
k) 

Cpy (k) = V [1 - exp( - 1{3). I) ]exp( - k 2/21{3). IN). 
(6.3 ) 

In stark contrast to the correct result (6.1) this is very large 
and positive near the origin. 

Although we have only studied the two approximate 
theories BGYK and PY in sufficient detail to see why they 
fail qualitatively to describe collapse at negative {3)., we be­
lieve that all other currently available approximations (such 
as those advanced in Refs. 10-12) are analogous. In particu­
lar we expect that all will yield thermodynamic properties 
and particle correlation functions that are analytic in {3). at 
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the origin. Furthermore, it seems reasonable to suppose that 
all will predict branch point singularities on the negative,BA 
axis with critical point i 2),s similar to that shown in Fig. 3 
above. 

In contemplating future closure approximations for the 
theory of i 2

), it may indeed be difficult to produce automati­
cally the correct collapse singularity, located at,BA = 0 in 
the large system limit. Nevertheless at a more modest level 
attention should be given to generating approximations 
which, when applied to the Gaussian core model, manage to 
move the artifactual critical point closer to the origin. If this 
were successful it would indicate more generally that the 
approximations used were capable of accurately describing 
density fluctuations, particularly those that are associated 
with particle clustering under conventional physical circum­
stances. 

APPENDIX A 

Using simple arguments we now estimate the value of 
the coupling constant A < 0 which will cause collapse to oc­
cur for a large fixed number N of particles with Gaussian 
pair interactions: 

V<2)(rij) = A exp( - rp. (Al) 

We start with the following expression for F(I), the nonideal 
part of the Helmholtz free energy for the N particles: 

,BF(I)(,B,N) = -In( exp [ -,B i<~ I v(2)(rij) D· (A2) 

Here < ... ) denotes an unweighted average over all possible 
particle positions inside the container of volume V. The tran­
sition of F(I) from O(N) to O(N2) behavior marks the onset 
of collapse. 

When A is small but negative it is reasonable to suppose 
that the N particles fall into two categories. Generally some 
number M <N will have aggregated into a more or less com­
pact cluster, while the remainder N - M are remote from 
the cluster and move through V in a virtually free manner. 
The partitioning of the N particles between bound and free is 
variable; taking all possibilities into account leads to 

( exp [ -,B L V(2) (ij) D 
"" ~ N! Jdr ... Jdr 
- M~L (N _ M)!M!V M I M 

xexp [ -,B k<t I v(2)(kl) l (A3) 

In this expression the multiple integral is constrained to 
those positions r I' .. r M which form a cluster, and L is an 
O( 1) lower limit for which the aggregate forms a recogniz­
able cluster. 

Within a compact M cluster the potential energy can be 
well approximated by the quadratic form: 

M M 
L V<2)(rjk ) ~!M(M - l)A - A L (rj - rk)2 

j<k= I j<k 
M 

=!M(M - l)A - MA L (rj - ro)2, 
j= I 

(A4) 

where ro stands for the position of the cluster centroid: 

(A5) 

This centroid of course can be located anywhere in volume V 
even though when A < 0 the pair distances within the cluster 
are small. Consequently it makes sense to carry out a coordi­
nate transformation which isolates the center of mass posi­
tion. For this purpose we introduce the M quantities: 

kl =0, 

k2 = - 21TIM, k3 = 21TIM, 

k4 = - 41TIM, k5 = 41TIM, etc., 

kM = {2m1TI(2m + 1) 
1T (M even) 

(M odd = 2m + 1) 
(A6) 

Then we have the following orthogonal transformation with 
unit Jacobian: 

M 

Sj =M- 1/2 L exp(ilkj)r/ (1~<M). (A7) 
/=1 

It is clear that SI = M 1/2ro, and the other Sj are collective 
coordinates describing internal degrees of freedom within 
the cluster. 

The s/s corresponding to kj ¥-O, 1T occur as complex 
conjugate pairs. It is desirable to transform each of these to a 
pair of real vectors. This can be effected by the transforma­
tions 

t2n = 2- 112 (S2n + s2n+ I), 

t2n + I = 2- 1/2 (S2n - s2n+ I)' 

each of which likewise has unit Jacobian. 

(AS) 

It is easy to show that the quadratic approximation 
(A4) for the cluster potential energy becomes 

namely that of an isotropic oscillator in 3(M - 1) dimen­
sions. Consequently Eq. (A3) becomes (tl=SI): 

N 

~ L {N!exp[ - !M(M - l)(,BA)]1 
M=L 
[(N -M)!M!VM]) 

xJ dtl'''J dtM exp[M,BA j~2 tf] . (A1O) 

The tl integration will give a factor M 3/2 V. The condition 
that the M particles form a compact cluster can be taken as 
setting an appropriate upper limit To on the hyperradius Tin 
the 3(M - 1), dimensional space: 

(All) 

Since Mis very large in our application, O(N) in fact, we can 
suppose thatthe integrand in Eq. (A 10) has become negligi­
bly small at the hyperradius upper limit To' Consequently we 
have 
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(exp[ - f3I V<2)(ij) ]) 

g;fNW ~ exp [ - !M(M - 1 )f3A ] 
M~L (N - M)!MW MM(3M-6)/2 

x( 1f3~ I rM

-

I

)/2. (A12) 

Evaluation of the nonideal free energy by Eq. (A2) re­
quires taking the logarithm of expression (A12). To the or­
der required it is then sufficient to replace the sum by its 
maximum term, corresponding to some M = M(f3A). Rec­
ognizing that Mis a large quantity, one obtains the following 
condition for its determination (f3A < 0): 

+ In[p( el; I y12] . 
The structure ofEq. (A13) suggests writing 

M=N(1-N-P), 

If3A I =A InN IN + OOn InN IN), 

(A13) 

(A14) 

so as M increases from 0 to N, exponent P increases from 0 to 
infinity. Substituting these expressions into Eq. (A13) yields 

A = 1 + P + OOn In N lIn N). (A1S) 

Since P is nonnegative this result indicates a threshold mag­
nitude of the interparticle coupling (in the large system lim­
it) : 

(f3A) c = - In N IN, (A16) 

at which condensation initiates. For smaller magnitudes of 
f3A the system is unaggregated. But as f3A descends through 
(f3A) c in Eq. (A 16) the condensation goes extremely rapid­
ly toward completion. When the coupling doubles in magni­
tude to 2 (f3A) c the prediction is that on average all but one of 
the N particles will be found in the compact cluster; at 
3 (f3A) c' M formally deviates below N only by N - I. 

APPENDIXB 

We have established in Appendix A that the aggregation 
process is substantially complete when If3A I is at least a small 
multiple of In N IN. The objective now is to calculate low­
order particle correlations in the completely aggregated 
state. 

Utilizing the collective coordinates tj introduced in Ap­
pendix A, the normalized N-particle probability for the col­
lapsed state is 

N 

PN(rl " 'rN ) = CN exp( - N If3A I I tJ), 
j=2 

CN = N-3/2V- I(N If3A Ihr)3(N- \)12. (B1 ) 

This expression can be employed to calculate distribution 
functions for small numbers of particles by carrying out suit­
able integrations. As an example, the probability PI (R I ) that 
particle 1 is displaced by RI from the cluster centroid posi­
tion ro is easily seen to be 

PI (RI ) = J dt l .. • J dtN PN c5(RI - r l + ro)' (B2) 

This can be evaluated by introducing the formal integral 
representation for the Dirac delta function, 

c5(R) = (21T) -3 J du exp(lRou), (B3) 

and invoking the following relation between particle and col­
lective coordinates (N has been assumed to be an even in­
teger for simplicity) : 

rj - ro = (2IN) 112 [cos(jk2 )t2 + sin(jk2 )t3 + cos(jk4 )t4 

+ sin(jk4 )ts + ... + cos(jkN _ 1 )tN _ I 

+ sin(jkN _ I )tN ] (1 <J<N). (B4) 

When these identities are substituted into Eq. (B2) the re­
sulting integrals can be carried out explicitly. One finds 

PI(RI)=( If3AIN
2 

)3/2exp[_If3AIN2Rt/(N_1)] 
1T(N - 1) 

g;f (If3A IN 11T) 3/2exp( - If3A I NR i)· (BS) 

The latter form is appropriate since N is large. 
An obvious conclusion to be drawn from Eq. (BS) is 

that the root-mean-square displacement of the typical parti­
cle 1 from the cluster centroid is proportional to 
(If3A IN) -1/2. Because stability of the cluster requires If3A I 
to be at least of order In N IN (see Appendix A), the rms 
displacement will be no larger in order of magnitude than 
On N) -1/

2
, Since N is assumed to be very large, this will be 

small compared to unity, thereby justifying use of the qua­
draticform (A4), (A9) for the potential. 

The result (BS) has an elementary and obvious inter­
pretation. It expresses the fact that particle 1 experiences an 
effective potential due to all N - 1 other particles acting as 
though they all were located at a common position, virtually 
coincident with the centroid. 

The generalization of expression (B2) is obvious to the 
joint probability for a pair of particles to be respectively dis­
placed by RI and by R2 from the centroid: 

P2(RI,R2) = J dtl'''J dtN PN 

Xc5(R I - r l + ro)c5(R2 - r2 + ro)' (B6) 

After using integral representation (B3) for both Dirac del­
ta functions, and Eqs. (B4), the same kinds of simplifica­
tions obtain as before. The final result (in the large N limit) 
is exceptionally simple: 

P2(RI,R2) =PI(RI )PI(R2) 

= (If3A IN 11T)3exp [ - If3A I N(R i + R ~)]. 
(B7) 

Although the chosen particles 1 and 2 interact, their poten­
tial is virtually invariant over the small excursions permitted 
by the powerful cluster potential due to the remaining N - 2 
particles. 

We can write 

(B8) 

thereby transforming to independent centroid and relative-
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configuration coordinates for the pair. After integrating 
over the former we obtain the distribution function i 2

) for 
the scalar distance r l2 in the collapsed state: 

i 2)(r12 ) = (I.8A IN 121T)3/2exp( - !1.8A I NTi2). (B9) 

For present purposes it is more useful to present this result in 
the form of the pair correlation function i 2

) (r 12). The trans­
formation is trivial: 

g(2)(rI2 ) = Vi2)(rI2 ) 

= V( I.8A IN 121T)3/2exp ( - !1.8A I NTi2)· 

(BlO) 

Extension to the three-particle case involves nothing 
fundamentally different. Not surprising, in the large N limit, 
the joint probability P3 for three displacements from the clus­
ter centroid factors into three PI'S: 

P3(RI,R2,R3 ) 

= PI(RI)PI (R2 )PI(R3 ) 

= (I.8A IN 11T)9/
2exp [ - I.8A IN(R i + R ~ + R i)] 

= (I.8A IN 11T)9/2exp{ - (I.8A IN 13) [(RI + R2 + R3)2 

+ Ti2 + Ti3 + ~3 p. (Bll) 

The last way of writing this quantity separates the position of 
the three-particle centroid, which subsequently can be inte­
grated out of the probability. The resulting probability i 3

) 

for scalar distances alone becomes 

i3)(rl2,r13,r23) = (I.8A IN 13 1/21T)3exp [ - (I.8A IN 13) 

(B12) 

This is trivially equivalent to the three-particle correlation 
function: 

i3)(rI2,r13,r23) == V2i3)(rl2,r13,r23) 

= V2( I.8A IN 131/21T)3 

Xexp[ - (I.8A IN 13)(Ti2 + Ti3 + ~3)]. 
(B13) 

Equations (B 10) and (B 13) for g(2) and i 3 ) now permit 
us to calculate the Kirkwood superposition correction factor 
K defined in Eq. (3.2): 

K(r ) _ i3)(rI2,r13,r23) 
12,r13,r23 - ...(2)( )...(2)( ) (2)( ) 

IS r 12 IS r13 g r23 

= V-I (81T131.8A IN)3/2 

xexp[ (I.8A IN 16)(Ti2 + Ti3 + ~3)]. 
(B14) 
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