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Many liquids have heat capacities that substantially exceed those of the corresponding crystal, 
and this discrepancy magnifies in the supercooled regime. Thus, liquid entropy declines more 
rapidly with temperature than does crystal entropy, and the former paradoxically seems to fall 
below the latter for temperatures below the Kauzmann point TK • Although laboratory glass 
transitions inevitably intervene to prevent observation of this entropy crossing, it has often 
been argued that a second-order "ideal glass transition" in principle should occur at TK • The 
inherent structure theory of condensed phases has been modified to describe supercooled 
liquids, and has been applied to this Kauzmann paradox. The conclusion is that an ideal glass 
transition of the type normally associated with the Kauzmann phenomenon cannot occur for 
substances of limited molecular weight and with conventional intermolecular interactions. This 
result also subverts theoretical expressions for shear viscosity (such as the Tamman-Voge1-
Fulcher and the mode-coupling formulas) that diverge to infinity at an ideal glass transition 
temperature. 

I. INTRODUCTION 

Glass-forming liquids possess wide technological sig­
nificance, and their properties continue to draw basic re­
search attention in chemistry, materials science, and con­
densed-matter physics. 1-5 This paper is devoted to 
developing and applying a statistical mechanical formalism 
for metastable states, specifically supercooled liquids, to 
clarify the molecular nature of several static and dynamic 
properties that arise in formation of the vitreous state. Some 
aspects of this formalism have been previously advanced in 
connection with the "inherent structure theory" for con­
densed phases.6--12 

Although all glasses formed by supercooling through a 
glass transition region in temperature undergo dramatic 
changes in relaxation rates, the resulting kinetic arrest and 
the properties it affects do not appear to exhibit "universal­
ity," i.e., simple scaling laws generally do not apply. Instead 
such basic properties as density, heat capacity, and shear 
viscosity vary through the glass transition region in ways 
that are quite material specific. In this connection Angell 
and co-workers 13

-
15 have proposed a useful classification 

scheme for glass-forming liquids, placing them along a scale 
between "strong liquid" and "fragile liquid" extremes. The 
former displays Arrhenius behavior for shear viscosity, and 
relatively little change in heat capacity as the glass transition 
is traversed (Si02 is prototypical). The latter exhibits 
strongly non-Arrhenius viscosity that can often be well rep­
resented by the Tammann-Voge1-Fulcher equation 16--18 

7]( n G;;7]o exp[A /( T - To)), 7]o,A,To> 0, (1.1) 

and the heat capacity drops suddenly upon passing from 
supercooled liquid to the glass (o-terphenyl is a good exam­
pie). In principle, the formalism developed below is equally 
applicable to all supercooled liquids whether strong or fra­
gile. 

Kauzmann pointed out in 1948 a peculiar thermody­
namic circumstance presented by glass-forming liquids, that 

achieves its most vivid form for the fragile liquids. 19 This 
peculiarity subsequently has been named the "Kauzmann 
paradox." Its genesis is illustrated by Figs. 1(a) and l(b). 
Owing to the fact that the heat capacity of the supercooled 
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FIG. I. Thermodynamic properties creating the Kauzmann paradox. (a) 
shows the heat capacities of the stable liquid. supercooled liquid. and crys­
tal; (b) shows the corresponding absolute entropies. The Kauzmann tem­
perature T K is defined by intersection of the crystal entropy curve with that 
extrapolated for the supercooled liquid. 
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fragile liquid substantially exceeds that of the crystalline sol­
id, the absolute entropy curves for these two phases appear 
to cross at a positive temperature T K' the "Kauzmann tem­
perature" that is close to To in the TVF equation (1.1). As 
Fig. 1 shows, T K falls below the glass transition temperature 
Tg at which structural arrest occurs (for fragile liquids 
TglTK = 1.05 to 1.10), and for that reason the Kauzmann 
point is experimentally unachievable. But as a matter of 
principle one could conceive of a mechanism, or of a suffi­
ciently slow experiment, which permits structural equilibra­
tion to obtain down to and below T K' The resulting paradox 
is that the manifestly disordered metastable liquid below T K 

would appear to have an entropy lower than that of the or­
dered crystal. Since vibrational entropies of crystal and 
amorphous forms at low temperature tend to be nearly equal 
for most substances,20 this discrepancy concerns only con­
figurational entropies of supercooled liquid and crystal, and 
thus appears to violate the inviolable third law ofthermody­
namics. 

Originally it seemed that the way to avoid the paradox 
was to claim that nucleation of the crystal phase from the 
supercooled liquid became overwhelmingly probable as TK 
was approached from above. 19 However, accumulating ex­
perimental evidence on the homogeneous nucleation behav­
ior of glass-forming substances apparently contradicts this 
view.21 

A popular alternative viewpoint is that T K represents an 
ideal glass transition temperature. In this scenario, support­
ed by the Gibbs-DiMarzio approximate lattice theory for 
polymer melts,22,23 the supercooled liquid does indeed attain 
a vanishing configurational entropy at T K > 0, and this point 
is a mathematically precise second-order phase transition 
point. Below T K the ideal glass would retain its essentially 
unique configuration. 

The analytical framework presented below for descrip­
tion of supercooled liquids permits a penetrating critique of 
the Kauzmann paradox. The conclusion is that for sub­
stances with molecules of bounded size interacting with phy­
sically reasonable potentials, an ideal glass transition in the 
strict sense is not possible. The simple and seemingly reason­
able extrapolation of the metastable liquid entropy to tem­
peratures below Tg is misleading. By implication this calls 
into question claims of strictly diverging viscosities and 
mean relaxation times at a positive temperature. 24-29 

II. ISOTHERMAL-ISOBARIC PARTITION FUNCTION 

Consider a many-body system composed of ~ particles 
of species j (1..;; j..;;n) with masses mj , and denote the total 
particle number by 

n 

N= I ~. (2.1) 
j= I 

Measurements on glass formers typically occur at constant 
pressure p. Consequently we will assume that the N particles 
reside in a vessel that includes a movable piston with con­
stant inward force. The interior volume Vof the vessel can 
vary as the balance shifts between this inward force and the 
forces of collision of particles with the piston. 

The total potential energy <I> for this mechanical system 
includes three parts: 

<I>(r l " 'rN,u) = <l>o(r l " 'rN ) + <1>1 (r l " 'rN,u) 

+pAu. (2.2) 

The first, <1>0' is the interaction among the particles them­
selves, and depends only on their coordinates r I ... r N (if the 
particles have structure these will specify internal coordi­
nates as well as positions). The second, <1>1' comprises inter­
actions of particles with vessel walls, one of which is the 
piston of area A whose position is described by coordinate u. 
Finally, the third term represents the work done to displace 
the piston. We have adopted the simple convention that the 
instantaneous volume is given by 

V(u) =Au. (2.3) 

Classical statistical mechanics should be adequate to de­
scribe the supercooling and glass transition phenomena of 
interest. Hence, effort will be directed toward developing a 
partition function to describe the supercooling extension of 
the equilibrium liquid. It is natural to start with the closed­
system isothermal-isobaric partition function30 

YN({3,p) = [.ft A :Nj Nj!]-I 
J=I 

X i oo 

dufdrl"JdrNeXp( -{3<1». (2.4) 

Here {3 = (k B n - I, the Aj are mean thermal deBroglie 
wavelengths, and for notational simplicity we have assumed 
only point particles. The effective limits on the r l " 'rN inte­
grals in Eq. (2.4) are set by the interactions comprised in <1>1 
of Eq. (2.2). Our principal interest lies in behavior of the 
large system limit, for which connection to thermodynamics 
is established by the identification 

In Y N ({3,p) = - {3G , (2.5) 

where G is the Gibbs free energy, an extensive quantity in 
that limit. 

Equation (2.4) can be transformed into a simple qua­
drature by a minor generalization of the constant-volume 
inherent structure theory approach.6 The configuration co­
ordinates r I' .. r N' U generate a (3N + 1) -dimensional space 
within which <I> has a set of discrete minima. These minima 
represent mechanically stable arrangements of the N parti­
cles and the piston subject to the given compressive force pA 
exerted on the latter from outside. Using arguments analo­
gous to those for the constant-volume case, the number of <I> 
minima in the large system limit will have the following 
asymptotic form: 

N 

exp(vN) IT Nj !, v>O. 
j= I 

(2.6) 

The product of factorials is a trivial permutational factor 
that is present because any mechanically stable particle 
packing can be converted into an entirely equivalent one by 
interchanging the coordinates of identical particles. The 
nontrivial exponential factor enumerates inequivalent pack­
ings, and its exponent parameter v depends on interactions, 
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mole fractions, and pressure, and is of order unity. 
It is natural to divide the (3N + 1 )-dimensional config­

uration space into basins, each one of which contains pre­
cisely one minimum of <1>. The basin Ba surrounding mini­
mum a is defined to be that set of configurations for the 
system as a whole which connect to the minimum by means 
of the mass-weighted descent equations: 

dr. 
m._J = -V.<I>, 

J ds J 

du - Oct> 
M-=---, s;;;'O, 

ds au (2.7) 

where M is the macroscopic piston mass. The inclusion of 
masses as shown is important to make the boundaries 
between contiguous basins normal to the conventionally de­
fined reaction paths connecting the respective minima.31 

The partition function Y N can be written as a sum over 
distinguishable basins 

YN = [.ft Aj -
3NJ]I' 

J=I a 

(2.8) 

Here we have let <I> a stand for the value of <I> at the local 
minimum a, and the primed summation includes only one of 
each of the permutation-equivalent basins. The vector R is 
shorthand notation for the collection of 3N + I configura­
tional coordinates. All basins Ba are connected, but may not 
be simply connected. 

When the system size and particle number have macro­
scopic magnitudes the number exp( vN) of distinguishable 
minima is enormous. Consequently a statistical representa­
tion of those minima and their associated basins becomes 
appropriate. Thus, it is useful to classify minima by ,p, their 
depths on a per particle basis: 

(2.9) 

and in terms of this parameter we expect to have a contin­
uous distribution of minima. To be consistent with Eq. (2.6) 
we write 

exp[ O'(,p )N]d,p (2.10) 

for the number of minima whose depths per particle lie in the 
range ,p ± d,p/2. Clearly we must have 

exp(vN) = f exp[O'(,p)N]d,p, (2.11) 

and since these expressions are intended to apply only to the 
large-system limit (N-- oo,,Bandpfixed) where the integral 
in Eq. (2.11) is dominated by the neighborhood ofthe inte­
grand maximum, 

v = max O'(,p) . ( 2.12 ) 
(</» 

The basin integrals appearing in the Y N expression 
(2.8) may be identified as classical vibrational partition 
functions. While these quantities certainly can be expected 

to vary from basin to basin, it makes sense to introduce a 
suitable average for those basins whose depths are given es­
sentially by ,po For these we can define a mean vibrational 
free energy per particle as follows: 

I" (,B,,p) = -lim lim (N,8)-lln(/a(,B»</>±E' 
E ...... O N- 00 

Ja (,8) =1 dRexp[ -,B.6.a <l>(R», (2.13) 
Ba 

where the angular brackets denote an a priori average over 
all basins whose minima lie between the subscripted limits. 

Having introduced the packing enumeration function 
O'(,p) and the vibrational free energy I" (,B,,p), we can now 
write Y N as a simple quadrature over ,p: 

YN (,B,p) = [.ft A j- 3N.i] 
J=I 

x J d,p exp{N [ O'(,p) -,B,p - ,BI" (,B,,p) ]} . 

(2.14 ) 

Both 0' and I" depend on p. The ,p integral will have finite 
lower and upper limits that are determined respectively by 
the best possible crystalline packing of the particles, and the 
worst (highest energy) mechanically stable packing. 

An asymptotically correct evaluation of In Y N only re­
quires evaluating the integrand in Eq. (2.14) at its maxi­
mum. Let ,pm (,B,p) be that value of,p which pro~uces the 
integrand maximum at the prevailing ,B and p: 

O'(,pm) -,B,pm -,BI"(,B,,pm) = maximum. (2.15) 

Then we have [as required by Eq. (2.5)] 
n 

N-1ln YN - - I (Nj/N)lnA; 
j= I 

+ O'(,pm) - ,B,pm - ,BI" (,B,,pm)· (2.16) 

The quantity,pm identifies the subset of basins within which 
the system will be found with overwhelming probability at 
the given ,B and p. Equation (2.16) in principle gives the 
equilibrium properties at any ,B and p, and in particular 
properly represents the first-order phase transition between 
equilibrium liquid and crystal. 

III. MODIFICATION FOR SUPERCOOLED LIQUIDS 

In the event that the N particles constitute a pure sub­
stance or a congruently melting mixture, ,pm (,B,p) defined 
by Eq. (2.15) above will have a simple discontinuity at the 
melting temperature T m • When T> T m the relevant particle 
packings are amorphous and relatively high in potential en­
ergy, while for T < Tm they correspond to the (nearly) per­
fect crystal and have low potential energy. For simple sub­
stances at low pressure the discontinuity seems to be roughly 
0.8 of the heat offusion. 7

•
8 

Successful supercooling of a liquid requires that its con­
figuration remain within basins whose stable packings (po­
tential minima) are devoid of substantial crystallites. If they 
were present these crystallites could act as nucleation 
centers and would lead to subsequent crystal growth that 
eventually would consume the entire system. In order to ex­
tend the partition function Y N from the strict equilibrium 
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regime to the supercooled liquid regime it suffices to project 
out of consideration that portion of the (3N + 1 )-dimen­
sional configuration space covered by basins whose packings 
contain crystallites beyond some critical lower size lim­
it.8

•
9

•
12 Furthermore, this projection must eliminate crystal­

lites not only of the stable crystal form, but also of qualifying 
metastable allomorphs. 

For present purposes it is not necessary to display all 
numerical details of a packing projection algorithm. It suf­
fices to state that any packing and its basin should be elimin­
ated if it contains a recognizable compact crystallite with, 
say, 23 = 8 unit cells of any "dangerous" crystal structure. 
In any case, application of the required pattern recognition is 
likely to be an NP-complete task l2 if implemented by com­
puter. 

After projection we are left with a reduced set of amor­
phous minima and their basins, the enumeration of which 
can be expressed in terms of U a (tP), the direct analog of the 
full-configuration-space function u( tP ). Obviously we have 

(3.1) 

and these two functions should differ most for the lowest 
values of the depth per particle tP. 

A depth-dependent vibrational free energy / va can im­
mediately be defined for the amorphous subspace using the 
same format (2.13) as before, but where the averaging oper­
ation includes only those basins remaining after projection. 
Just as before, both U a and/va depend implicitly on pressure. 

An amorphous region analog Y Na for the partition func­
tion YN showninEq. (2.14) as a simple quadrature can now 
be written down: 

x f dtP exp{N [ Ua (tP) - PtP - P/ va (P,tP) ] } 

(3.2) 

The corresponding Gibbs free energy has been denoted by 
Ga. The P and p dependent depth tPma of the dominating 
amorphous region basins is determined by the obvious modi­
fication of the earlier variational equation (2.15): 

ua(tPma) -PtPma -P/va(P,tPma) = maximum , (3.3) 

whereupon we have 
n 

N-1pGa - L (~/N)lnAJ 
j~1 

+Ua(tPma) -PtPma -P/va(P,tPma) .(3.4) 
Above the melting temperature Y Na should be virtually 

identical to Y N since the system containing thermodynamic­
ally stable liquid will be found with almost unit probability in 
amorphous basins. The assumption that Y Na is the correct 
extension for the supercooled liquid presumes that below the 
melting point the system can continue to explore the amor­
phous region of configuration space in an adequately ergodic 
fashion on a time scale less than or equal to laboratory mea­
surement times. The ability to carry out reproducible experi­
ments on real supercooled liquids above their glass transition 
temperature justifies this presumption. On the other hand, 

Y Na ceases to have direct experimental significance below 
the glass transition, but even then it remains important to 
understand how low temperature nonergodic dynamics 
evolves on the <I> hypersurface in the amorphous region of 
configuration space, to understand relaxation phenomena. 

One can imagine erecting an impenetrable barrier in the 
(3N + 1) -dimensional configuration space between the re­
tained amorphous region and the rejected crystallite-con­
taining portion. With such a barrier in place to reflect dy­
namical orbits specularly, the concept of an equilibrium 
partition function for just one side of that barrier is obviously 
legitimate. Y Na is precisely the partition function for the 
amorphous side ofthe barrier. 

The two Gibbs free energy functions G and G a' in prin­
ciple, should differ slightly for the equilibrium liquid. The 
former is believed to include a weak essential singularity at 
the melting point whose origin concerns the so-called "he­
terophase fluctuations.,,32-36 The pattern recognition capac­
ity embedded in the projection operation places an upper 
limit on the size of such fluctuations and thereby annihilates 
the essential singularity. The characteristic properties of 
good glass formers suggest that they are especially immune 
to heterophase fluctuations (since nucleation is improba­
ble). Consequently the essential singularity in their G func­
tions would be exceptionally weak, and Ga would be nearly 
invariant to changes in placement of the impenetrable bar­
rier, i.e., to the specific limits on admissible crystallite sizes 
and shapes. 

It should be noted in passing that Goldstein has also 
discussed the properties of glasses in terms of the multidi­
mensional geometry of the potential energy function. 37 

However, his analysis was offered without benefit of the for­
mal and detailed theoretical superstructure upon which the 
present work has been based. 

IV. LOW TEMPERATURE EQUILIBRATION 

To set the stage for analysis ofthe putative Kauzmann 
point in glass formers, it will be instructive to trace operation 
of the formalism first for the equilibrium crystal phase below 
its melting temperature. Hence we first refer to the unpro­
jected partition function Y N in Eq. (2.14) and the associated 
variational criterion (2.15). 

If the temperature is not too large the relevant particle 
packings are those for the perfect crystal (for which we write 
tP = tPc ), and for slightly imperfect crystals (tP > tPc) con­
taining low concentrations of point defects such as vacancies 
and interstitials. The immediate objective is to see how Eq. 
(2.15) is related to (and determines) the equilibrium con­
centration of those point defects. 

We initially restrict attention just to simple vacancies as 
the possible point defects. Let their number be denoted by 
nv' Under the assumption that the vacancies are sufficiently 
dilute to be treated as noninteracting, the number of defec­
tive crystalline packings containing the nv vacancies is given 
by the elementary combinatorial quantity 

(N + nv)!/N!n) (nv -(N) . (4.1) 

The corresponding value of tP may be taken to be linear in nv 
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tP = tPc + ll.tP, 

ll.tP = €v (nv/ N) , (4.2) 

where €v > 0 expresses vacancy creation enthalpy. Using 
Stirling's factorial formula in Eq. (4.1) and eliminating nv 
in favor of ll.tP, we obtain the following expression for a( tP ) 
for tP just above its lower limit tPc: 

a(tP) = -€v-1ll.tPlnll.tP+O(ll.tP). (4.3) 

The basic conclusion to be drawn is that a increases from 
zero at tPc initially with infinite slope. Inclusion of other 
types of point defects, and of a finite number of defect config­
urations at any location within the crystalline matrix would 
not alter the basic functional form shown in Eq. (4.3) 
(though the numerical multiplier would be affected). 

In contrast to the infinite-slope singularity displayed by 
a( tP), one expects the vibrational free energy to have a non­
singular dependence: 

Iv ({3,tP) = Iv ({3,tPc) + b({3)ll.tP + 0 [(ll.tP)2] . (4.4) 

The presence of point defects certainly will influence vibra­
tional normal mode frequencies, but any reasonable model 
shows that the influence is additive over the defects while 
they are still dilute and widely separated. As a result of Eq. 
(4.4) we have 

{3tP + {3lv ({3,tP) = {3 [ tP c + Iv ({3,tP c )] 

+ fJ [1 + b(fJ) ]ll.tP + 0 [(ll.tP)2] . 
(4.5) 

The combination 1 + b(fJ) can be expected to be positive 
since the per particle influence of isolated point defects is a 
modest perturbation overall. 

We now return to the variational criterion in Eq. (2.15). 
It is satisfied when the slopes with respect to tP of the fJ­
independent enumeration function a and of the combination 
fJ(tP + Iv) are exactly equal. Figure 2 illustrates how this 
comes to pass. As temperature declines (fJ increasing to in­
finity) the latter combination produces a family of curves 
with increasing inclination. Slope matching then occurs at 
lower and lower tP, but tPm only equals tPc at absolute zero 
because of the diverging slope of a(tP). Referring to Eqs. 
(4.3) and (4.4) we have (A>O): 

tPm(fJ)~tPc +A exp[ -fJO + b)€v] , (4.6) 

which explicitly shows how strongly the defect concentra­
tion vanishes as absolute zero is approached. 

Next consider the supercooled liquid with the modified 
functions aa and/va introduced in Sec. III. We need to iden­
tify mathematical circumstances for these modified func­
tions which conceivably could produce a Kauzmann phe­
nomenon at a positive temperature. Such an occurrence 
requires that the corresponding tPma (fJ) become equal to 
tP L , the lowest value possible for the amorphous packings, at 
that positive Kauzmann temperature: 

lim tPma({3)=tPL (fJK<OO) , (4.7) 
fJ-fJK - 0 

and furthermore that tPma (fJ) "stick" at this lower limit for 
all lower temperatures: 

(4.8) 

FIG. 2. Slope-matching construction to determine tPm (P) for the low tem­
perature crystalline phase. Three members of the P( tP + Iv) family of 
curves are shown, with p, > P2 > p,. 

Heat capacity measurements on a given material at low 
(but not extremely low) temperature in both crystalline and 
in unrelaxing glassy states show that vibrational properties 
change relatively little upon amorphization.20 Therefore, it 
is physically reasonable to suppose that the amorphous state 
combination fJ( tP + Iva) produces a family of curves vs tP 
that are nonsingular in t::.a tP = tP - tP L just as shown in Eq. 
(4.5) for the crystalline case. Specifically, 

fJtP + fJlva (fJ,tP) = fJ [ tP L + Iva (fJ,tP L )] 

+ fJ [1 + b a (fJ)] t::.tP + 0 [ (ll.tP ) 2] . 
(4.9) 

Existence of the novel Kauzmann point behavior conse­
quently must require a qualitative change in the enumera­
tion function aa compared to a. Figure 3 illustrates what 
must happen, namely that aa retains finite slope for tP near 
tPL: 

aa (tP) = cll.atP + 0 [(ll.atP)2] , 

(4.10) 

Matching of slopes above the Kauzmann temperature lo­
cates tPma ({3) which declines monotonically to tPL' Exactly 
at fJ K slopes match at the left ends of the curves, and are 
equal to c in Eq. (4.10). For lower temperatures, fJ>fJK' 
slope matching is no longer possible. However the condition 
that variational criterion (3.3) continue to be satisfied de­
mands that tPma stick at the lower limit tPL' This is precisely 
what would be required by an ideal glass transition. 

We should remark in passing that the amorphous state 
of minimum potential energy per particle tP L' to be relevant 
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FIG. 3. Hypothetical circumstance required for existence of a positive tem­
perature Kauzmann point. The decisive feature is the finite initial slope of 
the amorphous basin enumeration function U a (;). 

to a legitimate Kauzmann point, would have to have vanish­
ing packing entropy per particle, i.e., 

( 4.11) 

This is not quite equivalent to claiming that the lowest po­
tential energy attainable with an amorphous packing is 
unique (apart from permutations of identical particles). If 
there remains any packing degeneracy at rP = rPL it would 
have to be less than exponential in Nbecause ofthe way (Ta 

enters into the theory. A degeneracy, say, of some positive 
power of N or of the exponential of a fractional power of N 
would not affect the large-system-limit thermodynamic be­
havior at a Kauzmann point. 

The finite initial slope character, Eq. (4.10), apparently 
demanded for (T a by the existence of a Kauzmann point has 
remarkable consequences. In particular the lowest-lying 
structural excitations out ofthe ideal-glass state could not be 
described as independent point defects. If they were, a minor 
variant of the arguments concerning point defects in the 
crystal, culminating in the infinite initial slope result (4.3), 
would be immediately applicable. The function (Ta then 
would also have the same logarithmic singularity and infi­
nite initial slope as does (T. The alternative seems to be either 
that (a) the structural excitations are localized and require 
bounded enthalpy but have a very much restricted set of 
positions (i.e., not proportional to N) compared to the case 
for independent excitations, or (b) that excitation enthalpy 
diverges as the concentration of excitations goes to zero. 

Neither of these alternatives seems reasonable for mate­
rials composed of limited size particles with interactions of a 
physically acceptable character. While it is possible that low-

lying two-level systems as point defects may be absent in the 
ideal glass state for such materials, there is no way to avoid 
the possibility ofvacancy creation in any dense packing, sim­
ply by plucking out one or more particles from any location, 
placing them at the surface, and relaxing the result to rees­
tablish mechanical equilibrium. The work that must be ex­
pended per vacancy in such a process is strictly bounded. 
Similar remarks may apply to other defects inserted in the 
ideal glass structure, such as interstitials, molecular confor­
mational changes, etc. Consequently, (Ta inevitably must 
also have an infinite initial slope as described in Eq. (4.3). 
This in tum denies the possibility of a strict Kauzmann point 
for extrapolated entropy of supercooled liquids. Instead of 
the sharp bend indicated in Fig. 1 (b), a rounding is in princi­
ple required. But since this occurs below the glass transition 
temperature it is not surprising that naive extrapolations 
from above Tg would fail to uncover it. Figure 4 illustrates 
how extrapolations for rPma and configurational entropy for 
fragile liquids should appear. 

We emphasize that our negative conclusion regarding 
an ideal glass transition of second order at a sharply defined 
Kauzmann point applies only to materials whose constitu­
ent molecules have upper bounds to their molecular weight. 
By contrast one can envision a polymeric system where the 
mean molecular weight is proportional to the system size. 
Then in the large system limit the molecular weight diverges 
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FIG. 4. Proper extrapolations below Tg of the predominant amorphous ba­
sin depth ;ma' and of the configurational (packing) entropy, for fragile 
liquids. 
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(i.e., the polymer chains become arbitrarily long). Under 
the assumption that polymer chemical bonds must always 
remain intact, it may indeed be impossible to create bound­
ed-enthalpy point defects (such as vacancies) at arbitrary 
locations in the optimally packed amorphous glass. 

V. DISCUSSION 

The preceding considerations begin by supposing that if 
an ideal glass transition occurs within the amorphous mani­
fold of basins that it is second order and is to be associated 
with the Kauzmann paradox. While this is the thermody­
namic scenario most directly suggested by measurements on 
glass formers (notably the fragile liquids), alternatives can­
not be entirely dismissed. It is conceivable that a transition of 
different order could be called for, requiring a modification 
of the analysis in Sec. IV. As an example, the tiling model for 
glass formation38

-40 is known to involve a first-order transi­
tion to an amorphous zero-entropy state with long-range 
coherence at positive temperature, but intrinsic kinetic bot­
tlenecks render this state essentially unachievable. It is also 
possible that a strict transition, but to a nonideal glass, could 
exist wherein the low temperature phase still retained posi­
tive configurational entropy at positive temperatures. 

The multidimensional configuration space description 
employed in this paper may have some advantages in ex­
plaining basic differences in behavior between the strong and 
fragile liquids. For any of these liquids, ¢Jma (fJ) identifies by 
depth the amorphous-region basins that predominate at any 
given temperature and pressure (assuming that equilibra­
tion in this region can be attained). Characteristic properties 
of the strong liquids imply that the <I> hypersurface topo­
graphy is rather uniform throughout the available configu­
ration space, and that ¢Jma ({3) only distinguishes basins by 
depths. The uniform roughness of strong-liquid topography 
is determined perhaps by the existence of relatively indepen­
dent localized bonding defects in their networks, and by 
nearly fixed activation barriers for formation and exchange 
of those bonding defects. 

By contrast, fragile liquids appear to possess nonuni­
form topographies for their <I> hypersurfaces. At relatively 
high temperature ¢Jma ({3) apparently identifies basins with 
rather low barriers. But as temperature declines the populat­
ed basins are to be found in regions of increasingly rugged 
topography, with greater elevation changes between minima 
and saddle points, and correspondingly more widely sepa­
rated minima. This topographic variation may be associated 
with an increasing appearance of large well-packed regions 
of molecules in the lowest-¢J packings, necessitating the un­
bundling of larger and larger regions to get from one low­
.lying minimum to another. 

Figures 5(a) and 5 (b) schematically illustrate the topo­
graphic distinction offered as the underlying cause of observ­
able differences between strong and fragile liquids. 

An important open question concerns the nature of the 
lowest-¢J packings for any given potential function. From the 
mathematical point of view it is known that specific pair 
potentials exist for which the absolute <I> minimum is highly 
degenerate, with configurations including crystalline struc­
tures but also a preponderance of amorphous structures.41 

CRYSTAL 

CRYSTAL 

I 
I 
I 
I 
I 
I AMORPHOUS REGION i ENUMERATED BY oa 
I 
I 

(a) "STRONG" LIQUIDS 

DOMINANT PORTION 
OF AMORPHOUS REGION 

(b) "FRAGILE" LIQUIDS 

FIG. 5. Schematic view of potential energy hypersurface topographies. (a) 
illustrates the uniform roughness expected for the so-called "strong" li­
quids. (b) illustrates the nonuniform topography expected for "fragile" li­
quids. 

The physical relevance of these special cases has not yet been 
fully assessed. It may turn out that for a substantial and 
physically applicable class of potentials (particularly for cer­
tain multicomponent substances) that the lowest-¢J noncrys­
talline packings have quasicrystalline order.42 

Understanding the nature of the multidimensional <I> 
hypersurface at a deep level is a prerequisite for developing 
an accurate kinetic theory of supercooling, glass formation, 
and relaxation phenomena in vitreous solids. Such a kinetic 
theory would indicate circumstances whereby the amor­
phous state partition function YNa , Eq. (3.2), ceases to have 
relevance, and it should also be capable of explaining all 
time-dependent phenomena. It may be adequate in the low 
temperature regime to utilize a Master equation ap­
proach.9,43 

Adam and Gibbs44 have produced a theory for mean 
relaxation time (7) near the measured glass transition. In 
the notation of the present paper their result is the following: 

(7) = 70 exp{ + {3C IUa [¢Jma ({3)]}, (5.1) 

where 70 and C are appropriate positive constants. This 
states that relaxation processes are controlled by the avail­
ability of alternative configurational states at the given tem­
perature, and so slowing of kinetics upon cooling is simply 
coupled to decline in configurational entropy (ua ). To the 
extent that comparisons are possible, the Adam-Gibbs rela­
tion appears approximately to describe the behavior of many 
real glass formers. 45 It is clear from Eq. (5.1) that if an ideal 

J. Chem. Phys., Vol. 88, No. 12, 15 June 1988 
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.112.66.66 On: Fri, 04 Apr 2014 03:19:18



Frank H. Stillinger: Supercooled liquids 7825 

glass transition point of the Kauzmann type were to exist, 
(r) would pass continuously to infinity as the system were 
cooled to that point. The main conclusions of this paper, 
however, deny that possibility. 

Theoretical models for glasses that are amenable to 
quantitative study seem to vary in the extent to which the 
Adam-Gibbs hypothesis is satisfied. Extensive Monte Carlo 
studies46 of the Fredrickson-Andersen m-spin facilitated ki­
netic Ising mode147.48 show excellent agreement with Eq. 
(5.1). However, analogous studies for the tiling models of 
glasses39.4o seem to show systematic deviations. One should 
expect that relaxation rates are inextricably connected to 
details of CP topographic roughness over a wide range of 
length and energy scales, with enough opportunity for vari­
ation from one case to the next to cause a logical decoupling 
of (r) from configurational entropy. Therefore, it may even­
tually be possible (if only through artificial example) to dis­
playa dramatic violation of the Adam-Gibbs relation (5.1). 

Both the TVF viscosity formula, Eq. (1.1), and the 
analogous algebraically divergent result from mode cou­
pling theories27.29: 

(5.2) 

imply that 11 becomes infinite at an ideal glass transition tem­
perature To> O. The present paper's results imply that this 
cannot rigorously be true for limited size molecules with 
conventional interactions. Particle rearrangements of finite 
free energy cost are always available at any positive tempera­
ture to mediate flow at a finite rate under applied stress. 

Finally, it should be emphasized that the general ap­
proach applied here to supercooled liquids can be adapted to 
other metastable states. One important case concerns liquids 
or solids under tension (Le., negative pressure).49.50 An iso­
thermal-isobaric partition function can be derived for this 
circumstance as well. The required basin projection must 
remove all packings that contains voids larger than a pre­
scribed critical size. 
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