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The measurable properties of supercooled liquids and amorphous solids reflect the short-range 
packing geometry of the contituent particles. This paper is devoted to the description of that 
short-range order by the Bom-Green-Yvon (BGY) local stress equation which relates pair 
and triplet distribution functions to the pair potential. Since metastable (but long-lived) phases 
are at issue, it has been necessary to identify an appropriate class of ensembles for which the 
BGY relation can be justified. In particular, low-temperature amorphous solids have 
preparation-method-dependent properties, and we propose to classify their representative 
ensembles by the choice of a triplet superposition correction function K. As background for 
such choice, we have reexamined and extended Alder's lattice enumeration method for K in 
regular structures. The Kirkwood superposition approximation K == 1 has disastrous 
consequences for the BGY equation at low temperature; numerical pair correlation functions 
for the cases of hard spheres and of repelling Gaussian particles display long-range ordering 
that is impossible for the amorphous solid state. This failure is partially relieved by choosing a 
K that enhances the concentration of compact pentagonal particle groupings. Study of the 
inverse problem of determining K from physically reasonable pair correlation functions 
suggests that K must possess relatively long-ranged fluctuations about unity. These 
considerations highlight the desirability of accurate simulation studies of K for amorphous 
deposits at absolute zero. 

I. INTRODUCTION 

The scientific and technological need to understand 
atomic arrangements in noncrystalline materials continues 
to motivate sustained research effort. X-ray and neutron dif
fraction, Mossbauer spectroscopy, Rayleigh-Brillouin light 
scattering, and a wide variety of others experimental probes 
supply partial characterization oflocal order but leave many 
fundamental questions unanswered. I

-
3 Recently computer 

simulation has begun to contribute insights into atomic or
der in glasses, but it suffers from restriction to very small 
systems, to short-time phenomena, and to relatively simple 
model Hamiltonians.4-9 

The present paper is devoted to analytical and numeri
cal study of short-range atomic (or molecular) order in low
temperature amorphous materials. These include super
cooled liquids above their glass transitions, as well as 
amorphous solids at very low temperature; both are thermo
dynamically metastable states but display substantially 
time-independent properties. On account of the metastablity 
involved it is import to identify and to utilize the appropriate 
theoretical tools for their description. 

Atomic distribution functions provide a compact and 
convenient description of short-range order. In the event 
that the material of interest comprises just one atomic spe
cies, the resUlting single nth-order distribution function 
pCn)(f l " 'fn ) is defined to give the density of n-tuplets of 
particles at locations fl' .. f n • 10 In the present cicumstances 
we can suppose that the system contains some large number 
N of identical particles, and is described by a time-indepen
dent normalized probability P N (f I' .. f N ): 

I dfl· .. I dfN PN(fl"'fN ) = 1. (1.1 ) 

It may be assumed that P N is invariant under permutation of 
the fi' This probability generates thepC n) as follows: 

pCn)(f l " 'fn ) = [N!I(N - n)!] 

x f dfn+I .. ·f dfNPN(fl"·fN )· 

( 1.2) 

Integration limits are provided by container wall positions 
for the system of interest. 

The pCn) are expected to exhibit translational, rota
tional, and reflection symmetries within the interior of a 
bulk liquid, whether stable or supercooled. These symme
tries may obtain for low-temperature amorphous solids, but 
exceptions should be expected. In particular, an amorphous 
solid deposit formed from the vapor by condensation on a 
cold substrate might grow in a somewhat anisotropic fash
ion, and that anisotropy could conceivably manifest itself in 
the p(n),s of all orders n> 1. Similarly, amorphous solids 
produced from crystals by damage from directed radiation 
beams might be strongly anisotropic. 

Conventional classical statistical mechanics in the re
gime of thermal equilibrium takes P N to represent an appro
priate equilibrium ensemble. For the canonical ensemble at 
temperature T = (k BP) -I, 

PN = CCP) exp[pcIl(fl"'fN », (1.3) 

where ct> is the interaction potential and C is the normaliza
tion constant. 10.11 When T> Tm (the melting temperature) 
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thep(n),s obtained from this canonical PN are automatically 
those for the stable isotropic liquid. But as T declines below 
T m this P N yields the stable-crystal distribution functions. 

The probability P N clearly must be modified to yield 
p(n),s for the metastable supercooled liquid. An obvious 
strategy is to restrict the system configurations r 1 ... r N to 
amorphous structures, i.e., to set P N to zero for those config
urations expected to contribute to crystal-containing equi
librium states. A specific procedure for carrying out this re
striction emerges from the "inherent structures" approach 
to condensed phase properties. 12.13 It is based upon a divi
sion of the full3N-dimensional configuration space into "ba
sins," one for each local minimum of the potential energy cI>, 
followed by classification of those minima (mechanically 
stable particle packings) as "fully amorphous" vs "crystal
lite containing." 14.16 Let !!II a represent the union of all basins 
for fully amorphous packings. The appropriate probability 
function for the supercooled liquid then is just an appropri
ately normalized canonical distribution over !!II a: 

PN(R) = Ca (f3) exp[ -f3c1>(R)] 

= 0 ( otherwise), 

(RE!!II a) 
(1.4) 

where 

lICa (f3) = 1 dR exp[ - f3c1>( R) J, 
&ta 

( 1.5) 

and where R= (rl,. .. ,rN ) is shorthand notation for the 3N
dimensional system configuration vector. The choice (1.4) 
is consistent with the fact that reproducible measurements 
can be carried out on samples of supercooled liquids above 
their glass transition temperatures. Under this circumstance 
evidently the system is able to sample the amorphous region 
&I a with a sufficient approximation to ergodicity to justify 
use of a restricted canonical ensemble. 

For real glass formers this situation no longer applies 
below the glass transition temperature. Exploration of the 
amorphous region !!II a becomes too sluggish on the experi
mental time scale to justify use of Eq. (1.4). Instead the 
appropriate P N and the various properties it implies become 
history dependent. Amorphous solids prepared by rapid and 
by slow cooling through the glass transition range, respec
tively, have measurably different characteristics, and would 
have to be represented by distinct PN's. Low-temperature 
amorphous solids can be prepared by a variety of other tech
niques as well, including the abovementioned deposition 
from the vapor phase onto cold substrates,17.18 high-dosage 
radiation damage to crystalline materials, 19.20 as well as me
chanical disruption of crystals by high pressure. 21 In all such 
cases the appropriate PN and the p(n),s obtained therefrom 
will depend on details of the method of preparation of the 
low-temperature amorphous material. It is physically rea
sonable to assume then that P N is concentrated in a small 
subset of the cI> hypersurface basins, with only small vibra
tional excursions permitted from the respective potential en
ergy minima. 

With these general remarks as a background we proceed 
in Sec. II to examine the Born-Green-Yvon (BGY) inter
grodifferential equation relating pair and triplet distribution 
functions p(2) and p(3). Our ultimate objective is to turn this 

local stress criterion into a means for predicting (or at least 
understanding) pair distribution functions in amorphous 
solids. This approach leads inevitably to reconsideration of 
the Kirkwood superposition approximation (Secs. II and 
III). Section IV presents results of some numerical analyses 
of the BGY equation which show that use ofthe Kirkwood 
superposition approximation leads to absurd predictions at 
low temperature; Sec. IV also shows that inclusion of certain 
types of short-range corrections to the Kirkwood approxi
mation ameliorates but does not entirely eliminate that ab
surdity. 

In order to develop an improved understanding of the 
role of corrections to the superposition approximation, we 
consider an "inverse problem" in Sec. V. This treats the 
amorphous solid pair distribution function at abolute zero 
temperature as given, and proceeds to extract the correction 
to the Kirkwood superposition approximation subject to a 
simple assumption about its functional form. The conclu
sions are, first, that the functional assumption utilized is ap
propriate for some, but not all, types of particle interactions; 
and second, that superposition corrections are at least a long 
ranged as the nontrivial part of the pair distribution function 
itself. In the light of this second conclusion we analyze in 
Sec. VI the large-distance asymptotic form of the BGY equa
tion to obtain physically required conditions on the superpo
sition correction. 

Section VII summarizes our results and offers some sug
gestions for productive lines of future investigation. 

II. BORN-GREEN-YVON EQUATION 

For present purposes it is adequate to suppose that cI> is 
composed of central pair potentials: 

N 

cI>(r l " 'rN ) = L v(rij)' 
kj= I 

(2.1 ) 

It has been demonstrated that amorphous particle packings 
indeed can exist in both two and three dimensions with a 
variety of pair potentials V.12.22.23 

When the conventional canonical ensemble and its 
probability ( 1.3) are applicable, the following Born-Green
Yvon equation relating p(2) and p(3) can be straightforwardly 
derived: 10 

V1 lnp(2)(rI2 ) = -(3Vlv(r12 ) -f3 fdr3[VIV(r13)] 

Xp(3)(rI2,rI3,r23)lp(2)(rI2)' (2.2) 

Here it has been assumed that the system is very large and 
that container walls are sufficiently far from the region of 
interest to cause no direct effect. Furthermore, it has been 
supposed that the medium statistically is homogeneous and 
isotropic so thatp(2) andp(3) at given temperature and density 
depend only on scalar distances. 

It is convenient to introduce correlation functionsg(n) in 
place of the p(n) by means ofthe definitions lO 

g(n)(rl"'rn) =p(n)(rl"'rN)lpn, (2.3) 

where p is the particle number density N IV. As a conse
quence the BG Y equation takes the form 
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VI lng<2)(rI2 ) = -{3Vlv(r12 ) -(3p fdr3[VIV(r13)] 

xg<3)(rI2,r13,r23)/g<2)(r12)' (2.4) 

Aside from the factor (3, the right-hand member of Eq. 
(2.4) represents the mean force experienced by particle 1 
under the condition that particle 2 be located at a fixed dis
tance r 12. This force consists ofthe direct force exerted on 1 
by 2, as well as the average of the fluctuating net force on 1 
due to all other surrounding particles in the system. If one 
designates the potential of mean force by w(rI2 ), then Eq. 
(2.4) is equivalent to the statement lO 

g<2)(rI2 ) = exp [ - (3w(rI2 )]. (2.5) 

It is generally believed that local order in liquids is short 
ranged. If the pair potential v decreases to zero exponentially 
with increasing distance, this can be taken to imply that 
g<2)(rI2 ) approaches its large distance limit unity also with 
exponential decay.24 The presence oflong-range periodic or
der in three-dimensional crystals (even after orientational 
averaging) may produce a rather different behavior,25-27 
with g<2) - 1 no longer exponentially decaying. Neverthe
less, one still expects for the infinite system limit to find at 
positive temperature that 

(2.6) 

When the 3N-dimensional probability density P N has 
the restricted canonical form shown in Eq. (1.4), the BGY 
equation in principle exhibits a new term AI: 

V I In g<2)(rI2 ) = AI (r12) - {3V Iv(rI2 ) 

-(3p fdr3[VIV(r13)] 

xg<3)(rI2,r13,r23)/g<2)(rI2)' (2.7) 

The vector AI is a ratio of integrals: 

where &I a ( 1,2) is the portion &I a corresponding to fixed r I 
and r2, .Y a (1,2) is its boundary hypersurface, and ds is an 
element of hypersurface for .Y a (1,2). The vector DI mea
sures the outward normal displacement of .Y a ( 1,2) with 
respect to change in r I' 

It is characterstic of good glass formers that their con
figuration points (r I ... r N) are virtually never to be found 
near the boundary of &I a' for otherwise the rate of crystal 
nucleation would be high. Consequently we are justified in 
setting AI equal to zero in Eq. (2.7), thereby causing the 
equation to reduce precisely to the conventional BGY equa
tion (2.4). 

In the case of amorphous solids at absolute zero, every 
particle experiences vanishing net force. That is, the appro
priate ensemble comprises a collection of particle configura
tions all of which corespond to mechanically stable packings 
(potential minima). In this case we can finally write the 
following conditions: 

0= V Iv(r12 ) + P f dr3 [V Iv(r13 ) ]g<3)(r\2>r13,r23)/g<2)(rI2)' 

(2.9) 

where g<2) and g<3) are the correlation functions for the T = 0 
amorphous medium. This is the pair-space force balance 
condition, stating that the direct force on particle 1 due to a 
specific neighbor 2 must be exactly compensated by the net 
force due to all others in the vicinity. Notice that aside from a 
missing factor (3 the right member of Eq. (29) is precisely 
the same as the right member of the conventional BGY equa
tion (2.4). Since /3 diverges to infinity as temperature de
clines to absolute zero, force balance equation (2.9) would 
automatically have to be satisfied by the T ..... O solutions to 
the BGY equation, provided V I In g<2) remained bounded. 
This last condition evidently is satisfied by pair correlation 
functions for amorphous solids. 1,28,29 In view of these obser
vations it seems attractive to try to solve the BGY equation 
over the entire temperature range from above the thermody
namic melting point down to absolute zero as a means for 
predicting amorphous-solid pair correlation functions, Im
plementing such a program requires a closure relation to 
specify the triplet function g(3), Quite generally for isotropic 
and homogeneous media (and specifically solid amorphous 
media) we can write 

g<3)(rI2,rl3,r23) = g<2)(rI2)g<2)(r13 )g<2)(r23) 

(2.10) 

where the nonnegative function K is symmetric in its three 
spatial variables, and approaches unity as anyone of the 
three particles recedes from the other two, The most widely 
used closure is the Kirkwood superposition approxima
tion: IO,3o 

K(rI2,r13,r23) ~ 1; (2.11) 

in the case of fluids in the high-temperature equilibrium re
gime the BGY equation with this approximation leads to 
qualitatively reasonable estimates of g<2).31 However, we 
shall see below that this closure is not appropriate for low
temperature amorphous solids. It should be noted in passing 
that several proposals have been advanced for improvement 
to the Kirkwood superposition approximation for g<3). 32,33 

In the following we take the point of view that amor
phous states of a given substance can be classified by the 
corresponding K's, and that distinct preparation methods 
each correspond to some specific K. By choosing the correct 
K for insertion into the BGY equation it becomes possible in 
principle to see how g<2),S are affected by preparation meth
od. 

III. LATTICE COMBINATORICS 

No experimental technique is available for complete de
termination of the triplet correlation function g<3). Fortu
nately computer simulation is nowadays able to determine 
the function at least partially for some simple models. Re
sults have been published for hard spheres,34 for the model 
with Lennard-Jones interactions,35-38 and for a model Ofliq
uid sodium.39 In each of these cases, K(r12,r13,r23 ) displays 
significant deviations from unity for thermodynamically sta-
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ble fluid states, strongly suggesting that deviations of at least 
comparable magnitude should be expected in low-tempera
ture amorphous states. 

At least for simple atomic substances the short-range 
order in amorphous packings appears to resemble that of the 
corresponding stable crystalline form. 22

•
28

,4O For that reason 
it is relevant to present interests to examine the superposi
tion correction function K for fully ordered crystal struc
tures. Alder34 has pointed out that this can be done by 
straightforward lattice enumeration. In this section we revi
sit the Alder method, providing an extension, a correction, 
and some interpretation. 

At the pair correlation function level, spherically aver
aged short-range order can be specified by giving coordina
tion numbers Zv and coordination radii Rv for each of the 
successive shells of neighbors (v = 1,2, ... ); tabulations of 
these parameters are available.41 The corresponding repre
sentation for the pair correlation function is42 

00 

[p(r) = (41Tp)-1 L ZvRv-28(r-Rv)' (3.1) 
v=1 

In a macroscopically large portion of the crystal containing 
N atoms the expected number of pairs at distance Rv is 
ZvN/2. 

For triads of distance R,t , RI" Rv out of which a triangle 
can be formed (including a zero-area degenerate triangle), 
K(R,t,RI',Rv ) can be calculated by comparing the actual 
enumeration of such triangles in the lattice with the number 
implied by the Kirkwood superposition approximation. De
note the actual number in an N-atom macroscopic crystal by 
{J)(R,t,RI',Rv)N. The superposition estimate is easily found 
for nondegenerate triangles as follows: 

(3.2) 

where Vis N / p, the sample volume, uis a symmmetry factor 
for the triangle (1,2, or 6 for scalene, isoceles, or equilater
al), and we have used bipolar coordinates to carry out the 
inner integrals. Consequently we have the following result 
for nondegenerate triangles: 

K(R,t,RI',Rv ) = 81TpuR,tRI'Rv(Z,tZI' Z v)-1 

(3.3 ) 

The degenerate triangle case, wherein one of the three 
distances equals the sum of the other two, requires special 
attention. An easy route to the correct result for the superpo
sition estimate temporarily first replaces the Dirac delta 
functions in Eq. (3.1) by positive-width normalized distri
butions, e.g., 

(3.4) 

The necessary integrals can be carried out for positive E, and 
then E allowed to go to zero in the result. This yields finally 

TABLE I. Nonvanishing superposition correction factors for the face-cen-
tered-cubic lattice. 

,:z SZ t 2 K(r,s,t) 

I 1 1 0.987307 
1 I 2 1.396263 
1 1 3 0.855033 
1 1 4 0.987307 
1 2 3 1.209 200 
1 2 5 1.561070 
1 3 3 0.740 481 
1 3 4 1.710 066 
1 3 5 0.955956 
1 4 5 1.103843 
1 5 5 1.234134 
2 2 4 7.898459 
2 3 3 2.094395 
2 5 5 1.745329 
3 3 3 0.641275 
3 3 4 0.740 481 
3 3 5 1.655765 
3 4 5 1.911 912 
4 4 4 7.898459 
4 5 5 1.234134 

K(R,toRt.t ,Rv) = 161TpuR,tRt.tRv (Z,tZI'Zv)-1 

X {J)(R,t ,RI',Rv ) (deg triangles). 
(3.5) 

Notice that the form obtained is larger by a factor 2 than that 
in Eq. (3.3) for nondegenerate triangles. 

We have made extensive tabulations of K 's for both the 
face-centered-cubic (fcc) and the body-centered-cubic 
(bee) lattices, utilizing a digital computer to effect the neces
sary enumerations for (J). Tables I and II present a few of our 
results. The K values are independent of density for these 
perfect lattices, and for notational simplicity in both tables 
we have taken the nearest-neighbor separation to be unity 
(R I = 1). 

Alder was concerned only with the face-centered-cubic 
lattice.34 Our results in Table I agree with his except for the 
degenerate triangle R It R I' R4 • 

TABLE II. Nonvanishing superposition correction factors for the body
centered-cubic lattice. 

,:z sz 12 K(r,s,t) 

1 1 4/3 2.356195 
1 1 8/3 1.666 081 
1 1 4 2.040 524 
1 4/3 11/3 1.503923 
1 8/3 11/3 2.126868 
1 11/3 4 1.953653 
1 11/3 16/3 3.007846 

4/3 4/3 8/3 3.949229 
4/3 4/3 16/3 5.585054 
4/3 8/3 4 5.130199 
4/3 11/3 11/3 1.919862 
8/3 8/3 8/3 3.949229 
8/3 8/3 16/3 5.585054 
8/3 11/3 11/3 2.036321 

11/3 11/3 4 2.493974 
4 4 16/3 18.849556 
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The lattice K 's display remarkable deviations from uni
ty for many triangles in both the fcc and bcc cases. There are 
examples where K vanishes identically; the periodic lattice 
structures prohibit formation of triangles from some dis
tance triads. Contrariwise, K occasionally becomes very 
large indeed, as in the following fcc example: 

K(R 8,R8,R I6 ) = 63.187 67. (3.6) 

We conjecture that arbitrarily large K's exist for triangles of 
unbounded size. 

It may be worth pointing out that this method of obtain
ing K can easily be generalized to lattices with vacancies, 
provided no distortion around those vacancies is involved. A 
strictly random vacancy distribution would cause no change 
in the K 'so However, various nonrandom distributions could 
be created which would significantly change those initially 
nonvanishing K's. 

Lattice enumeration only estimates K for a discrete set 
of configurations. To the extent that amorphous packings 
contain defective but identifiable order of the type present in 
some perfect lattice, the enumeration results may indeed be 
qualitatively relevant for amorphous materials. It is worth 
pointing out that some evidence for this point of view 
emerges from the computer simulations of Lennard-Jones 
liquids, for which the crystalline phase is close packed (fcc 
or hcp depending on the potential cutoff used). For those 
configurations close to the isosceles triangle, R I' R 2, R2 
which Table I shows to be missing in the fcc crystal, the 
liquid simulation K tends to be anomalously low compared 
to the superposition value unity.38 By contrast, configura
tions in the liquid near R I' R I, R2 have K significantly 
greater than unity, 38 consistent with the corresponding entry 
in Table I. Recall that the inherent structure theory for Ii
quidsl2

,13 interprets these as vibrationally smeared versions 
of those for certain static amorphous pac kings. 

In very broad terms it becomes clear from the Alder 
lattice enumeration approach that the superposition correc
tion factor K is a sensitive indicator of geometric order. How 
important this is for numerical solutions of the BGY equa
tion emerges clearly in Sec. IV. 

IV. DIRECT NUMERICAL INTEGRATIONS 

The BG Y vector Eq. (2.4) can be reduced to scalar form 
by employing bipolar coordinates: 

- [pg(rI2 )] -lg'(r12 ) 

= v'(rI2 ) + 1T'pri;2 100 

dr13 v'(r13 )g(r13 ) 

xi'I2+'''dr23 r23 (ri2 +ri3 -ri3)g(r23 ) 
1'12 - rl.ll 

XK(rI2,r13,r23 )· (4.1) 

For notational simplicity we have setgi2)=g. After invoking 
the Kirkwood superposition approximation (2.11), the re
sulting nonlinear integrodifferential equation can be used to 
predict g, and several numerical studies of this kind at posi
tive temperature have been published.43

-49 As marked in 
Sec. II, amorphous solids at absolute zero are described by 
Eq. (4.1) with the left member set to zero. 

In this section we report some numerical solutions for 
Eq. (4.1) first with K = 1, and then with some physically 
motivated choices for K that incorporate significant devia
tions from unity. 

A. Hard spheres 

After setting K = 1, the absolute zero form ofEq. (4.1) 
is 

(4.2) 

The hard-sphere pair interaction vHS may be regarded as the 
limit of a sequence of continuous potentials, e.g., 

= + 00 (O';;;;r< 1) 

=0 (1 <r). (4.3) 

For simplicity the hard-sphere collision diameter has been 
set to unity. The product v' g can only be non vanishing at the 
collision diameter, and so will be proportional to a Dirac 
delta function:50 

v'(r)g(r) = - Co8(r - 1). (4.4) 

Consequently, when r 12 > 1 we see that Eq. (4.2) reduces to 
the following: 

(rI2 > 1). 

(4.5) 

Notice that the unknown constant Co from Eq. (4.4) has 
conveniently vanished. By setting 

f/!(y) =y[g(y) -1] (4.6) 

it is easy to see that integral Eq. (4.5) is equivalent to 
(X+ 1 

0= Jx- 1 (x
2 + 1 - y)f/!(y)dy (x> 1). (4.7) 

As it stands, Eq. (4.7) cannot uniquely determine f/!. It 
is a homogeneous equation and leaves f/! at least undeter
mined as regards a multiplicative constant. But in view of the 
absolute exclusion of hard-sphere pairs closer than the colli
sion diameter, we must observe the following accessory con
dition: 

f/!(y) = -y (O';;;;y<I). (4.8) 

This should help to determine f/! uniquely. 
If the restriction x > 1 is removed from Eq. (4.7), f/! can 

formally be defined on the negative real axis so as to satisfy 
that equation for all x. By applying two x derivatives, Eq. 
(4.7) then converts to a linear and homogeneous differen
tial-difference form: 

0= f/!'(x + 1) + f/!'(x - 1) - f/!(x + 1) + f/!(x - 1). (4.9) 

This formally has as its solutions linear combinations of 
complex exponentials: 

f/!(x) = IA j expUkjx) 
j 

(4.10) 

J. Chern. Phys., Vol. 89, No.8, 15 October 1988 
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.112.66.66 On: Sat, 05 Apr 2014 01:45:59



5086 F. H. Stillinger and L. J. Root: Study of short-range order 

provided that each kj is a root of the transcendental equation 

k = tan k. ( 4.11 ) 

One easily verifies that each complex exponential individual
ly satisfies the integral Eq. (4.7) over the entire real axis. The 
coefficients A j must be selected to assure that accessory con
dition (4.8) is satisfied as well. 

It is relatively easy to show that Eq. (4.11) has only real 
roots, that they are infinite in number, and occur as pairs 
± Ikj I. The origin k = 0 is a triple root, and as a conse
quence arbitrary quadratic functions of x satisfy Eqs. (4.7) 
and (4.9); however, on physical grounds we can eliminate 
them from further consideration. Thus we need to consider 
only nonvanishing k/s. 

The roots kj are relatively easy to compute to high preci
sion. As becomes obvious from a graphical analysis of Eq. 
( 4.11 ), the k j approach equal spacing far from the origin. 
One can show that their asymptotic locations are given by 

Ikn 1 = (n - P1T 

- [(n-D1T]-1-2[3(n-!)3~]-1+ ... 
(4.12) 

for large positive integers n. 
After restricting attention to the first 200 nonvanishing 

kj 's nearest the origin for numerical feasibility, we have eval
uated the corresponding Aj's by requiring condition (4.8) to 
be satisfied at 200 equally spaced points along O<.v < 1. This 
fully determines '" (and thus g), subject to the truncated set 
of k/s utilized. Figure 1 exhibits the resulting pair correla
tion function g(x). This result appears to exhibit jump dis
continuities whenever x is a positive integer, through their 
magnitudes seem to decline as distance increases. The "fuz
ziness" shown by the solution in every other interval results 

4 

3 

P 2 

c 

f 1 

o 

- 1 

o 2 4 6 

r 

from rapid oscillations due to high-order kj's. Our systemat
ic studies indicate that as more and more roots are included 
the amplitude of the fuzziness declines to leave a smooth 
function located near the middle of the oscillation endpoints. 

This numerical solution has several physically unaccep
table characteristics which constitute a serious challenge to 
the superposition approximation for hard spheres. First, the 
solution is independent of number density p, whereas one 
expects mechanically stable random packings of spheres to 
show a rather narrow range of densities. 51 Second, it is nor
mally expected that random hard-sphere packings should 
exhibit contact Dirac delta functions (each particle jammed 
by at least four others), 22 whereas none appears in the super
position solution. Third, it is difficult to imagine credible 
geometric circumstances that would produce an infinte se
quence of jump discontinuities in g at every positive integer 
multiple of the collision diameter. 

B. Gausslon core model 

The physical deficiencies just noted for g in Fig. 1 might 
conceivably be attributable to the peculiar singular nature of 
the hard-sphere interaction. For that reason we have investi
gated the contrasting case where particles interact in pairs 
with a Gaussian potential: 

vCr) = eexp[ - (r/0-)2]; (4.13) 

in the following we take e = 0- = 1. A substantial body of 
analytical work52-

55 and molecular dynamics computer sim
ulation5

(H)1 is available for this Gaussian core model. In par
ticular it has been determined that the model produces me
chanically stable amorphous packings.57 

We chose to solve the BGY equation with the superposi-

8 1 0 

FIG. I. Numerical pair correlation 
function for the BGY superposition 
equation, intended to describe the 
T = 0 amorphous state for hard 
spheres. 
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tion approximation for the Gaussian core model first at high 
temperature. The temperature was then lowered in stages 
(using a preceding higher temperature solution as starting 
point) in the hope that a realistic limiting pair correlation 
function for absolute zero could ultimately be obtained. 

For numerical purposes it is convenient to use the inte
grodifferential equation in the following form integrated 
over variable r l2 10: 

{3 -lIn g(rI2 ) = - exp( - r72) + 211'pri'21 

X i"" dr23 L(r I2,r23 ) [g(r23 ) - 1], 

(4.14) 

where the kernel L is 

(4.15) 

Owing to the short-range nature of the Gaussian potential, L 
becomes negligibly small unless r l2 and r23 are comparable. 
Solutions to Eqs. (4.14) and (4.15) were obtained by iter
ation, with suitable mixing of present and previous iterates. 33 

Figure 2 presents a pair correlation function at relative
ly high temperature ({3 - I = k B T = 0.05), where the num
ber density p = 0.1. Although the pair interaction is bound
ed for all r, its small-distance repulsion has effectively 
prevented pairs from approaching more closely than r!:;!! 1. 
Beyond this repulsive core region the indicated short-range 
order in the fluid is quite weak. 

Reduction in temperature enhances the range and mag
nitude of short-range order. Figure 3 shows the pair correla
tion function at the same density, but with {3 -I = kB T 

1.4 

...... 
1. 2 -

. . 
~ . 
~ • • • ! • • • 
1 • 

1. 0 - ... 
I • 

p 0.8 - 1 
1 

c I 0.6 - • 
f l 

0.4- 1 
I 

0.2 -
! 
L 
I • 
* J' 

0.0 I I 

0 2 4 

r 

I 

6 

= 0.008 82. Results obtained between the temperatures of 
Figs. 2 and 3 illustrate smooth and continuous change. 

Small further reduction in temperature below 0.008 82 
induces a discontinuous change in g. Figure 4 shows the re
sultat{3 -I = 0.008 78,p = 0.1. Thenumericalsolution sud
denly has developed a regular train of pulses. The upper 
cutoff used was r = 50; our studies indicate that increasing 
the cutoff simply extends the pulse sequence which in the 
limit of infinite cutoff approaches a periodic sequence. Simi
lar pulse-train solutions to the superposition BGY equation 
have been reported previously for the square-well and hard
sphere models by Co, Kozak, and Luks.4 B.49,62 

At even lower temperatures the pulse-train type of solu
tion remains, but with higher and narrower pulses which 
makes the numerical analysis increasingly difficult. Figure 5 
shows the computed pair correlation function at 
{3 -I = 0.004, P = 0.1. Notice that the separation between 
pulses is virtually unchanged. 

So far as we have been able to establish there is no tem
perature range over which both types of solutions simulta
neously exist. 

It seems clear that upon approaching absolute zero the 
only solution to the superposition BGY equation will in
volve a regularly spaced sequence of Dirac delta functions. 
No spatial arrangement of particles in three dimensions can 
produce pair correlation functions of this type, or for that 
matter the positive-temperature types shown in Figs. 4 and 
5. Obviously the Kirkwood superposition approximation 
has created another dramatic failure. 

We have also examined numerical solutions to the su
perposition BGY equation for the Gaussian core model at 
the higher density p = 1.0. The situation is qualitatively the 
same, with smooth and damped g at high temperature, but 

I 

8 10 

FIG. 2. Pair correlation function for 
the Gaussian core model at 
/3 - I = 0.05, P = 0.1 obtained from 
numerically integrating the BGY 
equation with the superposition ap
proximation. 
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FIG. 3. Pair correlation function 
for the Gaussian core model at 
p-' = 0.008 82,p = 0.1, from the 
BGY equation with the Kirkwood 
superposition approximation. 
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pulse-train solutions at low temperature. The discontinuous 
change from one type to the other occurs near {3 - I = 0.1, 
and the separation between successive pulses is less than at 
p = 0.1 (but not as much less as simplep-I/3 distance scal
ing would imply). 

As further measures of physical inappropriateness of 
the pulse-train solutions, we mention that the mean potential 
energy and the virial pressure implied by those solutions sud-

20 25 

denly rise as temperature declines through the discontinuity 
point. 

C_ Short-range superposition corrections 

The failure of the preceding attempts to construct rea
sonable zero-temperature amorphous-state pair correlation 
functions for the hard-sphere and Gaussian core models dra-
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50 

FIG. 4. Pair correlation function for 
the Gaussian core model at 
p-' =0.00878, p=O.l, from the 
BGY equation with the superposi
tion approximation. 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.112.66.66 On: Sat, 05 Apr 2014 01:45:59



F. H. Stillinger and L. J. Root: Study of short-range order 5089 

20 r------------------------------------------------------, 

IS 

p 

10 
c 

f 

o 10 20 30 

r 

matizes the importance of correction to the Kirkwood su
perposition approximation. We now describe the effects of 
an attempt to correct the superposition apptoximation for 
some compact arrangements of three particles. 

If we trivially rewrite K thus: 

K(r,s,t) = 1 + D(r,s,t) , (4.16) 

then we know that in the amorphous solid state the superpo
sition deviation function D must vanish in the limit that at 
least two ofits variables become infinite. We shall tentatively 
assume that D can be approximated in the following way: 

D(r,s,t) e! "LA;f(alli); 
j 

6.J = (r- rj )2 + (S_Sj)2 + (t - tj)2; 

!(x) = (1_X2 )2 <Ixl<l) 
= 0 <14>1). 

(4.17) 

( 4.18) 

(4.19) 

The index j covers a finite selection of relevant triangles 
(sides rj,sj ,tj ) where occurrence probabilities can be en
hanced or inhibited according as the constants Al are posi
tive or negative, respectively. The positive width constant aj 

controls how much distortion any selected triangle can un
dergo before its contribution to D disappears. Since D must 
befullysymmetricinr,s, and t thejsuminEq. (4.17) must 
include all relevant triangle side permutations. 

At this stage the lattice enumerations presened in Sec. 
III above become relevant. Since there is reason to suspect 
that amorphous solids contain a substantial proportion of 
local particle arrangements similar to those in the stable 
crystal,22,28,40 it seems appropriate to craft the expression 
(4.17) accordingly. 

40 SO 

FIG. S. Pair correlation function for 
the Gaussian core model at 
p-l = O.OO4,p = 0.1, from the BGY 
equation with the superposition ap
proximation. 

The stable crystal form for the Gaussian core model at 
density 0.1 is face centered cubic, while at the higher density 
1.0 it is body centered cubic.5~.54 Results in Tables I and II 
suggest that among the small triangles the strongest devia
tions from superposition are associated with totally missing 
triangles. These are the cases (1,2,2) for fcc, and (1,1,1) for 
bec. 

The BGY equation has been iteratively solved for the. 
Gaussian core model atp = 0.1 with a symmetric three-term 
approximation for D that is intended partially to inhibit the 
characteristic (1,2,2) triangles. We chose the following val
ues for the stength and width parameters: 

Aj = - 0.5023, 

aj =0.8270. (4.20) 

The resulting pair correlation functions resembled those 
with the superposition approximation, for pi> 0.015. 
However, no convergence to a fluid or amorphous solid g( r) 
was obtained at lower temperature. Even the pulse-train so
lutions were not obtained, but only artifactual solutions with 
unphysical wide oscillations between successive numerical 
grid points. The choice (4.20) has made the situation even 
worse than before. 

For the p = 1.0 case, D is taken to be a single term corre
sponding to the manifestly symmetric equilaterial triangle of 
nearest neighbors. The strength and width constants were 
selected to be 

Aj = - 0.495 38, 

OJ = 1.7818 and 3.5636, (4.21 ) 
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1 

FIG. 6. Particle triangles comprised in regular pentagonal structures. The 
length Tis the golden mean (51!2 + I) /2. 

where the latter two alternatives were examined in tum to 
observe the effects of width change. The numerical study 
uncovers results that at best are marginally changed from 
the superposition approximation, namely fluid-like solu
tions (broad and damped features) for temperatures above 
0.09, and pulse-train solutions below. 

Finally we adopted the suggestion that pentagonal units 
play an important role in supercooled liquids and amor
phous solids.63

-65 For the Gaussian core model at p = 0.1 we 
therefore integrated the BGY equation with D chosen to 
enhance the two types of isosceles triangles that occur within 
regular pentagons. These are illustrated in Fig. 6. Following 

earlier notation (Tables I and II) these triangles would be 
denoted by (1, 1,,,:z) and (1,,,:z,,,:z) where the nearest-neigh
bor distance is that for the fcc lattice at the given density, and 

'T = (5 1/2 + 1)/2 = 1.61803··' (4.22) 

is the famous "golden mean." Six terms are required for D 
(three for each type of triangle). The strength and width 
parameters were taken to be the same for both types: 

Aj = 3.0000, 

aj = 1.0338. (4.23) 

The reSUlting numerical study of the BGYequation 
with these pentagonal enhancements showed that the physi
cally acceptable g(r) solutions with damped short-range or
der extended to much lower temperature than with no such 
enhancements (i.e., the superposition approximation). Fig
ure 7 shows such a solution at (3 -1 = 0.0004, P = 1.0. 
Further lowering of temperature appears to eliminate this 
"physical" solution branch however. Although limited com
puting resources prevented complete study of this lower 
temperature region, partial results seem to suggest that the 
very slowly converging iterations would produce pulse-train 
solutions as before. 

Consequently, pentagonal enhancements are beneficial 
to the extent oflowering by roughly a factor 20 the minimum 
temperature at which physical g(r) solutions could be ob
tained (from 0.008 78 to 0.0004). However these acceptable 
solutions could still not be extended to aboslute zero as re
quired. 

V. INVERSE PROBLEM 

An independent source of information about the role of 
triplet correlations in amorphous solids arises by turning the 

2.5.---------------------------------------------------~ 

p 

c 

f 

2.0 

1.5 

1.0 

0.5 

r.. • • • • . '. . '. . '. '. . '. . • • ·V 

0.0 ~~~~ ____ L_ __________ L-________ ~L_ ________ ~ 

o 5 10 15 20 

r 

J, Chern. Phys., Vol. 89, No, 8, 15 October 1988 

FIG. 7. Pair correlation function 
for the Gaussian core model at 
(J - I = OJlOO4, P = 1.0. This was 
obtained by solving the BGY equa
tion with corrections to the super
position approximation that en
hance pentagonal packing 
structures [Eqs. (4.22) and 
(4.23) ]. 
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FIG. 8. Amorphous-state pair correla
tion function for the p = 1.0 Gaussian 
core model calculations of Ref. 57 (as
terisks). The solid curve is an analytic 
fit function. 

O~~~~~ ______ ~ ________ L-______ ~ ______ ~ 

o 1 2 3 

r 

problem around. Specifically, we can ask what form must 
the function K have in order to be consistent with a given 
g(r) for an amorphous solid. The latter can be taken from 
computer simulation for models with simple pair potentials. 
Attention will be confined to the zero-temperature limit. 

In order to have a mathematically well-posed problem 
with an unique solution it is necessary to restict K somewhat. 
In particular we have tentatively assumed that K depends on 
a single spatial variable that preserves the basic r, s, t symme
try, namely, 

K(r,s,t) =.K(r + s + t). (5.1 ) 

Consequently the zero-temperature BGY equation (2.9) 
adopts the following form: 

O=v'(r) +1Tpr-2 roodsir+sdtv'(s)t(r+~_t2) 
Jo Ir- sl 

Xg(s)g(t)K(r + s + t). (5.2) 

After discretizing the distance variables by constant subdivi
sion out to a suitable upper limit, and then approximating 
the integrals by sums, Eq. (5.2) becomes a set of linear equa
tions for the K values. The solution then can be obtained by 
standard procedures. 

We have examined two cases for which T= 0 amor
phous-state pair correlation functions were available to us in 
tabular form, namely the Gaussian core model,57 and the 
"v5" model whose pair potential approximates the behavior 
of noble gas atoms.29 

Figure 8 shows (asterisks) the Gaussian core model in
put data. This represents the pair correlation function at 
p = 1.0 for a single stable packing of 432 particles with peri
odic boundary conditions, prepared by slow cooling (with
out crystal nucleation) from the liquid phase. Since this one 

4 5 

sample contains substantial statistical uncertainty, we were 
motivated to smooth the data with an analytical fit function; 
the fit appears as a solid curve in Fig. 8. Considering the 
small system size and very limited sampling of packings, we 
regard the fit as reasonable. 

Figure 9 shows the resulting K(r + s + t) from the in
version procedure that incorporates the smoothed data of 
Fig. 8. Several observations are warranted. First, K is non
negative as we know it must be, and it approaches unity at 
large values of the perimetric variable u = r + s + t. Second, 
it is really not possible to determine K for u smaller than 
about 2.5 simply because the input data effectively contains 
no contributions from triangles of such small perimeters. 
Third, this K implies very substantial corrections to the su
perposition approximation for compact triangles. Fourth 
and most important, the deviations of K from unity have a 
spatial range that is at least as great as that of g itself. 

The dimensionless V5 potential has the following specific 
form: 

v5 (r) =B(r-I2- r-5)exp[(r-b)-I] (O<r<b) 

= 0 (b<r), 

where 

B = 6.767 441448, 

b = 2.464 918193. 

(5.3 ) 

(5.4) 

Just as for the dimensionless Lennard-Jones 12-6 potential, 
its minimum occurs at 21

/
6 and has unit depth. Its zero

pressure stable crystal form is face centered cubic, in con
trast to the hexagonal close packing produced by the Len
nard-Jones potential. 
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Figure 10 provides the amorphous-state g(r) for the Vs 
model from Ref. 23. The curve shown represents an average 
over 100 stable particle packings. These were obtained by 
steepest-descent quenching at equally spaced intervals dur
ing a molecular dynamics simulation of a slightly super
cooled liquid. The system comprised 256 particles in a peri
odic unit cell at the density (p = 1.066 27) ofthe zero-pres
sure, zero-temperature crystal. Notice that the local struc-
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FIG. 9. K(u) forthep = 1.0Gaus
sian core model, obtained by in
verting the BGY equation with the 
smoothed data of Fig. 8. 

ture is significantly different from that displayed in Fig. 8 for 
the Gaussian core model. In order to solve the inverse prob
lem for K (u) over a substantial range in u, we were forced to 
extend the curve in Fig. 10 to fit smoothly onto the constant 
value unity at large r. 

The result of the numerical inversion for the Vs model is 
shown in Fig. 11. Although this again produces significant 
corrections to the superposition approximation, the result is 

I 

3.0 3.5 

FIG. 10. Amorphous-state pair correla
tion function for the II, model, from Ref. 
29. 
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not satisfactory. The solution manifests numerical instabil
ity for u ~ 3 (with swings between - 15 and + 18), but 
even at the more significant larger u values K appears to 
become negative, a strictly forbidden feature. Nevertheless, 
it is perhaps significant that the range of K fluctuations 
about unity again is at least comparable to that of the input 
g(r) fluctuations. 

Other symmetrical combinations of r, s, and t beside the 
sum could have been considered in Eq. (5.1), such as 
(r + ~ + t 2) 1/2. It might be useful to explore some alterna
tives in the future, specifically to see if negative K values 
could be avoided. 

VI. ASYMPTOTIC REGIME 

The considerations in the preceding sections highlight 
the crucial role of the superposition defect function K for 
determining local order in amorphous solids with the BGY 
equation. We know on physical grounds that the nonran
domness of local order should die out quickly with increas
ing distance. In fact, a reasonable theoretical expectation is 
that if the interactions present have strictly finite range, then 
short-range order ought to decay exponentially with increas
ing distance. We can now uncover implicit conditions on K 
that assure such behavior. 

For this purpose we now examine the large r l2 asympto
tic regime for the BGY equation (4.1). We shall suppose 
that pair potential vCr) is negligibly small beyond some dis
tance 1, and that r l2 ~ 1. Consequently, Eq. (4.1) simplifies to 

- [pg(rl2 )] -lg'(rl2 ) 

( J'" = 1Tpr i; 2 Jo dr13 v'(r13 )g(r13 ) _ ,,,dZ(rI2 + z) 

X (r73 - 2rl~ - r)g(r12 + z)K(rw r 13,rl2 + z). (6.1) 

Here we have replaced variable r23 by r l2 + z. In the large r l2 

limit under consideration the last two integrand factors, 
g(rl2 + z) and K, will both be close to unity. Hence, if we 
write 

g(r) = 1 + her) (6.2) 

and also invoke the analogous expression (4.16) for K in 
terms of D, Eq. (6.1) leads to 

- p -Ih '(rl2 ) 

-E(rl2 ) + 1Tpr i;2 Ldr13 v'(rI3 )g(r13 ) 

X J~:"dZ(rI2 + z) (r73 - 2rl~ - r)h(rI2 + z), 

(6.3) 

where E is the contribution of superposition corrections: 

E(rI2 ) = 1Tpri; 2 Ldr13 v'(r13 )g(r13 ) J~:"dZ(rI2 + z) 

X (r73 - 2rl~ - r)D(rI2,r13,rI2 + z). (6.4) 

In deriving Eq. (6.3) we have disregarded terms that are 
nonlinear in the small quantities hand D, this being appro
priate for the large r l2 regime under consideration. 

If E(rI2 ) were shorter ranged than h(rI2 ) then the 
asymptotic form of h (r n> would be determined just by the 
homogeneous version of expression (6.3) obtained by drop
ping E (r 12)' By substitution one verifies that then h would be 

h(r12 ) -ri;I"LHj expUkjrl2), 
j 

in direct analogy to the earlier hard-sphere expression 
( 4.10). The kj now are roots of 
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FIG. 12. Graphical solution of transcendental equation (6.7), for a = SO, 
41TPCP = 500. Arrows locate positive real roots kJ; the pattern is repeated 

for negative real k. 

- P -I = 41Tpk j- 3 fdrl3 v' (r13 )g(rl3) [kjrl3 cos(kjr13 ) 

- sin(kj r 13 )]. (6.5) 

Even for non-hard-sphere interactions the v'g combination 
in the integrand normally would have quite limited range. 
For purposes of illustrations we might assume, e.g., 

v'(r
13

)g(r13 ) = - C(al1T) 1/2 exp[ - a(r13 - 1)2]; (6.6) 

if a is sufficiently large the rl3 integral can be extended to 
plus and minus infinity with negligible error, and then expli
citly integrated to yield 

(41TpCP) -I = {kj cos kj - (1 + k ]/(2a) ] sin kJ} 

xk j - 3 exp( -k]I4a). (6.7) 

It is easy to see that the first factor { ... } in the right 
member ofEq. (6.7) has an infinite number of real roots, and 
therefore so does the right member itself. These roots in turn 
are just those of the full equation at absolute zero, where the 
left member vanishes. A graphical analysis, Fig. 12, clearly 
shows how a rise in temperature above absolute zero causes 
pairs of roots to move off the real axis into the complex 
plane, leaving only a finite number of real roots near the 
origin. It seems unlikely to us that an alternative choice for 
v' g would qualitatively change this scenario. 

The real roots kj appearing at low temperature are phy
sically unacceptable, since the amorphous-state h must de
cay to zero more rapidly than ri"2 I. Evidently the only way 
that acceptable solutions can arise is that the corresponding 
coefficients ~ must vanish. This cannot be expected to oc
cur unless the inhomogeneous function in Eq. (6.3) is suit
ably constrained, and that amounts to corresponding con
straints ( one for each real kj ) on the superposition 
correction K. 

VII. CONCLUSIONS 

This paper has presented the thesis that the Born
Oreen-Yvon integrodifferential equation in principle re
mains valid for supercooled liquids and amorphous solids, 
even in the limit of absolute zero temperature. In order to 
extract the experimentally relevant pair correlation function 
g( r), however, the triplet correlation function t 3

) needs to be 
specified. Differences in short-range order in low-tempera
ture amorphous solids reflecting sample history arise from 
corresponding differences in t 3

). 

The approximation for t 3
) most widely used in the equi

librium regime is the venerable Kirkwood superposition ap
proximation. We have shown by several specific calculations 
(hard spheres, Gaussian core model at two densities, exami
nation of the general large-distance case) that the superposi
tion approximation leads to physically unacceptable predic
tions from the BG Y equation. 

One measure of the inappropriateness of the Kirkwood 
superposition approximation emerges from lattice enumera
tions, as originally pointed out by Alder.34 Another indica
tion is solution of the "inverse problem" posed in Sec. V, 
showing that subject to a special assumption about the func
tional form of corrections to superposition, those corrections 
must be large in magnitude and as long in range as g(r) in 
order for the BOY equation to give the correctg(r). 

The weight of available evidence suggests that the role of 
the superposition correction K is not only to modify the mag
nitude of correlations intrinsic to the Kirkwood approxima
tion, but also to change their qualitative nature for certain 
triplet configurations. The favorable (but not definitive) 
benefit of enhancing pentagonal structures (Sec. IV C) sup
ports this viewpoint, but it is clearly necessary as well for K 
to disrupt the undamped pair correlations that tend to arise 
at low temperatures. 

Finally, it seems obvious that detailed and exhaustive 
computer simulation studies of the triplet function t 3

) for 
selected models of amorphous matter at absolute zero would 
be very beneficial. Such projects should be directed at deter
mining how strongly t 3

) depends on method of sample prep
aration, and at clarifying what specific details it must exhibit 
to satisfy the implicit criteria of Sec. IV that ensure damping 
ofg(r). 
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