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28% decay in p o T / p  when density increased from 122 to 693 
amagats, the molecular dynamics simulation' showed only 4% 
decay. In view of difficulties inherent in the calculation of in- 
tensities, this discrepancy was not surprising. At the same time 
we were able to reproduce very precisely band shapes and second, 
fourth, and to some extent also sixth spectral moments. The 
possible explanation for the discrepancy in intensities is that the 
intermolecular interactions were represented by an atom-atom 
Lennard-Jones potential. Quadrupole-quadrupole interactions 
were neglected, and the isolated molecular polarizabilities listed 
in Table I1 were used. At high densities the intermolecular 
distances become small, and the electron overlap is likely. This 
interaction is not included in the Lennard-Jones potential, but it 
can significantly change the induced part of the molecular po- 
larizability and thus influence total intensity data. This hypothesis 
is very likely especially in view of our results23 for the depolari- 

zation ratio in oxygen. The frequency dependence of the intensity 
ratio ZVH(v)/ZW(v) shows a behavior typical for systems in which 
the isotropic part has undergone a significant modulation. This 
may be the result of the electron overlap or other interactions 
which changed the isotropic polarizability. Although it is only 
a hypothesis, it appears it would explain both the total intensity 
decay and the unusual behavior of the polarizability ratio. 

In summary, we showed that the normalized total DRS in- 
tensities of linear molecules, N2, 02, CO,, and N 2 0 ,  decay with 
increasing density and can be related to the values of molecular 
polarizabilities. 
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The condition on a one-dimensional potential that all its classical trajectories be bounded and possess an energy-independent 
period includes, but is not restricted to, harmonic oscillators. We have explicitly constructed a parametric set of "pseudoharmonic 
oscillators" with this property. The corresponding potentials V(x)  are analytic along the entire real x axis, and are displayed 
in closed form. The Einstein-Brillouin-Keller prescription for zeroth-order semiclassical quantization leads to the familiar 
harmonic oscillator spectrum for all of these pseudoharmonic oscillators. Exact SchrSdinger-equation eigenvalues have also 
been obtained for a limiting case, the split harmonic oscillator (unequal left and right side harmonic forces). Consequently 
one sees that the uncorrected semiclassical approximation applied to pseudoharmonic oscillators misses several significant 
qualitative features of the exact spectrum. 

Introduction 
Harmonic oscillators have the well-known property that all 

classical trajectories are periodic and that the oscillation period 
is independent of total energy. This property is not unique to 
harmonic oscillators but extends to a family of "pseudoharmonic 
oscillators" which form the subject of this report. Some of these 
have been considered before,'q2 including the harmonic oscillator 
with centripetal barriere3 However, we will exhibit below, ap- 
parently for the first time, a parametric set of pseudoharmonic 
oscillator potentials in closed form that are analytic over the entire 
real line. 

Nieto and Gutschick3 have demonstrated that quantum os- 
cillators with equally spaced energy levels can have nonharmonic 
classical dynamics (Le., oscillation period varying with energy). 
They have also raised the reverse question of whether a classical 
pseudoharmonic oscillator, when quantized, could display unequal 
energy level spacings. Using our specific set of examples we are 
able to answer this question in the affirmative, in spite of the 
contrary conclusion offered by leading-order semiclassical 
quantization. 

Analytic Set of Pseudoharmonic Oscillators 
Let V(x)  be a continuous and differentiable potential function 

defined on the real x axis, with the following conditions: (a) V(0) 
= 0, (b) (sgn x)V'(x)  > 0 for 1x1 > 0, (c) V(x)  - +m as 1x1 - 

'Resident visitor. 
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m. These guarantee that all classical trajectories are periodic and 
pass through x = 0. 

Inverting V ( x )  leads to two branches x-( V) I 0 and x+( V) 1 
0 defined for V 2 0. By requiring 

x'+(V) - x'_(V) = (2/Kv)'/2 

we ensure that all trajectories have the same energy-independent 
oscillation period as if the potential were that for the harmonic 
oscillator Kx2. The interpretation of eq 1 is elementary: time 
increments spent by the oscillator in passing between Vand V +  
dvrespectively for x < 0 and for x > 0 deviate from harmonic 
oscillator values in exactly compensating ways. Equation 1 can 
be satisfied by choosing 

x*(V) = *(2V/K)'/2 + g(V)  (2) 

provided the resulting V(x)  is single-valued on the real axis and 
meets conditions a-c above. 

A wide range of functions g( V) is available to generate pseu- 
doharmonic oscillators. For concreteness consider the case 

g( V) = &w[( 1 + 2pv/K)1/2 - 11 (3) 

where 151 < 1 and p > 0 but are otherwise arbitrary parameters. 
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With this choice eq 2 can be explicitly inverted to give a pseu- 
doharmonic oscillator potential that is free of singularities along 
the entire x axis: 

V ( X )  = '/zK( 1 - t 2 ) - 2 { ~  + lp"/2[ 1 - ( 1  + 2 t P 1 / 2 ~  + P x ~ ) ' / ~ ] ] ~  
(4) 

= '/ZK[x2 - t/3'/*x3 + 0(x4)] 

In the limit that p becomes infinite this reduces to a "split har- 
monic oscillator" potential: 
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lim V ( x )  = '/ZK(l - t)-2x2 
8-- 

( x  C 0) 

= '/ZK(l + t)-2x2 ( x  > 0) (5) 

Conventional harmonic oscillator behavior is recovered as P ap- 
proaches 0 for any t .  

Semiclassical quantization has been a popular approach to 
explaining spectra of simple dynamical systems for which ac- 
tion-angle variables can be defined.4 Extensions have also been 
suggested to cover cases with coupled degrees of freedom for which 
sufficiently regular classical trajectories e x i ~ t e d . ~ , ~  These ex- 
tensions have had numerous useful applications to problems in 
chemical 

The Einstein-Brillouin-Keller semiclassical quantization rule 
for a one-dimensional oscillator is"' 

J = $ p dq = ( n  + y2)h (n = 0, 1 ,  2,  ...) ( 6 )  

where p and q are conjugate momentum and coordinate variables, 
h is Planck's constant, and the action integral spans one period 
of motion. As is well-known, this rule reproduces the exact energy 
eigenvalues for the harmonic oscillator. 

In the case of our pseudoharmonic oscillator set eq 4, the action 
integral in eq 6 can be transformed into a sum of integrals over 
potential Vbetween limits 0 and E, the total energy. Subsequent 
appeal to eq 1 then easily leads to the result 

J(E)  = 2?rE/w (7) 

where w is the energy-independent angular frequency 

w = ( K / m ) I l 2  (8) 

and m is the oscillator mass. Expression 7 is identical in form 
with that for harmonic oscillators. Consequently the Einstein- 
Brillouin-Keller rule leads to an eigenvalue spectrum for pseu- 
doharmonic oscillators 

E,, = (n + l / , ) f iw  (9)  

which is identical with the harmonic counterpart. Note that 
nonuniqueness of V(x)  given semiclassical E;s is well-known from 
one-dimensional RKR inversion.* 

Energy Eigenvalues 
Energy eigenvalues obtained from the full quantum mechanical 

treatment of the pseudoharmonic set (4) are expected to be 
continuous functions of the anharmonicity parameters E and P. 
Therefore any discrepancy between such a treatment and the 
semiclassical prediction (9) that appears in, say, the split harmonic 
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TABLE I: Coefficients for Second-Order Dependence of Split 
Harmonic-Oscillator Eigenvalues on the Anharmonicity Parameter 4 
mi11 

0 
1 
2 
3 
4 
5 

E 
w 

n C" 

(1/4)(1 -In 2) = +0.0767132... . , . .  
(3/4)(2 - 3 111.2) = -0.0595811... 
(5/8)(7 - 10 In 2) = +0.0428301... 
(7/24)(29 - 42 In 2) = -0.0327196... 
(9/16)(25 - 36 In 2) = +0.0262695... 
(11/240)(457 - 660 In 2) = -0.0218688... 
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Figure 1. Dependence of split harmonic oscillator eigenvalues on the 
anharmonicity parameter t .  Each e,, is an even function of E .  
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Figure 2. Difference between the two lowest eigenvalues as a function 
of the anharmonicity parameter 5. The semiclassical approximation 
predicts that this difference is identically 1. 

oscillator limit /3 - would also obtain for some range of finite 
P. 

The exact eigenfunctions for the split harmonic oscillator defined 
in eq 5 above consist of parabolic cylinder functionsI2 with separate 

(12) Handbook of Mathematical Functions; Abramowitz, M., Stegun, I. 
A., Eds.; U.S. Government Printing Office: Washington, DC, 1964; Chapter 
19. 
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variables for positive and for negative x .  By imposing continuity 
on eigenfunctions and their first derivatives a t  x = 0 one derives 
the following transcendental equation for determination of the 
en 5 E n / h w :  
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It is clear that the e, must be even functions of [; changing the 
sign of ,$ is equivalent to switching sides of the split harmonic 
oscillator, and it merely interchanges numerators and denominators 
in eq 10. 

By using standard properties of the r functionL3 it is possible 
to extract the small-[ behavior of the e; 

Explicit values for the first few coefficients c, are displayed in 
Table I. The striking feature of these results is that they alternate 
in sign, revealing an initial tendency as [ moves from zero for 
neighboring eigenvalues to pair (though this effect appears to 
diminish with increasing quantum number n).  This indicates a 
deviation from the semiclassical prediction. 

We have also carried out a numerical analysis of eq 10 to trace 
out the full [ dependence of the en. Figures 1 and 2 exhibit some 
results. The unequal level spacings initially detected by eq 11 
persist until 161 reaches +1, a t  which point the eigenvalues are 

In this limit one half of the split harmonic oscillator has become 
an impenetrable wall, and the eigenstates confined to the other 
half correspond to the odd subset for the [ = 0 harmonic oscillator, 
suitably rescaled. 

The e,([) curves in Figure 1 have several notable features. Most 
obvious is the infinite slope that develops as [ - 1. From eq 10 
it is possible to show that a square-root singularity is involved: 

e,([) = n + Y4 - d,(l - ,$)l/z + 0(1  - [) 

Notice that the strength of this singularity increases logarithmically 
with n. 

With the exception of the ground state, none of the e,,([) curves 
is monotonic over 0 I [ I 1. Instead an oscillatory behavior 
develops with increasing n, the amplitude of which is largest near 
[ = 1. This characteristic is illustrated by Figure 3. Our nu- 

(13) Reference 12, Chapter 6. 
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Figure 3. Vertically expanded view of a portion of the e&) curve, 
illustrating the damped oscillatory behavior occurring for the larger 
quantum numbers. 

merical results suggest that en( [ )  possesses n relative maxima and 
minima in 0 < [ < 1. 

The flattening that develops with increasing n in the e,,([) curves 
for most of the f range confirms the belief that the semiclassical 
quantization method should become more nearly exact the higher 
the energy. However, the behavior is obviously nonuniform in 
[, with the steep-walled limits 141 = 1 continuing to resist the 
uncorrected semiclassical description, eq 9. 

We note in passing that the classical partition functions 
(canonical or microcanonical) for pseudoharmonic oscillators are 
identical with those for the corresponding harmonic  oscillator^.'^ 
Conclusion 

Our results for pseudoharmonic oscillators stress the need for 
caution in applying semiclassical quantization to problems of 
physical interest. Subtle features of the eigenvalue spectrum are 
missed by the semiclassical approach for the example investigated 
here, and there is the possibility of analogous imprecision in more 
complicated cases. Some engaging questions also arise from the 
present work about coherent states for pseudoharmonic oscillators 
that would be defined by the Nieto and Simmons a p p r o a ~ h , ' ~  
which generalizes the well-known formalism for harmonic os- 
cillator coherent states.I6 Finally, we have the open question 
whether in any nontrivial sense pseudoharmonic potentials can 
exist in two or more dimensions, and if they do, whether their 
quantum dynamics can be chaotic." 
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