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COLLECTIVE PHENOMENA IN STATISTICAL MECHANICS 

AND THE 

GEOMETRY OF POTENTIAL ENERGY HYPERSURFACES 

FRANK H. STILLINGERf 

Abstract. Static and dynamic properties in dense many-body systems are considered from a 
unified point of view that emphasizes geometric features of the potential energy function c1 for 
interparticle interactions. Steepest descent mapping on the c1 hypersurface generates a natural 
division of the multidimensional configuration space into "basins" whose boundaries contain the 
fundamental transition states for the system as a whole. The resulting statistical representation 
(a) identifies an inherent structure for the liquid state, (b) leads to a simple description of phase 
transitions, (c) offers a natural formalism for supercooled liquids, and (d) provides an analysis of 
relaxation phenomena in glasses. Classical mechanics is used throughout the development. 

1. Introduction. The condensed phases of matter (crystalline, liquid, amor-

phous solid, liquid-crystalline, quasicrystalline, etc.) display a fascinating variety 
Of "collective" properties whose existence stems from the strong and often compli-

cated intermolecular forces that are present. Predicting and understanding these 
collective phenomena from just a knowledge of intermolecular forces has been an 

enduring challenge to statistical mechanics. In spite of some remarkable successes, 
the subject remains open. The object of these three lectures is to develop a com-

prehensive framework for studying collective phenomena in condensed matter, to 
demonstrate some of the new insights it produces, and most importantly to identify 

some outstanding mathematical questions that it generates. 

2. Condensed systems. By definition, the constituent particles (atoms, 

molecules) of a sample of dense matter are in continuing interaction with one an-

other. The interactions are comprised in a potential energy function (ri  . . . rN), 

whose variables ri represent the position coordinates of the N particles. Generally, 

' is bounded below by —KN for some K > 0, is at least twice differentiable in 

all its variables when no pair of particles overlap, and vanishes when all particles 

recede infinitely far from one another. 

A simple (but still challenging!) class of 4Vs is frequently used in statistical 

mechanical modeling, namely a sum of particle pair interactions. When all N 

particles are identical, one then has 

(2.1) 	 (r1  ... rN)= 	v(rj,rj). 
i<j=1 

If the particles furthermore are just atoms or ions, the pair potential v would depend 

only on distances rj. 

The temporal evolution of the N-particle system is determined by its dynamical 
equations, and these depend on . For simplicity it will be assumed that classical 

mechanics applies, i. e., Newton's equations of motion are relevant. 
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'1) f: 	 If the total system energy is large enough it is normally expected that the 

	

L4I 	 N-body system would be able to achieve thermal equilibrium at some absolute 

= 	i I 	 temperature T. If this is so, thermodynamic properties can be derived from the 

I canonical partition function ZN which in classical statistical mechanics has the 

or' 	I 	 following form [1]: 

(2.2) 	ZN(fl) = ( A3NN!)-1 f dri  • • • I drNexP(_f3)  
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where /3 = (kBT)' , kB 5 Boltzmann's constant, and AT is the mean thermal de 
Broglie wave length (independent of , and irrelevant in most of the following). 

Integration limits on the ri are determined by the containment vessel for the mate-
rial sample which we assume has volume V. The logarithm of ZN gives —/3 times 
the Helmholtz free energy F for the system, from which standard thermodynamic 
formulas allow pressure, energy, entropy, • . . , to be obtained. It is usually the 

case (as in this presentation) that primary interest concerns the large-N limit with 

temperature and density held constant. 

No generating function analogous to ZN is available to produce properties in 
the general nonequilibrium regime. Instead one may be obliged to consider the full 
details of Newtonian dynamical orbits to extract nonequilibrium behavior. 

2.1 Steepest descent mapping. No general exact procedures are available 
to evaluate multiple integrals of the type in ZN,  Eq. (2.2), even for pairwise ad-
ditive potentials. However, a series of transformations can be applied that creates 
formal simplifications and that has important conceptual advantages [2]. These 

transformations are generated by itself. 

	

For rotational simplicity let R (r - 1 . . . rN), 	(R), and suppose that we 
are dealing with structureless point particles in ordinary 3-space so that R has 3N 

components. Steepest-descent trajectories on the hypersurface in (3N + 1)-space 
are generated by solutions to 

(2.3) 	 OR/Or = —V(R), 

where r is a "virtual time" variable. These trajectories "relax" the collection of 

particles, moving each one at a velocity proportional to the force it experiences, 

until (as r -+ +oo) the steepest-descent trajectory lodges at a local minimum 

of 'I. Thus the solutions to Eq. (2.3) generate a mapping of (almost) all particle 
configurations R onto a discrete set of configurations R a  which are the local minima 

of C Here we use a as an index for local minima. 

The connected set of particle configurations all of which map onto minimum 

ci defines a "basin" B0 . The collection of such basins essentially covers the entire 

3N-dimensionál configuration space available to the particles. Basin boundaries are 

exceptional since Eq. (2.3) does not unambiguously map them to minima, but they 

constitute a zero-measure set with no consequence in the following. 

It has been argued on simple intuitive grounds [2] that if all N particles are 

identical and are confined to a container with volume proportional to N, then in 
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the large-N limit the number 11o (N) of CI' minima should behave as 

(2.4) 	 o (N) = N! exp[ziN + o(N)], 

where i' is positive and depends on container volume V. The N! factor simply 

acknowledges that permuting particle positions converts any munimum to an essen-

tially equivalent one. 

There is a substantial need to validate Eq. (2.4) on a mathematically sound 
basis. It would be useful if bounds on ii could be supplied that are sharp enough 

to show how this quantity depends on number density N/V and on details of C 

Another mathematical challenge concerns whether basins Ba  are always simply 

connected, or whether some physically sensible 4's produce multiple connectivity. 

2.2 Partition function transformations. Steepest-descent basins can use-

fully be classified according to 0 , their depths on a per-particle basis: 

(2.5)  

Since the number of minima is large, and since the Vs should be bounded between 
finite limits, it should be possible to define a distribution G of minima versus 0. 
In the large-N limit this distribution must have a form consistent with Eq. (2.4), 

namely 

(2.6) 	 G(q5) #d N! exp[N()] 

where 7() is independent of N but generally will vary with particle density. 

An intrabasin configurational integral I,, at inverse temperature 8 may be de-

fined for B (  as follows: 

(2.7) 	 Ia(f3) = 
IDO 

(2.8) 	 0 cI(R) = (R) - 

It includes, with appropriate Boltzmann-factor weighting, all possible "vibrational" 
excursions away from the basin bottom. Not all basins of a given depth have the 

same shapes or 10 's, but it makes sense to lump those in a narrow depth interval 

± e together and to use the resulting average I to define a "vibrational free energy 

per particle"  

(2.9) 	 f(i3, q5) = - lim lim (N/3) 1  ln(Ia(3))*e . 
—o N—*oo 

Armed with definitions (2.6) and (2.9) for c and f,,, one finds that for large N 

the partition function ZN has the following asymptotic representation: 

(2.10) 	ZN(/3) A -3N Jd5exp{N[a(5) 
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rr The original multiple integral of high order, Eq.(2.2), has been replaced by a simple way that hit 
er quadrature. 	In addition, the problem has been clearly separated into a purely ally, s varial 

enumerative part (o, and a thermal vibration part (f,,). temperature 

)li Since N is large, the dominant contribution to the integral in Eq. 	(2.10) is Steepest 

provided by the maximum of the integrand, i. e. 	— /3 times the Helmoholtz free produces a x 

:a .. energy per particle is given by---,, , __ pair correlal 
c Eq. (2.13: 

- /3F/N = (in ZN)/N 
r Iry (2.11) 	 —3 in AT + 7(0m ) _ f3çb m  - flf(f3, 0 ..) (2.16) 

(with an error that vanishes in the large-N limit), where 	m($) 5 determined by . 

we 
the criterion: 

Here rl2q is 

gu . mapping ha 

g i (2.12) 	 7(m) 	5 m 	f3fv(I 	4'm) 	maximum. marks, gq 

Molecul 

ni The significance of bm(/3) is that it gives the depth of those basins that dominate 9(2) and g(q 

irt equilibrium properties at the given temperature and density. It seems clear that 	• 
the princips 

S f m must be a decreasing function of /3 = 11kT, and as 8 - +oo m  approaches conventiaon 
2)  the potential energy per particle for the global çb minimum (normally expected to der constan 

t correspond to a crystalline arrangement of the N particles). of the start: 

g • Although it may be difficult generally to determine the enumeration function namic melti 

'p • 	• for a given potential function 	, the inverse problem might be amenable: Given the liquid s 

tio '7(0), is it possible to construct a potential which has this as its local minimum exist seems 

S )  : enumeration function? of the distr 
. . 	 . 	 . 	 . 	 . 	 . 	 . 

Generalizations of the foregoing to include the case of several distinguishable But why ti  
species are conceptually trivial. unanswerec 

r In seve 

t 2.3 Particle pair distribution functions. The distribution of distances be- (2 .1) with 
tween particle centers has experimental significance, since it can be measured by 
X-ray or neutron diffraction. The theoretical significance is that when '1' is pairwise (2.17) 
additive and the particles are spherically symmetric, the thermodynamic energy 

lib and pressure can be expressed as simple quadratures of the distance distribution. where A > 

th Conventionally the distance distribution is presented as the pair correlation correspond 

function g(2)(s).  At equilibrium in a single-species system it is given by [1]: 

) (2.18)  
f dr, . . . f drNb(S - r12)exp(—$4) 

2 13' 	 g 	- 
e ' 	. 	

I B(s)fdr i  . . . f drN exp( —# (]~ ) 	, The steep 

ri 9
(2) (5) vai 

Pt where 

. 

 is a fuudax 

e : (2.14) 	 r12 	1r2 - r1, 
3. Ph 

le 

r (2.15) 	B(s) = B(s) = V2 j dr1  J dr2 5(s - r12 ), 
tive pheno 

spontaneol 

ec crystals, a: 

Doll, and S is the Dirac-delta function. When s is large compared to the range of in- 	: trates. U: 

: termolecular forces, 9(2)  is essentially independent of s. For small s it reflects the and techn 4  
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way that interactions produce preferred spatial arrangements of particles. Gener-

ally, s variations of g(2)  have greater amplitude at low temperature then at high 

temperature. 

Steepest-descent mapping is applicable to the distribution of pair distances, and 

produces a remarkable "image enhancement" effect. The corresponding "quenched 

pair correlation function" g2)()  can be written in a form analogous to that of 

Eq. (2.13): 

(2.16)g (2)(S) 
= 

f dr, • • • f drNb[S - rl2q (rl . . . rN)]exp(—f3) 
B(s)fdr l  ... fdrNexp(—/3') 

Here r12q  is the scalar distance between particles 1 and 2 after the steepest descent 
mapping has been applied to configuration r 1  . . . rN. Consistent with previous re-

marks, g2)  is the result of removing intra-basin vibrational deformations from g(2). 

Molecular dynamics computer simulation results are now aviailable, giving both 
g (2) and 2) 

 for some simple atomic models [3]. Figure 1 schematically presents 
the principal result, namely that virtually all of the temperature dependence of the 

conventiaonal g(2)  for liquids stems from intra-basin processes. More precisely, un-
der constant density conditions, g2)  is essentially independent of the temperature 
of the starting liquid, provided that the temperature is at or above the thermody-
namic melting temperature. Hence g 2 ' represents the inherent structure present in 

the liquid state. That such a temperature-independent inherent structure should 
exist seems (from computer simulation studies) to be connected with the narrowness 

of the distribution of basin depths, i.e., the curvature of oi4)  near its maximum. 

But why the vast majority of minima should be so closely spaced in q is still an 

unanswered question. 

In several popular many-body models, has the additive form shown in Eq. 

(2.1) with a central pair potential that diverges at the origin thus: 

(2.17) 	 v(r) ^-o Art' (, .. 0), 

where A > 0, p > 3. Under equilibrium conditions it is widely believed that the 

corresponding small-r behavior of the pair correlation function will be (f3 = 1/kBT): 

(2.18) 	 lng ( 2 )( s) '- —3As" (s -' 0). 

The steepest-descent mapping is expected to produce a function
2)  which, like 

(2)(), vanishes strongly at the origin. But does ln g2)  behave as —(con3i)sP, or 

is a fundamentally different asymptote involved? Once again no answers yet exist. 

3. Phase transitions. Phase transitionsare dramatic examples of the collec-
tive phenomena exhibited by condensed matter". -They include melting and freezing, 

. spontaneous changes of crystal symmetry, transitions that form or destroy liquid 

crystals, and a variety of surface reconstructions on both crystalline and liquid sub-

strates. Understanding and controlling phase transitions is scientifically compelling 

and technologically urgent. 
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Figure 1. Inherent structure in the liquid state revealed by 
steepest descent quenching. 

The formalism presented in Sect. 2 offers a convenient way to discuss and to 

analyze phase transitions of the types just mentioned. Since it is fundamentally 
a classical statistical-mechanical approach, it cannot in its present form describe 

those transitions (metal-insulator, normal metal-superconductor, helium Bose con-
densation, . . . ) whose basis is explicitly quantum mechanical. 

For the most part this Section will be concerned with thermodynamic equilib-

rium aspects of phase change (Sects. 3.1-3.3). However, in Sect. 3.4 Section E we 

will briefly consider the properties of long-lived metastable states, such as super-

cooled liquids. 

3.1 Order-disorder transition in substitutional alloys. Solid state physics 
offers several examples of crystalline binary alloys whose component atoms A and 
B have an alternating periodic arrangement at low temperature, but are disordered 

among the crystal sites at high temperature (but still below the alloy's melting 

point). A thermodynamic phase transition separates these two regimes. A well-

known case is fl-brass, incorporating equal numbers of copper and zinc atoms in a 

body-centered cubic structure (see Figure 2). Copper atoms are segregated on one 
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of the simple cubic sublattices at low temperature, zinc atoms on the other. At 

high temperature the sublattices have equal occupancies due to thermally driven 

random substitutions. A phase transition between ordered and disordered forms 

occurs at about 460°C, accompanied by an infinite heat capacity anomaly [4]. 

CE 

LOW 1, ORDERED 	 HIGH T, DISORDERED 

a = ZINC 	 . = COPPER 

Figure 2. Atomic arrangements in the ordered low temperature 

and disordered high temperature forms of fl-brass. 

fl-brass melts of course (at about 850°C), and the system then moves in regions 

of its configuration space whose basins fl have minima corresponding to amorphous 

atom packings. However, these regions of configuration space are not at issue in 

discussing the order-disorder transition. For simplicity we can restrict attention 

just to those basins and their minima corresponding to equal numbers (say N12) of 

copper (A) and zinc (B) atoms arranged on the sites of a perfect body-centered cubic 

lattice. The distribution of potential energy minima for this two-species system 

restricted to the crystalline state may be written asymptotically as follows: 

(3.1) 	 G(q) = [(N12)!]2  exp[Na(5)] 

where as before 75 is the potential energy per atom at the minima of the total 

potential energy function C 

The physics of these substitutional alloys suggests two convenient simplifying 

assumptions. The first is that the , the local minima of 4p, depend only on the 

interactions of nearest-neighbor atom pairs. This is equivalent to the statement 

(3.2) 	 'a = Na + N1b7  

where a and b are constants and Ne  is the number of nearest-neighbor like-atom 

pairs. We must have 

(3.3) 	 b>O 

V 

AM 	 iO  

7  115V 
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so that the absolute 4P minimum has Nt = 0 (A and B segregated on separate 
. sublattices with each A having eight B's as nearest neighbors, and vice versa). 

The second simplifying assumption is that the vibrational properties, specifically 

f(i3 , cb), are the same regardless of the atomic arrangement over the body-centered 

' cubic lattice. 	Under this circumstance the dominant basin depth at any given 
ne inverse temperature 8 which we have denoted by 	m(/?),  can be obtained from a 
e simplified form of Eq. (2.12), 

T1 (3.4) 	 0q m ) - ,80.. = maximum 

or equivalently (since a" seems always to be nonpositive), 

3- 	; (3.5) 	 Cr 

0 

le 	M  Equation (3.2) states that 	i is a linear function of N,/N, and it is clear that 
)t 

/ (3.6) 	 a<ç'<a+4b. 
tr Th 

P In the randomly substituted state q is just at the middle of this range, a + 2b. 
an 

1I  
Evaluation of cr() is an enumeration problem, namely "How many ways can 

N12 A's plus N12 B's be placed on a body-centered-cubic lattice so that there are 
exactly N1( 	N01b) nearest-neighbors atom pairs of like species?" Exactly the same 

n1 	i: enumeration problem lies at the heart of the Ising model on the same lattice (atoms 
Si 	: A and B are equivalent to up and down spins in the Ising model)[1]. Although two- 
ir 

dimensional Ising models have been solved exactly [5], only approximate results are 
[77 

avilable for three-dimensional cases. Nevertheless a variety of techniques have been 
d 	: applied (series analysis, renormalization group methods, Monte Carlo computer 
p simulations) that seem to reveal the principal features of interest. 
of A graphical construction for 75m(f3)  corresponding to the determing in Eq. (3.5) 
id. 

involves rolling a straight line (slope 8) on the curve of a versus q. 	The order- 
'St 	t  

disorder transition point (/9 = f3) is associated with a vanishing-curvature singu- 
In laity of oq5) in the neighborhood of which we have 

:i 	I (3.7) 	cT(q5) = c(q5) + /? 	- 	) - 	- 	+ . .., 

M 	 > A>O, 	i:i:> 2, 	Oc m(/3c), 

C  
where subscripts + and - refer respectively to 0 > Oc  and q < Oc . Terms beyond 

to 
those shown in Eq. (3.7) have higher powers of 10 - 	than p. 

ralt 

r 
By carrying out the construciton of m(/3) near Pc  graphically or otherwise, we 

find 
er 

hi 	. 
Co 	 : 

— 
/ 	—3 	ia. 

(3.8a) 	 rn(fl) - 	c 	
(p:A+ ) 

 
ca .  

(3.8b) 	qc - 	m(f3) = ( .I 
/3

+ . . . , 	(/3 > i3), 4.c ) 
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where 

— 

(3.9) 	 a = p± 2  > 0. 
Pd: 1 

A 8 derivative of these potential energy expressions produces essentially the heat ca-

pacity C:i:, which we therefore see exhibits the characteristic divergence exponent(s) 

a±. 

(3.10) 	 C(/3) = K±  I# - 13c 1_ o±  +.... 

Experimental measurements, and the various approximate theories of order-

disorder critical phenomena for 3-dimensional systems seem to agree that critical 

exponent a± is small and of the order of 0.1. But it remains a challenge to com-

binatorial mathematics to provide an exact evaluation of heat capacity and other 
critical exponents, perhaps by obtaining the relevant c(). 

3.2 Melting and freezing transitions. The order-disorder phase transition 

just described is a "continuous" phase transition. Any property evaluated in the 
low-temperature ordered phase and in the high-temperature disordered phase re-

spectively approaches the same limit as T approaches T = (kB/3) 1  from either 
side. This contrasts vividly with "discontinuous" or "first-order" phase transitions 
where the two phases involved remain distinctly different at any temperature where 

both can exist. We will now consider the case of melting in single-component sub-

stances, where the low-temperature crystal transforms discontinuously to the liquid; 

the two phases differ in symmetry, mechanical properties, density, and energy. 

The convention we have used is that the container volume V is kept fixed as 

temperature changes, and as steepest-descent mappings are effected. Tinder circum-

stances the singularity structure of (q) will be influenced by the constant-pressure 
densities of the crystal and liquid. If these differ (as is virtually always the case) 

then at constant volume the crystal melting temperature T. will be less than the 

liquid freezing temperature Tf. In the intervening interval 

(3.11) 	 Tm <T<Ti, 

the system displays coexisting macroscopic regions of crystal and liquid, i. e., a 

mixed state with proportions of crystal and liquid varying continuously with T. 

Although it was reasonable to suppose that the basin vibrational free energy 

f(f3, 0) was independent of 0 in the preceding order-disorder example, that is no 

longer the case for the melting-freezing transition. The crystal and liquid phases 

are structurally too unlike to permit such an approximation. Just as does o(q), 

0) is now expected to exhibit nontrivial 0 variation and to show a singularity 

structure consistent with phase coexistence. 

Figure 3 indicates the graphical relationsip of the terms in Eq. (2.12) at the end-

points of the coexistence interval (3.11). Matching of slopes for a and for j9(4 + f) 
as before locates m(/9). When coexistence obtains, the steepest descent mapping of 
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particle configurations presumably produces mechanically stable particle packings 
which themselves exhibit coexistence. That is, the dominant packings identified by 
çb m (/3) in this temperature interval will have large side-by-side regions respectively 
with ordered and with disordered particle arrangements. To show that such hetero-

geneous packings exist for physically reasonable potentials is a nontrivial matter, 
but accumulating computer simulation data demonstrates that it is so [6]. 

RM0 + 	4 

RI 

te 

Ise 

ni 

I3f4   

Cr1~ 	(4) 

K 
' 1 	 S6 4 	S62 

Figure 3. Matching of slopes for terms in Eq. (1.11) for the 

crystal-liquid first-order phase transition. The left panel cor-
responds to the fixed-volume melting point of the crystal, the 

right panel to the freezing point of the liquid. 

The most basic unanswered questions concerning this description involve the 
nature of the singularities, with respect to q, of o?)  and of f,,(f3, ) at coexistence 
endpoints 01  and 2 • These singularities are unlike that in the order-disorder case 
since the heat capacity remains finite at constant volume. The best present guess 
is that essential singularities are involved, and that these arise from "heterophase 
fluctuations," a distribution of small inclusions of one type of packing within large 
domains of the other type [7]. 

3.3 Two examples. We now focus attention on two models that have been ex-
tensively studied with computer simulation (molecular dynamics and Monte Carlo), 

and which exhibit melting and freezing phenomena. They both entail pairwise ad-

ditive potential energy functions as in Eq (2.1), with structureless point particles. 
Disregarding trivial constants the respective pair potentials are the inverse power 
potential. 

(3.12) 	 v(r) = r' (p > 3) 

0 (4) 
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and the Gaussian core potential 

(3.13) 	 v(r) = exp(—r2 ). 

Both involve only repulsive forces. The restriction on p in the first of these is 

necessary to keep energy, entropy, and free energy extensive (i.e. , proportional to 
N). 

The inverse power potential is a homogeneous function of distance, the implica-

tions of which are significant in the present connection. In particular it means that 

the density (p) and inverse-temperature (fi) variations of a and f,, must have the 
forms: 

(3.14) 	 7(q5, p) 	(pP/3.5) 

and 

(3.15) 	 () JAP-PI,  0, Y), 

where 

(3.16) 

These follow from the fact that dilation and compression neither create nor destroy 
relative minima, but simply rescale the coordiunates that yield those minima. The 

structure of the low-temperature crystal is face-centered-cubic; relations (3.14) and 
(3.15) imply that the melting and freezing points correspond to fixed values of the 

parameter y. 

The analytical properties of the Gaussian core potential are quite different. 

First, there is a duality relation between the low-density and high-density absolute 

minima of 0 [8]: 

(3.17a) 	 p"2 [1 + 20j pj)} = p 1 ' 2 [1 +20b (Pb)]  

(3.17b) 	 PfPb = 7r 3 . 

Here the subscripts f and b refer to the respective stable crystal forms, face-centered 

cubic at low density, body-centered cubic at high density. This identity stems 

from the self-similarity of the Gaussian function under Fourier transformation. The 

density at which the two crystal forms have equal energy is obvious from (3.17), 

namely 

(3.18) 	 p=ir3/2 

A second analytical property of the Gaussian core potential is that in the high 
density limit the energies of all periodic structures (even with very large unit cells) 
become asymptotically equal. More precisely the energy differences between distinct 

periodic structures go to zero (apparently) as exp(—Cp 2 /3 ), C > 0. This implies 

that the melting and freezing temperatures vanish in the limit p - +oo. However, 

it is by no means clear at present how the basic quantities a and f, individually 

behave in this limit. Input from interested mathematicians on this question would 

certainly be welcome and illuminating. 
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3.4 Supercooling. Although the basic criterion (1.12) was formulated to de-

scribe strict equilibrium conditions, it is nevertheless also suggestive concerning a 

specific deviation from equilibrium, namely the supercooling of liquids below their 

freezing point. Careful experiments show that this is a repeatable and reproducible 

phenomenon, and a little thought suggests how Eq. (1.12) should be modified to 

describe that situation. 

It seems clear that only a subset of potential minima and their basins should 

be considered. Supercooled liquids have avoided nucleation. The relevant packings 

therefore must be devoid of crystal fragments, at least those beyond some critical 

size. In principle this requires implementing an algorithm to decide if any packing is 

devoid of such crystallinity. It would clearly be useful to exhibit such an algorithm 

explicity and to determine if its implementation is a polynomial-time or an NP-
complete problem [9]. 

The "amorphous" subset of packings which meet the noncrystallinity criterion 

can be enumerated just as before by a function o(), where 

(3.19) 	 Ca(41) < o(q). 

This amorphous packing subset then will have a well-defined vibrational free energy 
function fva(/3, ) in analogy to Eq. (1.9). Finally, then, the "quasi-equilibrium" 
condition for supercooled liquids has a form directly analogous to Eq. (1.12): 

(3.20) 	 '7a(ma) - f3q ma  - /9fva(/3 , 4ma) = maximum. 

The optimizing Om  a(#) locates the depth of the dominating potential minima within 
the noncrystalline subset. 

By projecting out of consideration the crystal-containing packings, the singu-

larities present originally in a and f,, which were associated with melting and freez-
ing necessarily have been eliminated. It will be important to establish eventually 

whether Ca and fa display new singularities as might be associated, for instance, 

with a low-temperature glass transition or an instability point for strongly super-

cooled liquids. In any case it would be important to determine the lowest potential 

energy in the amorphous subset, what geometrical packing structure is involved, and 

how these attributes depend on the details of the algorithm employed to identify 

that subset. 

Finally we note that pair correlation functions (both pre-quench and post-

quench) can be precisely defined on the amorphous subset. Once again it would be 

important to determine how algorithm-sensitive are these functions. 

4. Rate processes. Many-body systems in a condensed state display a wide 
variety of time-dependent collective properties. These include self diffusion, viscous 

flow, fracture, shock-wave propagation, crystal nucleatioii, and in some cases chem-

ical reactions. Observable time dependence arises from the motion of the system 

configuration point R(t) which in classical dynamics obeys the multi-dimensional 

Newton equation (masses taken to be unity): 

(4.1) 	 d2 R.(t)/dt 2  = —V[R(t)]. 
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In virtually all cases of interest the dynamics occurs at sufficiently large (conserved 
4. 

total energy that the system is not trapped in any single basin B, but is more or 

less free to roam through a sequence of basins. 

4.1 Collective transition states. With respect to the potential energy hyper-

surface, the least costly dynamical pathway between two contiguous basins passes 

through a "transition-' , state" located on the common boundary hypersurface be-

tween the basins. This transition state is a horizontal saddle point with a single 

negative principal curvature, i. e., it is characterized by a vanishing of V4P and by 

the existence of a single negative eigenvalue of the Hessian matrix VV. The eigen-

vector corresponding to the negative eigenvalue is conventionally identified with the 
direction of the so-called "reaction coordinate" through the transition state. 

One should keep in mind that two or more transition states could occur on the 

boundary between two contiguous basins. Furthermore, horizontal saddle points 

that are not transition states could occur in the interior of basins. The frequency of 
such occurrences and how they depend upon interparticle interactions is unknown 

at present. 

The number of transition states, their distribution by height with respect to 
basin bottoms, their spectrum of curvatures, and other basic geometric character-
istics are directly relevant to the understanding of rate processes and how fast they 

proceed at different temperatures. 

Unfortunately no general procedure for locating saddle points in multidimen-

sional surfaces is presently available, analogous to the steepest-descent method 
[Eq. (1.3)] for local minima. But the importance of transition states has often 

forced researchers to devise and employ inefficient search routines. One that has 

been used is the following [10]: 

( 1) Using molecular dynamics computer simulation with frequent steepest-descent 

mapping, locate two potential minima at Ri and R2 with contiguous basins. 

(2) Construct the linear path between R 1  and R2 : 

(4.2) 
	

R(t) = £R1  + (1 - 

The potential energy [R(t)] along this path has relative minima at £ = 0 

and 1, and must have at least one relative maximum in between. Let R 3  be 

the position along this connecting line which produces the largest relative 

'I' maximum. This is a first crude estimate of the transition state position. 

(3) Consider the scalar function 

(4.3) 
	

W(R) = 

its zeros are all minima and include all of t lie extrema of the original function 

II'. Starting at R3 , construct a steepest.-dscent path on the IF hypersurface 

to identify one of its minima at location R 4 . 

( 4) Check to see if the Hessian matrix for 41 has only one negative eigenvaiue 

at R4 . If it does, use the corresponding eigenvector as the direction for 
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; 	 infinitesimal displacements both positive and negative away from the sad- 

die point, followed by -hypersurface steepest descent to verify that the 

originally-selected minima are the ones for which this saddle point serves as 

transition state. 

Clearly this is an unwieldy process. Improved procedures would be an important 
advance. 

4.2 Localization. The steepest descent mapping of the continuous dynamical 
trajectory R(t) for the many-body system produces R q (t), a piecewise constant 

function whose values are positions of the bottoms of basins successively visited by 
the system. The left and right side limits for R q  at each time t 2  that a discontinuity 
is encountered are (with unit probability) the bottoms of contiguous basins. It 

is important to note that the corresponding configurational shifts between those 
minima: 

(4.4) 	 t.iRq(i) li9[Rq (ti + ) _ Rq (ti _ 6)] 

appear from computer simulation studies to exhibit a localization property [10]. 
Specifically this means that most of the change typically is concentrated on a small 
subset [0(1)] of the N particles, and furthermore the typical displacements of par-
tides in the small subset are comparable to particle diameters. Correspondingly 

the potential energy changes only by 0(1) between these minima, in spite of the 
fact that it is an 0(N) quantity. 

This localization property implies that the directions of the iRq (i) are fax 
from uniformly distributed over the surface of the (3N - 1)-sphere. Instead they 
are concentrated strongly so that all but a small number of direction cosines are 

essentially zero. 

Computer simulation studies reveal another nontrivial feature. Only rarely do 
the individual (localized) transitions carry the N-body system through a particle 

permutation. This could conceivable take place as a pair of nearest neighbors rotates 

180° about their centroid, or more generally as a close loop of particles executes 

simultaneous jumps around that loop. But such shifts are exeptional. 

These  observations about localization and rarity of direct permutational trans-

sitions are based only on studies of N-body systems with short-range interactions. 

The conclusions might well be different for long-range interactions, particularly if 

oscillatory pair potentials were present. This aspect clearly needs further study. 

4.3 Self diffusion. The self-diffusion constant D measures the rate at which 

Brownian motion moves particles about. In terms of the time-dependent displace-

ment zr1(t) for particle i, for large t, 

(4.5) 	 D . (zr1(t)1 2 )/6t. 

Here it is assumed that the system is in thermal equilibrium. The diffusion process 

is simultaneously underway for all N particles, and it reflects the sequence of basins 
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visited in the 3N-dimensional configuration space. On account of the localization 

property for elementary transitions, the number of exit channels from any basin to 

neighboring basins is 0(N), so that rate of transition is also expected to be 0(N). 
In other words the mean residence time in any basin is 0(N 1 ). 

Evidence thus far available from simulations indicates that under steepest de-

scent quenching, individual particles tend only to move by an amount comparable 

to their diameter. If that is generally the case an alternative expression for D can 
be written as follows: 

(4.6) 	 D 	(tzrjq(t)! 2 )/6t. 

The quantity Erjq (t) is the displacement of particle i from the basin bottom relevant 
at time 0 to that relevant at time t. It would be desirable to know if there is any 

difference in the way that expressions (4.5) and (4.6) approach D with increasing 
i, specifically which converges more rapidly. 

Experimental and simulational data for D as a function of absolute temperature 
T are is often fitted to expressions of the form: 

(4.7) 	 D(T) D 0 T 112  exp[—E(T)/kBT]. 

where D0  is a positive constant. The factor T 1 /2  represents mean particle speed, 
and the exponential Boltzmann factor with positive E(T) supposedly represents the 
probability of climbing up potential energy barriers. Indeed for many liquids in their 

thermodynamic stability range, E is approximately independent of temperature. 
However, it is not at all clear how E(T) in Eq. (4.7) relates specifically to the 

distribution of transition state barrier heights between basins in the 3N-dimensional 

configuration space. This remains an important research topic. 

4.4 Glass transitions. We have already seen how a quasi-equilibrium descrip-

tion of supercooled liquids can be based on a subset of the configuration space basins. 

Its applicability requires that the system of interest (a) be able to explore the al-

lowed basins adequately to achieve a representative sampling, while (b) avoiding 

nucleation (i. C. penetration of the excluded set of crystalline basins). As a liquid 

is superecooled more and more its rate of basin exploration declines strongly, so 

that even if nucleation were to be avoided the quasi-equilibrium expression (3.20) 

must eventually become inapplicable to real experiments. For many substances 

this happens over a narrow temperature interval, often identified as a glass tran-

sition temperature Tg . Keep in mind that this is a somewhat ill-defined quantity, 

not on the same par as the precisely defined thermodynamic melting and freezing 

temperature. 

Cooling well below Tg  produces an amorphous solid whose properties depend 

upon the rate of cooling through T9  . In this low-temperature regime the system 

typically behaves as though it were trapped in a relatively small group of basins. 

The conserved total energy is so low that it is very unlikely or even impossible to 

find sufficiently low transition states as escape routes to surrounding basins. The 
self-diffusion constant becomes immeasurably small, consistent with the trapping. 
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As a supercooled liquid enters the glass transition regime, its time-dependent 

behavior (fluctuation, regression, and response to external perturbations) demon-

strates the presence of a broad spectrum of relaxation times. Near Tg  , various 
measurable properties vs. time often can be fitted to a "stretched exponential" 

decay 

(4.8) 	 exp[—(t/r)°]; 0.3 < t90  < 1.0 1  

where flo  can depend on temperature and r increases rapidly as T decreases through 

the T. range. Laplace-transforming (4.8) identifies a wide range of superposed sim-

ple exponential decay rates whose presence indicates the complexity of the potential 

energy hypersurface over which the system is sluggishly diffusing. 

Clearly what is required is an appropriate description for the multiple-length-

scale topography of the 3N-dimensional hypersurface in the amorphous region, 
and how that determines the wide spectrum of relaxation times. One approach, 

which exhibits some features of a "renormalization group" program, involves com-
bining basins into metabasins [11]. Specifically, let basins Ba and Bj belong to 
the same rnetabasin B. if (a) B0  and B,6  are inequivalent (not related simply by 
particle permutation), (b) Ba  and Bp are either contiguous or are connected by a 
sequence of contiguous basins in the same rnetabasin, and (c) the barrier heights 

of the lowest transition states between Ba and B (either in a shared boundary, or 
along a chain of basins in the metabasin that connects them) do not exceed 17 > 0. 
Here we take t7 to measure the lesser elevation of the transition state measured from 

the two flanking minima. 

As 77 increaes, the original basins aggregate into a declining number of ever-

larger metabasins. In analogy with Eq. (1 -4), the it-dependent number of metabasins 

asymptotically can be written 

(4.9) 	 11(N, t7) N! exp[u()N], 

where v is a strictly decreasing function of i. 

Consider just the transitions between metabasins. These should include the 

longest relaxation times present in the system (they are evidently associated with 

large-scale topographic features of the -scape), but should exclude rapid relax-

ation times. The dividing line roughly should occur for times proportional to the 

Boltzmann factor: 

(4.10) 	 exp(—z/kBT). 

The function v(q) is a fundamental measure of the multidimensional 1' topog-
raphy. Unfortunately it is poorly known, but obviously it must vanish as i —+ +oo. 

Heuristic arguments suggest that in order to produce relaxation spectra of the type 

underlying the stretched exponential function, v(r) would have to possess roughly 

the following form: 

(4.11) 	 v(t)'exp[—Aexp(aq)], A,a>0 
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wherein a is related to /90  as follows: 

	

(4.12) 	 /?o = kBTa/(1 + kBTa), 	(T T9 ). 

Quite obviously this loose heuristic connection between topography and relaxation 

rates needs substantial strengthening with rigorous analysis. 

4.5 Dynamical recurrences. As a final matter, we consider briefly the return 

of the configuration-space dynamical trajectory R(t) to the basin Ba in which it was 
located at t = 0. This forms a kind of momentum-blind and spatially course-grained 

version of the venerable Poincaré recurrence problem in dynamics [12]. 

Let Ua(R) be the characteristic function for Be,, 1 inside and 0 outside; Consider 
the autocorrelation function 

	

(4.13) 	 tL(t) = ( Ua[R(0)]Ua [R(t)]), 

where the average involved is canonical i. e., fixed temperature, and it includes all 
basins. Obviously u(0) = 1. The initial decay of u(t) is related to the mean escape 

rate from basins. If the system is ergodic, the long-time limit should be determined 
essentially by the number of basins with depths given by 4m, Eq. (1.12); that is: 

	

(4.14) 	 lim u(t) = (N!) 1  exp { - Nor m (fl)]}. 

Here it is assumed that most of the relevant basins for the given temperature are 
"typical." 

The detailed behavior of u(t) should reveal the statistics of return times. Those 

statistics should be particularly illuminating as temperature declines, raising the 

possibility of transition from ergodic to nonergodic regimes. Perhaps this could be 

related to the glass transition in a useful way. 
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