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Fragile glass-forming liquids are characterized by strongly non-Arrhenius temperature 
dependence of shear viscosity, and by unusually high heat capacity in the supercooled liquid 
above the glass transition. Using the inherent structure formalism, a theoretical model is 
developed to explain these characteristics. The vitrifying liquid is viewed as a dynamic 
patchwork of relatively strongly bonded (but amorphous) molecular domains that are 
separated by irregular walls of weakened bonds. Mean domain diameter S rises as temperature 
declines to minimize wall free energy, but the process is self-limiting due to intradomain 
frustration energy. Shear flow occurs by a "tear and repair" mechanism involving elemental 
wall areas of mean size S 2. The relation of the present model to the tiling models for glass 
formation is explored, and helps to establish the presence of anomalous heat capacity in the 
supercooled liquid. The analysis suggests in strongly supercooled fragile liquids that the 
Stokes-Einstein formula may underestimate self-diffusion constants, and that the Adam-Gibbs 
relation for mean relaxation time in terms of calorimetric entropy may display systematic 
errors. 

I. INTRODUCTION 

Thermodynamic and relaxational properties of glass­
forming substances offer phenomena in bewildering variety. 
These phenomena fail to support the idea of an underlying 
"universality" for molecular glass transitions analogous to 
that which describes critical phenomena. I Instead, glass be­
havior in certain key respects appears to be rather material 
specific, and Angell's classification of glass formers along a 
scale between "strong" and "fragile" extremes2

•
3 is both use­

ful and illustrative of the nonuniversality. As a consequence 
of this situation, theory is challenged to produce explana­
tions that are both comprehensive in applicability and cogni­
zant of the specific molecular details which distinguish var­
ious classes of glass formers. The present paper is intended as 
a small step in that direction. 

In large measure the following analysis is directed at the 
shear viscosity 1/( T) for glass-forming liquids near Angell's 
fragile extreme. Notable examples of this class are o-ter­
phenyl, propylene carbonate, and the molten salt mixture 
Ko.6 Cllo.4 (N03 ) 1.4' As Fig. 1 illustrates, their defining char­
acteristic is a vividly non-Arrhenius behavior for 1/( T). By 
contrast, glass formers such as Si02 at the strong extreme 
exhibit nearly perfect Arrhenius behavior over the accessible 
liquid range. 

A concommitant characteristic of fragile liquids is the 
tendency for their heat capacity substantially to exceed that 
of the corresponding crystal phase, with a discrepancy that 
magnifies with increasing extent of undercooling. This is in­
dicated schematically in Fig. 2(a). Kauzmann pointed out 
many years ag04 that such a calorimetric scenario seemed 
logically to produce a paradox. Entropy curves resulting 
from such heat capacities (and the measured latent heat of 
melting at the thermodynamic melting point r m ) appeared 
headed for an intersection at T K > 0, as shown in Fig. 2 (b) . 
Only intercession of dynamical arrest at the glass transition 
temperature Tg , always slightly in excess of T K, seemed to 
prevent direct observation of this encounter. The Kauzmann 

paradox consisted in the presumption, first, that dynamical 
arrest in principle could be defeated either by sufficiently 
slow cooling or by some catalytic agent to speed rate of equi­
libration, and second, that the result would be creation of a 
manifestly disordered ideal glass with (as the crystal at T K ) 

a substantially vanishing configurational entropy. Interest 
in this possibility was amplified some years after Kauz­
mann's publication when Gibbs and DiMarzio produced a 
statistical mechanical theory of polymer melts5

•
6 with an 

ideal glass transition of second order just as illustrated b} 
Fig.2(b). 

Viscosities measured for glass formers have often been 
fitted to an expression of the Vogel-Tammann-Fulcher 
(VTF) form7- 9 : 

1/( T) e;1/0 exp[A I( T - To)] , 

1/0' A >0, 

To>O. (1.1 ) 

The strong-liquid limit corresponds to vanishing To. The 
positive To values required to fit the non-Arrhenius behavior 
of fragile liquids usually correspond closely to the apparent 
calorimetric Kauzmann temperature T K, suggesting per­
haps that if an amorphous ideal glass state were to exist its 
shear viscosity would be infinite. 

Careful examination of 1/ (T) data for the very fragile 
glass formers seems to show systematic deviations from VTF 
behavior as Tg is approached. Instead of continuing to rise 
without bound, the Arrhenius plot slopes appear to have 
reached a constant value. The corresponding activation en­
ergies are large, in some instances at least five times the va­
porization energy.1O This strongly implies that whatever 
might be the mechanism for viscous flow near Tg it probably 
involves concerted motion of a large number of molecules. In 
this connection we might recall Donth's estimates II that 102 

to 103 molecules cooperate in flow and relaxation processes 
near Tg • 

A basic analytical tool employed in the following is the 
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FIG. I. Contrasting behaviors of shear viscosity 7J for strong and for fragile 
glass-forming liquids. These Arrhenius plots have been normalized by the 
respective glass transition temperatures T. (suitably defined). 

"inherent structure" formalism, a multidimensional basin 
description of the multiparticle potential energy function ell. 
This tool was first developed to study the inherent structure 
in liquids,12-14 and has been used to identify two-level sys-
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FIG. 2. (a) Heat capacities (Cp ) for liquid and crystal phases of the fragile 
glass formers; (b) corresponding entropy curves with an extrapolated ap­
parent intersection at the Kauzmann temperature T K • 

terns in amorphous solids, 15,16 and to extend the Lindemann 
melting criterion to include a complementary freezing crite­
rion. 17 Section II provides a comprehensive description of 
this basin formalism. Section III reviews the fundamental 
statistical mechanical expressions for 1/ ( n, and interprets 
them in terms of the dynamics of interbasin transitions. 

Section IV proposes a mechanism for flow and relaxa­
tion in fragile liquids near Tg , the "tear and repair" mecha­
nism. This picture involves identification of a fluctuating 
pattern of well-bonded amorphous domains separated by 
walls of weakened bonds: Relaxation and flow processes 
then are associated with "domain tectonics" in microscopic 
analogy to geologic processes. The mean linear dimension 
s( n of the well-bonded domains is an important parameter 
for describing temperature variation of viscosity and relaxa­
tion, and so Sec. V is devoted to identifying what determines 
this characteristic length. 

The domain view of fragile liquids near Tg has been 
previously advocated in simplified form in study of the fam­
ily of "tiling models." 18-20 The relationship to the present 
work is explored in Sec. VI. Tiling models utilize a rigid 
background lattice with unit spacing and for that reason 
have no capacity to represent hydrodynamic flow. Never­
theless their thermal relaxation properties resemble those 
seen in real glass formers, including nonexponential relaxa­
tion functions, nonlinear relaxations that are asymmetric in 
the sign of temperature jumps, and hysteresis effects. At 
least in their simple versions the tiling models possess ideal 
glass transitions ofjirst order with a substantial latent heat. 
In fact it has been demonstrated that ideal glass transitions 
cannot exist for substances with bounded molecular weight 
and reasonable interactions between the constituent parti­
cles.21 The material in Sec. VI includes a simple but signifi­
cant generalization of the tiling models which frustrates 
their tendency to exhibit ideal glass transitions, yielding in­
stead a temperature range of enhanced heat capacity. By 
analogy we expect the present domain theory for fragile glass 
formers also to produce an enhanced heat capacity, as in­
deed experiment demonstrates to be the case for real sub­
stances [Fig. 2(a)]. 

Some implications of the present theory are explored in 
the final Sec. VII. These include the status of the Stokes­
Einstein and Adam-Gibbs relations, the bifurcation of "a" 
and "/3" relaxations, and the spatial distribution of two-level 
systems in the low-temperature glass. 

II. POTENTIAL ENERGY HYPERSURFACE 

The potential energy function governing interactions in 
the glass-forming system will be denoted by eII(R). Configu­
ration variables are comprised in the vector R, and will in­
clude three Cartesian coordinates for each of the N atoms 
present. If constant volume ( V) conditions apply only these 
3N components of R are required. However, if the experi­
mentally more conventional constant pressure (p) condi­
tions apply, a (3N + 1 )st component must be appended to R 
to specify the fluctuating volume; this can simply be the posi­
tion Xo of a spring-loaded piston that transmits hydrostatic 
pressure to the material system of interest, and ell will then 
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include a term p V(xo) in addition to the usual molecular 
interactions. 

With the possible exception of atomic overlap configu­
rations that might cause divergence to + 00, cI>(R) will be 
bounded and differentiable in all R components. Further­
more, this function will possess some number 0 of local 
minima, each of which represents a mechanically stable ar­
rangement of the N atoms. In the large system limit it is easy 
to establish that 0 has the following asymptotic form 12: 

In O-vN + L In(N;I) , 
i 

(2.1 ) 

where the Ni are the numbers of atoms of each of the distinct 
species present. The factorials in Eq. (2.1) have a trivial 
permutational origin, while the vN enumerates the funda­
mentally distinct <I> minima. The quantity v depends on 
atomic composition of the system, as well as V (or p), and 
normally is D( 1 ). 

The existence of discrete <I> minima leads to a natural 
subdivision of the 3N (or 3N + 1 )-dimensional configura­
tion space into "basins," one surrounding each minimum 
configuration Ra (a = 1··· 0 ). Each basin B a is defined to 
be the set of configurations R which are connected to Ra by a 
solution of the mass-weighted gradient descent equation 16: 

m. dR(u) = - V4>[R(u)] (u>O). (2.2) 
du 

Here m is the vector comprising atomic masses, with the first 
three components equal to the mass of atom 1, etc. In the 
event that constant pressure is involved, the (3N + 1 )st 
component of m would be a macroscopic mass Mo for the 
piston motion. The union of all basins exhausts the multidi­
mensional configuration space available to the system. 

Basins can be classified by depth. On a per-atom basis 
the corresponding order parameter is 

(2.3) 

The enormous number 0 of minima and basins for macro­
scopic systems legitimizes introducing a continuous distri­
bution, and in view ofEq. (2.1) the number of basins with tjJ 
values in the range tjJ ± ! dtjJ can be written 12 

exp[u(tjJ)N ]dtjJ , 

u(tjJ) >0 . (2.4) 

Intrabasin vibrational partition functions can next be 
defined in an obvious way. For the specific basin Ba the 
corresponding constant- V classical canonical partition func­
tion is 

Za ({3) = (n A i- 3N,) r exp[ - {3!:1a (R) ]dR, 
I JO(I 

(2.5) 

where the Ai are mean thermal deBroglie wavelengths. The 
integration in Eq. (2.5) spans the entire 3N-dimensional re­
gion Ba, and generally includes very anharmonic configura­
tions far from the minimum. The constant-p version con-

tains an additional integration over piston variable xo, and 
for dimensional reasons must also be mUltiplied by the in­
verse of a piston mean deBroglie wavelength A 0 1. 

It is useful to introduce a mean vibrational free energy 
per atom,/v' for all basins with depth tjJ. To be precise, 

f31., (f3,tjJ) = - lim lim N - 1 In [ (Za (f3) ) HE] , 
£-0 N-oo 

(2.6) 

where the average ( ... ) t/> ± £ covers all basins lying within 
the cited depth range. 

Having introduced the intensive functions u and Iv, an 
exacj free energy expression immediately becomes available 
for the large system limit: 

f3F/N- max [f3I.,(f3,tjJ) +f3tjJ-u(tjJ)]. (2.7) 
<t/» 

This is the Helmholtz free energy for constant-V conditions, 
or the Gibbs free energy for constant-p conditions. The value 
tjJm (f3) that maximizes the linear combination in Eq. (2.7) 
over tjJ identifies the depth of the basins within which the 
system is virtually certain to be found at the given tempera­
ture. 

An equally precise quantum version of the above can be 
developed.22 However, there is no compelling reason to be­
lieve that the glass phenomena to which this paper is devoted 
are intrinsically quantum mechanical. The classical descrip­
tion will be used for simplicity. 

As derived, free energy expression (2.7) strictly per­
tains to thermodynamic equilibrium states. Formation of 
most glasses, however, demands entering the metastable re­
gime of liquid supercooling. Fortunately, a straightforward 
modification accommodates that necessity. 21 One removes 
from consideration all basins whose stable packings (the 
structures at the minima) display significant crystalline por­
tions. Then u( tjJ) and Iv (f3,tjJ) are evaluated just for the re­
maining set of amorphous basins. The resulting free energy 
from Eq. (2.7) is the appropriate metastable extension of the 
stable liquid branch, and can be used to describe properties 
offully relaxed supercooled liquids, Le., those that have sub­
stantially equilibrated over the amorphous basin subset. 

Contiguous pairs of basins will have at least one transi­
tion state (simple saddle point of <1» embedded in their 
shared boundary hypersurface. The standard reaction path­
way connecting the pair of <I> minima through this transition 
state consists of two branches that emanate in either direc­
tion from that transition state, and are solutions to the des­
cent equation (2.2) in the respective basins. 16.23 

Computer simulations on a variety of model sys­
tems 15,16.24 reveal that the fundamental dynamical transi­
tions between contiguous basins (at least those transitions 
with modest barriers) involve rearrangement only of an 
D( 1) subset of all N atoms. That is, the basic dynamical 
transitions are strongly localized. This has two important 
consequences for the geometry of basins. The first is that 
such transitions will only cause a change in absolute basin 
depth by D( 1 ), or equivalently that tjJ will change by a small 
amount of D(N - 1 ). The second is that each basin will have 
in its boundary D(N) transition states to neighboring basins, 
due to the fact that localized rearrangements are possible 
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anywhere within the macroscopic system. It should beap­
preciated that in spite of this high "mean coordination num­
ber" for basins, the transition states are quite inhomogen­
eously distributed in direction about each minimum: 
because the fundamental transitions involve localized rear­
rangements the directions are strongly concentrated along 
low-dimensional subspaces containing axes for just a few 
neighboring particles. 

Even after projecting out the crystallite-containing ba­
sins, the span of basin depths (the difference between dee­
pest basins and highest-lying basins) is O(N). Since individ­
ual transitions only change ~ (Ra ) by O( 1 ), a sequence of at 
least O(N) transitions would be required to rearrange the 
system from the bottom of the distribution described by 
u( tP) to the top. 

Topographic details of the multidimensional ~ hyper­
surface obviously depend in a sensitive way on the substance 
involved. In the case of fragile glass formers a key question 
concerns whether the statistical topography of those basins 
identified by tPm ({3) changes significantly as the system is 
cooled to the glass transition range. The distinctly non-Arr­
henius behavior illustrated in Fig. 1 could be explained this 
way, if reaction pathways between deep amorphous minima 
(those populated at low temperature) require surmounting 
much higher intervening barriers than is the case for the 
higher-lying basins populated at high temperature. 2 

I 

Questions concerning ergodic behavior are especially 
pertinent for glasses and amorphous solids, not only regard­
ing relaxation kinetics within these states, but also regarding 
nucleation and subsequent growth ofthe crystalline phase. It 
is important to realize that kinematically the latter is always 
possible at any positive temperature in a large system. The 
potential energy barrier that must be surmounted to create a 
critical nucleus is O( 1), whereas the available energy is pro­
portional to Nk B T. The time scale for such a possible event is 
the decisive feature, however, and for good glass formers 
may stretch well beyond any available time for observation. 

Even apart from kinetic sluggishness associated with the 
glass state, the ~ basin description provides an instructive 
insight into the ergodic character of many-body systems. It 
is easy to compute a lower bound on the amount of time to 
required to visit one of each of the distinct basin species, 
numbering exp (vN) according to Eq. (2.1). The line of 
reasoning is illustrated by Fig. 3. One imagines the optimal 
scenario in which (a) all basins are identical hypercubes 
arranged in a regular multidimensional array, and (b) the 
system dynamics manages to thread all hypercubes ballisti­
cally, one after the other, without any returns to previously 
visited hypercubes until all have been threaded. Given the 
number of basins and the overall configuration space content 
at constant volume it is easy to see (for a single component 
substance) that the edge length of the hypercubes must be 

1= [( V /N)exp( 1 - v)] 1/3. (2.8) 

Furthermore, the ballistic motion of the configuration point 
occurs at an expected linear speed: 

v=(3NkBT/m)I/2 (2.9) 

at temperature T. Consequently we arrive at the bound 

to> (l/v)exp(vN) . (2.10) 

'---,,----' 

! = HYPERCUBE EDGE LENGTH 

FIG. 3. Hypothetical basin-threading dynamics. The distinct basins are 
simplified to identical hypercubes, and a ballistic trajectory (arrows) is pos­
tulated to visit them all in turn. Potential energy minima have been symbo­
lized as dark circles. 

An approximate value of v for liquid Ar at 1 atm is 0.2.25 
For 1 mol of this substance at its triple-point temperature 
(84 K) we obtain the following estimates: 

1~4.4X 10-8 cm, 

v~ 1.8 X 1016 cm/s, 

exp(vNAv)~105xlO". (2.11) 

In spite of the fact that the implied residence time in each 
basin is extremely short, 

I /v~2.4x 10-24 s, (2.12) 

the right-hand side of inequality (2.10) is entirely dominat­
ed by the exponential enumeration factor: 

to> 105 x 10" S . (2.13) 

The implication of this result is indeed remarkable. Even 
under conditions where conventional standards decree that 
equilibrium is quickly attained (as in the liquid above Tm ), 

the configuration space is explored extremely slowly. Evi­
dently thermal equilibrium only requires sampling of a tiny, 
but representative, fraction of the basins. 

Argon atoms and their interactions are too simple to 
permit easy formation of the vitreous state. The greater mo­
lecular complexity of good glass formers affects the forego­
ing estimate primarily through v, which is expected to be 
significantly larger than for argon. This Change simply 
strengthens the conclusion about representative basin sam­
pling. Structural arrest at a glass transition evidently must 
result from disruption of representative sampling of the 
amorphous basin set. 

III. MOLECULAR EXPRESSIONS FOR VISCOSITY 

Linear transport coefficients quite generally can be ex­
pressed as time integrals of appropriate molecular autocor­
relation functions evaluated in equilibrium ensembles. 26.27 

Application of such formulas to supercooled liquids would 
require restriction of the ensembles to the amorphous por­
tion of configuration space. The previously mentioned elimi-
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nation of basins for crystallite-containing packings in princi­
ple accomplishes this restriction. 

The usually exhibited expression for shear viscosity 11 is 
the Green-Kubo formula28 

11(n = (p{3IN) fO dt(JXY(O)pY(t»eq' (3.1) 

where J xy measures off-diagonal shear stress: 
N 

JXY = L (pjxpjylmj + xjFjy) . (3.2) 
j= 1 

Here the position, momentum, and force vectors for particle 
j have components xj , Pjx, Fjx' etc. The physical content of 
Eq. (3.1) is quite clear. Thermal motions in the eqUilibrium 
ensemble quite naturally produce spatially varying patterns 
of shear stress. These shear stress fluctuations regress to­
ward their mean (zero) at a rate proportional to 11. In a 
normal liquid above its melting point stress decay is very 
rapid, but in a very viscous supercooled liquid approaching 
its glass transition the shear stress patterns persist for very 
long times. The autocorrelation time integral (3.1) repre­
sents that persistence. 

A viscosity formula complementary to that in Eq. (3.1) 
can also be displayed, involving a time integral of a shear 
current autocorrelation function in the (restricted) equilib­
rium ensemble: 

l/11(n = lim (2{3k iINp) (00 dt(Jxy(O)Jxy(t)eq, 
k-O Jo 

(3.3 ) 

where now 
N 

JXY = L sin(kYj)(pjx1mj) . (3.4) 
j= 1 

Transverse currents produced by thermal fluctuations obvi­
ously will persist longer in low-viscosity media than in high­
viscosity media. 

The existence of complementary pairs of autocorrela­
tion function time integrals for transport coefficients (and 
their inverse) is apparently quite general. At equilibrium the 
thermally driven molecular motions cause both thermody­
namic fields and their conjugate flows to fluctuate, and each 
member of a complementary pair keys on just one of these 
attributes. 

Regardless of whether Eq. (3.1) or Eq. (3.3) is em­
ployed, a positive finite 11 ( n can only result from molecular 
motions that execute an unending and multidimensionally 
untrapped sequence of interbasin transitions. Indeed there 
have been some prior analyses of 11 from this general point of 
view,29-31 though not specifically directed toward the pecu­
liar behavior of fragile liquids near their glass transitions. 

IV. TEAR AND REPAIR MECHANISM 

Fragile glass formers have many geometric options in 
formation of low-potential-energy amorphous packings. 
This diversity arises from molecular asymmetry and flexibil­
ity (as in the case of o-terphenyl) and from feasible rearran­
gements of distinct particles [a possibility in 
Ko.6 Cao.4 (N03) 1.4 ]. The most stable packings for any sub­
stance correspond to periodic crystalline arrays, but these 

have been eliminated from consideration as explained above. 
In the following we shall be concerned primarily with the 
structure and interconvertibility of the low-potential-energy 
amorphous packings that are expected to dominate the prop­
erties of supercooled liquids near and below Tg • 

Thermal motions in strongly supercooled liquids will 
spontaneously rearrange molecules into relatively well­
bonded arrangements, for the most part. On account of the 
many structural options, local particle groupings can be ex­
pected to fit together in near-optimal fashion in a variety of 
ways, adopting bonding lengths and angles between neigh­
bors that produce the most advantageous cohesion. How­
ever, the geometric demands of optimal bonding in one mi­
croscopic region may be at odds with similar demands in a 
neighboring region, leading to a weakly bonded surface 
(wall) between them. The entire material sample then 
would consist of an irregular patchwork of well-bonded 
amorphous domains separated by domain walls across 
which the bonding is suboptimal. 

Above Tg the supercooled liquid undergoes continual 
packing rearrangement, so the pattern of well-bonded do­
mains will be dynamic, not static. Structural relaxation will 
be associated primarily with change in domain pattern. Such 
change can arise from motions of molecules at and across the 
weak walls, from elastic deformations of domains, and from 
creation and annihilation of domain walls ("cracks" in the 
otherwise well-bonded amorphous medium). The mean spa­
tial extent of a domain is expected to vary with temperature 
at and above Tg , and will be denoted by s( n in the follow­
ing. 

If a shear stress is applied to the liquid the fluctuating 
domain pattern would preferentially respond in a way that 
creates shear flow. The predominant process permitting 
shear flow must be slippage across domain walls. This is 
illustrated schematically in Fig. 4. Steady state flow obvious­
ly requires a sequence of such slippage events, and that will 
be enhanced by spontaneous creation of new walls at appro­
priate positions and times. 

The basic events in the domain tectonics just described 
entail free energy (likewise energy and entropy) changes 
proportional to domain wall area, namely S 2 (n in order of 
magnitude. This is true whether slippage across a preexisting 

SHEAR STRESS 

SHEAR STRESS 

FIG. 4. Domain wall slippage (antiparallel arrows at center) induced in the 
fluctuating domain pattern by applied shear stress. 
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wall is involved, or whether a new element of wall area must 
be created by fracturing a domain. Typical sequences of mul­
tidimensional ct> basins that would have to be traversed sche­
matically should produce a ct> profile that appears as shown 
in Fig. 5. On the rising portion of the contour the bonds 
across the affected area element are weakening or breaking 
("tearing"), while on the descending portion they are re­
forming ("repairing"). 

Exactly the same tear and repair processes occur in the 
absence of external stress, as a result of thermal fluctuations. 
These processes are involved in production and in eventual 
regression of internal stresses and flows. The equilibrium 
autocorrelation function expressions (3.1) and (3.3) for 
1] ( n emerge as a result of the presence of these fluctuations. 

v. MEAN DOMAIN SIZE 

The considerations of Sec. IV indicate that the activa­
tion energy for viscous flow should be proportional to 5 2 ( n, 
since this measures the mean height of those composite bar­
riers (Fig. 5) over which the system configuration point 
must move. Consequently the shear viscosity would have 
approximately the form 

1](n~1]1 exp[B5 2(nlkBT] , (5.1) 

where 1]1 and B are positive constants. The strongly non­
Arrhenius behavior of 1]( n for fragile liquids which the 
VTF equation (1.1) is designed to fit thus arises from the 
temperature dependence of 5( n. The next step in the analy­
sis is identification of those features which determine 5( n. 

It is clear that the presence of wall interface between 
well-bonded domains on average will cost some potential 
energy per unit area, say A. Such an interface also should be 
able to adopt a variety of shapes that are rough at the length 
scale of individual molecules, and therefore possesses an en­
tropy per unit area U o ( n. The wall free energy per unit area 
then is 

y(n =..1 - kBTuo(T) >0. (5.2) 

If this were the only important feature, reduction in tem­
perature (provided equilibration remained possible) would 

TEAR - REPAIR 
REPAIR - TEAR 

REACTION COORDINATE 

FIG. 5. Typical potential energy contour through the basin sequence in­
volved in a basic tear and repair event that leads to shear stress relaxation. 
As indicated, the net barrier height will be proportional to mean area of 
domain walls, i.e., proportional to S-'( n. 

produce continual expulsion of the domain walls that are 
costly in free energy. The result would be that 5( n grows 
without bound as temperature declines, and through Eq. 
(5.1) the activation energy for viscous flow would also grow 
without bound. 

It is an experimental fact that activation energies for 
fragile liquid viscosities appear to be limited, though indeed 
they become quite large. 10 Evidently another feature is pres­
ent to prevent domains from growing to infinite size. Since 
particles composing any domain are packed together in an 
irregular amorphous manner, the concept of geometric frus­
tration seems inevitably to be germane. A particle-by-parti­
cle construction of a compact amorphous domain should at 
first proceed with several options available for each particle 
placement. But as this process continues fewer and fewer 
options should present themselves for adding the next parti­
cle in a strongly bonded arrangement, considering the posi­
tions of already placed particles. Eventually, the only bonds 
possible are weak ones, and this heralds the presence of a 
wall around the domain. 

An analogous situation has been studied in connection 
with supercooled noble-gas liquids, where small stable clus­
ters have icosahedral form. 32 It has been pointed oue3 that 
outward growth of such icosahedral clusters leads to a self­
limiting geometric frustration in three-dimensional space; 
addition of successive shells of particles around an interior 
seed cluster generates intrinsic strain which counteracts the 
prior stability. 

While the particles comprising a fragile glass former 
need not display icosahedrally packed domains (due to mo­
lecular asymmetry, flexibility, etc.), the general concept of 
geometric frustration in the relevant amorphous domains is 
still applicable. A corresponding positive frustration energy 
should therefore be included in the present analysis. 

If V denotes the system volume, then the expected num­
ber of domains is V5 -3, suppressing unimportant factors of 
order unity. Similarly the total domain wall area is essential­
ly V5 - I. For each typical domain of linear dimension 5 it 
will be supposed that the internal frustration energy varies as 
()5P , where multiplier () and exponent p are both positive. 
Consequently, the potential energy in a typical packing for 
which the mean domain size is 5 will be given by the expres­
sion 

(5.3 ) 

Here ct>(O) is the hypothetical (but unattainable) potential 
energy of an amorphous single-domain packing that spans 
the entire system but is immune to frustration. The frustra­
tion energy, the last term in Eq. (5.3), will impose a limit on 
domain size if its exponent is positive, i.e., 

(5.4) 

Then the minimum value with respect to 5 for Eq. (5.3) is 
achieved for 

5(0) = [A I()(p - 3)] l/(p-2) , (5.5) 

corresponding to a lowest amorphous structure potential en­
ergy: 

ct>min ~ct>(O) + VA e = ~)[ ()(p;- 3) r(p-2) . (5.6) 
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Unfortunately there is no a priori way to determine the key 
parameters A, (), and p in this expression; at least the first two 
are expected to be substance specific. 

If the viewpoint advocated has merit, one would expect 
that low-potential structural excitations should exist out of 
the minimum-<I> structure(s) represented by Eq. (5.6). In 
particular it should be possible to displace small sets of parti­
cles at or near the walls of weak bonds. The number of such 
excitation possibilities is proportional to the total wall area 
present, and thus to V itself. This is a situation which de­
tailed analysis shows to be inconsistent with the existence of 
a second order ideal glass transition.21 

When the temperature is positive the criterion for deter­
mining mean domain size requires minimizing the combina­
tion 

(5.7) 

where y( n was shown in Eq. (5.2) above. Consequently we 
find the following generalization ofEq. (5.5): 

_ [A - kBTO'o(T) ]1/(P-2) s(n - (}(p _ 3) , (5.8) 

and it is clear that entropy effects reduce the mean domain 
size below that at T = O. The temperature variation of s( n, 
and therefore of the total amount of domain wall, produces a 
contribution to the configurational heat capacity in the su­
percooled regime, which for fragile substances is substantial­
ly larger than in the crystal phase. 

Formally it would appear from Eq. (5.8) that s(T) 
might vanish at a temperature for which 

(5.9) 

and indeed this might even occur below the melting point. 
However, it should be obvious that it becomes difficult if not 
impossible to identify well-bonded domains when T rises 
enough to reduce s( T) to, say, two molecular diameters. 
Above such a temperature the domain picture simply be­
comes inapplicable, and an alternative description of local 
order and kinetic processes becomes necessary. It is tempt­
ing to speculate that this "crossover" should be identified 
with the point at which the mode-coupling theory34-36 and 
its algebraically singular viscosity expression that fits high 
temperature measurements well,37 

T/( T) r;;;,;, 772( T - To) - (; , 

"12' ~>O, 

begins to apply. 

VI. RELATION TO TILING MODELS 

(5.10) 

The description of glasses in terms of well-bonded amor­
phous domains has been explored previously in simplified 
form with the so-called tiling models. 18-20 These models pos­
tulate a D-dimensionallattice with unit spacing, and suppose 
that it is covered without gaps (tiled) by D-dimensional 
cubes with integer side lengths. The states permitted by the 
model are all possible distinguishable tilings of this kind. The 
potential energy for any configuration is taken to be propor­
tional to the total boundary "area" shared by contiguous 
tiles: 

00 

<1>( = DA 2. jD- In) • (6.1 ) 
)=1 

Here A represents (as in the preceding) an energy cost per 
unit area. The numbers of tiles oflinear dimensionj = 1, 2, 3, 
... have been denoted by nj • Two distinct kinds of transitions 
between tiling configurations have been considered 19.20 
which in principle permit ergodic behavior, but which in 
practice lead to kinetic arrest and glass-transition behavior 
as temperature declines. 

It should be noted in passing that expression (6.1) could 
be augmented with a term that induces nucleation and crys­
tallization behavior, if study of those phenomena were of 
interest. 18 

It is known that the tiling models possess a first order 
"ideal glass transition" at a positive temperature Tc , pro­
vided D>2. This is a point at which the high-temperature 
pattern of relatively small tiles becomes unstable with re­
spect to replacement of a single system-spanning tile. In the 
two-dimensional version this transition occurs at 

(6.2) 

and the resulting drop (to zero) of the potential energy per 
unit area in the system is 

(6.3) 

where N is the number of lattice sites in the system. 19 
It has been argued that ideal glass transitions are not to 

be expected, even in principle, in systems composed only of 
finite-molecular-weight substances.21 In the light of Sec. V it 
is desirable to inhibit the phase transition in the tiling models 
by including in the potential a domain frustration energy: 

00 

<1>( = D 2. (AjD- 1+ (}I)n) , 
)= I 

(6.4 ) 

When () is very small this will cause little change in the tiling 
model properties for T> Tc. However, below Tc the coar­
sening ofthe tile texture would proceed only to sizes of order: 

(j)r;;;,;, [A/(}(p-D)]I/(P-D+ I) • (6.5) 

The latent heat of transition that exists when () = 0 becomes 
spread over a narrow temperature range near Tc ' thereby 
creating a significant heat capacity rise in the amorphous 
state. This is the tiling-model version of the enhanced heat 
capacity in supercooled fragile liquids identified in Sec. V. 

VII. DISCUSSION 

The Stokes-Einstein formula38 relates the diffusion con­
stant D and hydrodynamic radius a for a particle undergoing 
Brownian motion in a fluid medium, to the shear viscosity "1 
and temperature T of that medium: 

D = kBT /CT/a. (7.1) 

The numerical constant C depends on hydrodynamic 
boundary conditions at the surface of the Brownian particle: 

C = 61T (stick) 

= 41T (slip). / (7.2) 

In particular the Stokes-Einstein formula can be applied to 
self-diffusion in pure fluids with surprisingly good results,39 
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considering the continuum approximation on which it is 
based. 

There may be good reason to question the validity of the 
Stokes-Einstein formula for strongly supercooled fragile li­
quids. If the characteristic length S substantially exceeds ra­
dius a, the continuum hydrodynamic flow model must be 
inappropriate. Shear flow would be retarded by the log-jam 
effect of large well-bonded domains, while self-diffusion 
might still proceed at a less inhibited rate due to molecular 
motions within the weakly bonded walls. A reasonable infer­
ence is that Eq. (7.1), using the hydrodynamic radius ob­
tained at high temperature, should underestimate the self­
diffusion constant D for a fragile glass former near Tg • 

Admittedly it will be difficult to measure accurately the 
small D values expected near Tg , but the insights that could 
result should provide strong impetus to surmounting experi­
mental problems. 

Dielectric, ultrasonic, and light scattering measure­
ments on many molecular glass formers often reveal a sepa­
ration of relaxation times into two groups as temperature 
declines toward Tg •

40 These are, respectively, designated as 
primary (or "a") relaxations, and secondary (or "/3") re­
laxations for the slower and the faster groups. The present 
picture of domains and weakly bonded walls offers an expla­
nation at least in part.41 Molecules at or near the domain 
walls should remain relatively mobile even at Tg , and their 
contribution to relaxation should be concentrated mostly in 
the /3 portion of the spectrum. In contrast, the slower ap­
pearance and disappearance processes for domains and do­
main walls should be concentrated in the a portion of the 
spectrum. Clearly the latter should exhibit the greater sensi­
tivity to temperature change. It would be informative to see 
whether the viscosity crossover from algebraic form (5.10) 
to VTF form (1.1), which we have tentatively associated 
with appearance of identifiable domains, occurs near the 
temperature of relaxation spectrum bifurcation. 

Adam and Gibbs have proposed a relationship between 
mean relaxation time ('1') in a glass-forming substance, and 
its configurational entropy Sc: 

(7.3) 

Here '1'0 is an appropriate molecular-scale time, and K> O. 
The literature contains several tests of Eq. (7.3), claiming 
that it successfully accounts for the behavior of at least some 
substances42 and models.43 The presence of distinguishable 
primary and secondary relaxations may complicate applica­
tion of the Adam-Gibbs relation, but presumably it is just 
the former which Eq. (7.3) is intended to describe. 

The Adam-Gibbs analysis postulates activation vol­
umes whose (essentially independent) rearrangements con­
trol relaxation. Each such elementary volume is capable of 
adopting a fixed number of alternative configurations, and 
the free energy of activation for rearrangement is propor­
tional to the size of the elementary volume. 

The present view of flow in cold fragile liquids differs 
from that of Adam and Gibbs primarily in that the rearrang­
ing unit is an elementary wall area, rather than a compact 
volume. If the intradomain frustration effect discussed in 
Sec. V is sufficiently weak to allow S to become large, this 

geometrical distinction can become important. In the limit 
of very large S the dimensional change from volume to area 
would cause Eq. (7.3) to be replaced by 

('1') ~'1'o exp[K'/T$~/3(T)] . (7.4) 

In deriving this alternative we have supposed that activation 
free energy is proportional to S 2, but that each well-bonded 
domain of approximate size S 3 has a fixed number of internal 
configurational options. 

The frustration effect will prevent the form (7.4) from 
ever being strictly exhibited. However, for fragile liquids it 
may be possible to detect quantitative errors in the conven­
tional Adam-Gibbs formula (7.3) in the direction indicated 
by Eq. (7.4). 

It is worth stressing that the low-barrier two-level sys­
tems, which dominate low-temperature properties of virtu­
ally all amorphous solids,44,45 are likely to be concentrated 
spatially at weakly bonded domain walls in fragile glass 
formers. 

Finally, it should be mentioned that Hoare has exten­
sively studied self-limiting (frustrated) amorphous clusters 
of simple particles and has conveniently summarized the re­
lation of his "amorphon" results to prior speculations about 
the nature ofthe glass state.46 
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