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A theoretical procedure in classical statistical mechanics, using configurational mapping to 
distinguish particle packing effects from vibrational smearing effects, has previously been 
developed for understanding short-range order in condensed phases. The present paper 
exhibits the generalization to quantum systems with arbitrary spin, but with spin-independent 
Hamiltonians. Remarks are included indicating how the popular path-integral Monte Carlo 
method for simulating quantal many-body systems via digital computer can be adapted to 
determine inherent packing structure. It is predicted that quantum effects in both liquid and 
solid phases tend to produce inherent structures that are more porous, defective, and higher in 
energy than their classical counterparts. 

I. INTRODUCTION 

The inherent structure approach in classical statistical 
mechanics was introduced as a tool for understanding struc­
ture, kinetics, and phase change in condensed matter. 1-4 It is 
based on a precise separation of atomic (or molecular) pack­
ing effects from vibrational motion effects within multidi­
mensional potential energy "basins" surrounding the me­
chanically stable packing configurations. This approach has 
been instrumental in identifying temperature-independent 
packing order in stable liquids.5

-
7 It has led to a "mirror 

image" of the Lindemann melting criterion, which now of­
fers a freezing criterion for atomic liquids. 8 It has also clari­
fied the nature of supercooled liquids9

•
10 and low-tempera­

ture amorphous solids, where for the latter (in connection 
with molecular dynamics computer simulation) bistable de­
grees offreedom that could produce two-level tunneling sys­
tems have been identified and characterized.3

,11 

This paper has as its main objective an extension of the 
inherent structure approach to the quantum regime. There is 
ample motivation behind this objective. The striking and pe­
culiar properties of He3 and He4 alone justify seeking the 
extension. 12,13 But in addition, it is important to have a theo­
retical basis for understanding supercooled liquid hydro­
gen. 14 Various chemical phenomena also warrant the quan­
tum generalization of the inherent structure formalism; this 
is especially true where hydrogen nuclear motions are in­
volved as in acid-base equilibria and in tautomerism. 15 Fin­
ally, the extension would facilitate quantitative description 
of isotope effects in hydrogen-bonded crystals, including 
some ferroelectrics. 16 

Section II describes the mass-weighted steepest-descent 
mapping to potential minima that underlies the method. 
This is the same mapping required in the classical limit, 1-4 

but now it must be applied to the quantum mechanical den­
sity matrix. Section III demonstrates how the quantum me­
chanical canonical partition function must be transformed 
in order to effect separation of packing geometrical attri­
butes from those due to intrabasin vibrations. Section IV 
takes up the issue of path-integral representations that re­
cently have been a popular topic in quantum statistics, and 
indicates how the corresponding quantum simulations via 

digital computer could be adapted to reveal quantum inher­
ent structure. Finally, Sec. V discusses several applications. 

II. MAPPING TO MINIMA 

The case to be explicitly examined involves a large num­
ber N of identical particles, all of mass m, whose positions 
will be denoted by fl' •• f N' These particles will be struc­
tureless except for a spin degree of freedom, and SI ••• SN 

will represent the projections of the respective spin angular 
momenta along some fixed direction. 

A movable piston will be included as part of the system's 
dynamical description in order to ensure constant pressure 
conditions. The piston location will be specified by a scalar 
variablexo. Piston mass mo will be of order Nm, i.e., a macro­
scopic quantity. 

The applications envisioned for the formalism will iden­
tify fl'" f N as positions of atomic nuclei which interact 
among themselves on a ground-electronic-state potential hy­
persurface <l>o(fl ... f N ). They also interact with the piston 
and the fixed container walls via some other potential func­
tion U(Xo,f l •• , fN)' The total potential energy for the sys­
tem comprising piston plus particles will be 

<I>(Xo,f l ... fN) = <l>o(fl ... fN) + U(Xo,f l ••• fN) 

(2.1) 

The last term on the right represents "spring loading" on the 
piston, with p the constant pressure applied to the system, 
and V(xo) the system volume. Notice that all contributions 
to <I> have been assumed to be spin independent. 

The Hamiltonian operator for the composite system of 
piston plus particles is obvious: 

a2 N 

H = - (fz2/2mo) --2 - (fN2m) L VJ 
axo j= I 

+ <I> (Xo,f l ... fN) . (2.2) 

Its exact eigenfunctions and eigenvalues will be denoted by 
t/J nand En' respectively. If p > 0 there will be no continuum 
states, and the t/Jn should then constitute a complete set. 
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The state of the many-body system at time t is specified 
by the (unaveraged) density matrix, which in space-spin 
representation is17 

p(R,sIR',s';t) = L C:Cb l/I:'(R,s) tPb (R',s') 
a,b 

X exp [U//i)(Ea - Eb)t ] , (2,3) 

where for notational simplicity 

R=(xo,r l ". r N), S=(SI ... SN)' 
(2.4) 

and where the constants Ca convey the initial condition. The 
time-dependent configurational probability for the compos­
ite system can be obtained by summing diagonal elements of 
the density matrix over spin variables: 

P(R,t) = LP(R,sIR,s;t) . (2.5) 

• 
The immediate objective is to map this function onto a dis­
crete set of probabilities associated with the local minima of 
<I> in the (3N + 1) -dimensional configurational space for the 
composite system. 

Just as in the constant-pressure classical version,1O the 
mapping will be effected through the mass-weighted descent 
equations: 

dr· 
m _1 = - Vj<l> . 

du 
(2.6) 

With the exceptions of a zero-measure subset, any system 
configuration R is mapped uniquely onto the configuration 
Ra ofa local minimum of <1>. Technically this requires using 
R as the initial (u = 0) condition for coupled Eqs. (2.6), 
then using their solution R (u) ,u > 0 as the connection to Ra : 

lim R(u) = Ra . (2.7) 
u_ co 

The set of all initial configurations R that map onto a given 
Ra defines the basin Ba surrounding minimum a; and the 
union of all Ba essentially spans the entire available configu­
ration space for the composite system. 

In the large system limit the number n of <I> minima is 
expected on general grounds2 to increase with N in the fol­
lowing way: 

In n-ln(N!) + vN, (2.8) 

where v is a positive constant of order unity. The N! accounts 
for the obvious fact that minima fall into equivalence classes 
within each of which members differ only by permutation of 
identical particles. The quantity v measures the number of 
geometrically distinct particle packings (<I> minima), and 
can be expected to depend onp. 

The probabilities Pa (t) that the quantum mechanical 
system is to be found in each of the basins B a at time t can be 
written thus: 

Pa(t) =1 dRP(R,t). 
Ba 

(2.9) 

If the density matrix is properly normalized, then 

(2.10) 

where the sum includes all n basins, 
The solutions to Eq. (2.6) always move downward in 

potential energy: 

<I>[R(u l )] > <I>[R(u2 )] (u l < u2 ) , (2.11) 

unless the starting point itself were a minimum. If mo were 
equal to the particle mass m, each solution R(u) would be a 
steeepest-descent trajectory on the <I> hypersurface. But 
since 

mo>m (2.12) 

there is a separation of scales in the virtual time variable u. 
The first stage in the evolution ofR (u) corresponds substan­
tially to minimizing <I> with respect to particle coordinates at 
fixed Xo (i.e., fixed volume). Only much later in u can the 
sluggish variable Xo change, during the course of which the 
particle positions continue to remain close to constrained <I> 
minima for the momentary Xo value . 

III. CANONICAL PARTITION FUNCTION 

The averaged density matrix for an isothermal, isobaric 
ensemble at temperature T = (k BP) -I has the form 

Peq (R,sIR',s') = L ~(R,s)tPn (R',s')exp[p( G - En)] . 
n 

(3.1 ) 

Here G is the Gibbs free energy for the composite system 
given by the partition function Z: 

Z(P,p) =exp[ -pG(P,p)] = Tr[exp( -PH)] 

(3.2) 
n 

All thermodynamic properties for the system can be extract­
ed from G by standard formulas. 18 

It is useful to express the trace in Eq. (3.2) explicitly in 
the tP n basis, and to break the configurational integration 
into portions for each basin: 

Z(P,p) = ~ La dR ~ ~ ~(R,s)tPn (R,s)exp( - PEn) . 

(3.3) 

Integrals for permutation-equivalent basins are identical, so 
to avoid redundancy an alternative form is 

Z(P,p) =~' La dR[N! ~ ~~(R,S)tPn(R,S) 

xexp( - PEn)] , (3.4) 

where the primed summation includes only one of each geo­
metrically distinct type of basin. 

Let <I> a denote the value of <I> at the botom of the basin 
Ba: 

<l>a = <I>(Ra) . (3.5) 

Consequently Eq. (3.4) leads to the following: 

Z(P,p) = L' exp[ - P<I>a (p) - PFva (P,p>] , (3.6) 
a 
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where Fva represents a "vibrational" free energy for basin 
Ba; 

exp(-/3Fva) = r dR{NlIIt,b!(R,S)¢'n(R,S) 
JBa n s 

Xexp[/3(CPa - En)]} . (3.7) 

Notice that this last quantity receives contributions from all 
eigenstates of H. In particular this is true even when the 
eigenvalue En lies below CPa' but for such states the system's 
presence within the classically disallowed Ba is due only to 
quantum mechanical tunneling and thus has little weight. 

In view ofthe very large number of inequivalent basins a 
statistical description is natural. Just as in the classical ver­
sion 1-4 it is useful to classify basins by depth on a per-particle 
basis: 

¢=CPaIN . 

Denote the unit step function by u(x): 

u(x)=O (x<O) 

= 1 (x;>O). 

(3.8) 

(3.9) 

Then define an intensive basin-enumeration function u by 

u(¢) = ~~!~ N-Iln[~' u(CP" - N¢ + NE) 

XU(N¢+NE-CPa)], (3.10) 

wherein the limits are to be carried out at constant p. As a 
consequence, 

exp[Nu(¢) ]d¢ (3.11 ) 

represents (in the large-N asymptotic limit) the number of 
minima in the depth-per-particle range ¢ ± ~d¢. Note 
should be taken of the identity 

v=maxu(¢), (3.12) 
(¢J) 

where v was introduced in Eq. (2.8) above. 
A mean vibrational free energy per particle Iv can simi­

larly be defined for basins with depth ¢: 

(exp( - /3Fva» ¢J.E 

= [~' u(CPa - N¢ + NE)U(N¢ + NE - CPa)]-1 

X I' u(CPa - N¢ + NE)U(N¢ + NE - CPa) 
a 

Xexp( -/3Fva). (3.13) 

Both u andlv depend implicitly on external pressure p. 
Armed with the definitions of u andlv, it becomes possi­

ble to convert expression (3.6) for Z, valid asymptotically in 
the large-system limit, into a simple quadrature over the 
depth parameter ¢: 

Z(/3,p) - J d¢ exp{N [u(¢) - tiJ;, (/3,¢)]} . (3.14) 

Since N is large, this quadrature will be dominated in leading 
order in Nby the immediate neighborhood of the integrand 
maximum, say at ¢ = ¢m (/3,p). Consequently the Gibbs free 
energy may be obtained from the following simple but as­
ymptotically exact formula: 

-/3G(/3,p)-N{u(¢m) -/3Iv(/3,¢m)}' (3.15) 

Phase transitions are associated with singularities of ¢m as a 
function of /3 and p. The quantity ¢m identifies the depth of 
those basins within which the system is almost certain to be 
found at the ambient temperature and pressure. 

Except for a trivial difference regarding definition of the 
vibrational free energy, the representation of Z as a ¢ quad­
rature is the same as previously exhibited for the classical 
statistical mechanical regime. 1-4 Inded the basin enumera­
tion function u is identical in quantum and in classical con­
texts. All quantum effects reside in the vibrational free ener­
gy Iv whether they are due to zero-point motion, quantum 
diffraction effects, spin, or statistics. 

IV. PATH-INTEGRAL REPRESENTATION 

The inherent structure for the quantum system is given 
by the set of probabilities Pa (1) defined by Eq. (2.9). These 
in tum can be obtained by sampling diagonal elements of the 
density matrix in coordinate representation and by applying 
the mass-weighted steepest-descent mapping. When thermal 
equilibrium obtains the density matrix has form (3.1), or 
equivalently 

Peq(R,sIR',s') =Z-I(R,slexp( -/3H)IR',s'), (4.1) 

and the basin probabilities have time-independent values 
P ~eq) (/3). 

Path-integral methods based on the Feynman formal­
ism 19 have become a popular and useful approach to gener­
ating the equilibrium density matrix. Recent applications 
have included numerical studies of models for noble gas clus­
ters,20 liquid and solid helium,21 liquid water,22 and solvated 
electrons.23 On account of its frequent use in computer simu­
lations such as these, the following product identity bears 
reexamination: 

(R,slexp( - /3 H) IR',s') 

= (R,sl [exp( -/3 HI1)]I IR',s') , (4.2) 

where I is any positive integer. If I is sufficiently large, the 
individual factors can explicitly be evaluated as follows24-26: 

(R,sl exp( - /3 HII) IR',s') 

ge_l [..!.. (~)112]3N 
NI fl 2rr/3 

xexp{ - (/3 121)[CP(R) + CP(R') ]}8(xo - x~) 

N 

X I( ± 1)IP I II exp[ - (ml/2/3f!2)(r; - rp)2] 
P j= 1 

(4.3) 

where we have taken full account of particle spin. In this 
expression P represents the permutation operator for parti-
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cle indices, and the parity of a given permutation has been 
denoted by IP I; upper and lower signs refer, respectively, to 
bosons and to fermions. The Dirac and Kronecker delta 
functions have been symbolized by ~ and ~K' respectively. 
That Xo and x~ must be equal in the asymptotic form (4.3) 
stems from the large mass mo of the piston. 

When the propagator (4.3) is employed to evaluate the 
partition function, one obtains 

Z = Tr{[exp( -,8 H/I) ]/} 

= .(I)~.(/) f dR(1) '" f dR(/) II) (R(i),s(i)1 

In this expression the permutation operator P acts only on 
the lth "monomers" to produce extended "exchange" poly­
mer rings; the total number of cyclic polymers for a given 
permutation has been denoted by Np(P). 

The spatial distribution of sets of N monomer units that 
is implicit in the partition function (4.5), along with the 
piston coordinates xo' is the input required for the steepest­
descent mapping, Eq. (2.6). Monte Carlo procedures2°-26 

designed to generate these quantum mechanical distribu­
tions could be straightforwardly augmented with numerical 
mapping to potential minima to yield the inherent structure 
for the system of interest. 

In the very low temperature limit the path-integral ap­
proach just examined becomes cumbersome since 1 must be 
taken to be very large. At absolute zero where only the 
ground state contributes, alternative methods exist for nu­
merically generating the appropriate configurational distri­
bution. Notable among these is the Green's function Monte 
Carlo procedure,27.28 which could likewise supply the neces­
sary input for steepest-descent mapping. However, for atom­
ic or molecular systems at intermediate temperatures where 
quantum corrections to classical statistical behavior should 
be moderate, path-integral Monte Carlo simulations aug­
mented with configurational mapping should be useful for 
studying local order. 

v. DISCUSSION 

In anticipation of brute-force computational studies, it 
may be useful to list some expectations about quantum ef­
fects on inherent structure. 

One of the obvious phenomena stemming from quanti­
zation is reduction in density, at a given pressure, due to 
quantum zero-point motions. This is very evident in the liq­
uid and crystal phase densities of the helium isotopes, less so 
for those of neon, compared to those of the heavier noble 
gases. Configurational mapping at p = 1 bar, say, undoubt­
edly would produce more porous (i.e., vacancy containing) 

(4.4) 

wherein 1 + 1 == 1. It can be recognized that the resulting 
multiple integrals might be interpreted as describing thermal 
behavior of cyclic polymers.25.26 These polymers each con­
tain a number of monomer units equal to 1 or a multiple 
thereof (depending on the permutation involved), they have 
alternating weights for fermions, and their interactions con­
sist of harmonic-spring "bonds" as well as particle potentials 
between monomers with equal indices i. 

The explicit form (4.3) shows that spins must be identi­
cal around any cyclic polymer, and that only a single piston 
variable appears. Consequently, Z can be put into the follow­
ing form: 

(4.5) 

packings in the case of low-mass substances compared to 
high-mass substances. If a common scalable potential were 
involved, such as the Lennard-Jones interaction for the no­
ble gases, then the enumeration function (T would be un­
changed, but t.6m in Eq. (3.15) would manifest ntasS depend­
ence on account of the underlying influence of the 
vibrational free energy Iv. In particular decreasing mass and 
increasing packing porosity in most instances should have 
the effect of increasing t.6 m at fixed p and ,8. 

As regards the inherent structure of quantum crystals it 
seems unavoidable that small (but nonvanishing) contribu­
tions from defective packings would persist even at absolute 
zero. That is, tunneling carries the crystalline system out of 
basins corresponding to absolute potential minima (with 
perfect particle order) into nearby and slightly higher basins 
whose packings contain point defects such as vacancies and 
interstitials. In the case of long-range ordered hydrogen­
bonded crystals, defects in the form of concerted proton or 
deuteron displacements around closed hydrogen-bond loops 
are possible, and should become especially likely under ele­
vated pressure as double-minimum bond potentials are flat­
tened.29,30 

Finally, there is the important subject to consider of 
metastable condensed phases for quantum systems. This in­
cludes supercooled liquids such as those of H2 and Ne, as 
well as amorphous solid deposits that might be formed from 
some of the lighter elements. A systematic procedure has 
been developed9

,10 in the classical limit for using the configu­
ration-space mapping approach to describe metastable 
phases, based upon suitable basin subsets. It appears that no 
difficulty would arise in extending that work to the quantum 
regime along the lines discussed in previous sections of this 
paper. 
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