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‘Tiling models” were originally introduced in an effort to explain low-temperature behavior of glass-forming materials. These 
models have now been extended by inclusion of “frustration” interactions that limit tile sizes, motivated by observed temperature 
dependence of supercooled liquid viscosities. The fundamental combinatorial problem presented by tiling-model equilibrium 
statistical mechanics is discussed in detail, and a simple approximate solution is proposed. The corresponding phase transition 
behavior is examined, with emphasis on essential singularities at first-order condensation points. Results from numerical 
calculations in the presence of frustration exhibit low-temperature heat capacity maxima (in accord with observations on 
“fragile” glasses) but provide no support for the presence of “ideal glass transitions”. 

I. Introduction 
Understanding the nature of glass transitions remains one of 

the most fascinating and challenging problems in condensed matter 
physics. In particular, the striking characteristics of the so-called 
“fragile” glass formers (large liquid-phase heat capacity, non- 
Arrhenius temperature variation of shear viscosity)’t have elicited 
special attention and have stimulated various theoretical  concept^.^ 
One of these theoretical concepts, the positive-temperature ideal 
glass transition at  Kauzmann’s point of vanishing liquid-phase 
configurational entropy: continues to generate vigorous debate.5v6 

This paper is devoted to the study of some novel features of 
the “tiling models” that have been introduced to illustrate several 
aspects of glass In particular these tiling models 
appear to be qualitatively relevant to the behavior of fragile 
glasses.1° 

Section I1 defines the tiling models, analyzes their ground-state 
configurations, and discusses the available choices for kinetic 
transition rates between configurations. Depending on the pa- 
rameters selected, the tiling models are capable of displaying a 
wide range of behavior in both equilibrium and nonequilibrium 
regimes. 

Section I11 presents several exact relations that are important 
in solving the combinatorial problem presented by the canonical 
partition functions for the tiling models. On the basis of these 
exact relations an approximate combinatorial solution is offered 
in section IV, which also contains some results on the analytic 
nature of first-order phase transitions in the tiling models subject 
to this approximation. Section V contains some numerical results 
in the same approximation that exhibit the kind of heat capacity 
anomalies associated with fragile glass formers. 

The paper concludes with section VI in which some aspects of 
glass kinetic behavior are examined. 

11. Generalized Tiling Models 
The motivation behind the tiling models is the desire to describe 

and to partially classify particle arrangements which occur in the 
amorphous liquid and solid states. The viewpoint adopted is that 

(1) Angell, C. A. In Relaxation in Complex Systems (Proceedings of the 
Workshop on Relaxation Processes, Blacksburg, VA, July 1983); Ngai, K., 
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(2) Angell, C. A. J. Non-Cryst. Solids 1985, 73, 1. 
(3) Angell, C. A. J .  Phys. Chem. Solids 1988, 49, 863. 
(4) Kauzmann, W. Chem. Rev. 1948,43, 219. 
( 5 )  Stillinger, F. H. J. Chem. Phys. 1988, 88, 7818. 
(6) Stein, D. L.; Palmer, R. G. Phys. Rev. B 1988, 38, 12035. 
(7) Stillinger, F. H.; Weber, T. A. Ann. N.Y. Acad. Sci. 1986, 484, 1. 
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these arrangements can be resolved at the atomic level into domain 
patterns, where the interior of each domain consists of a well- 
packed (and thus rather strongly cohering) cluster of particles. 
Walls between neighboring domains then would normally be 
locations of weakened bonding. 

If such a viewpoint has merit, then surely the expected domain 
sizes and shapes would be diverse and complicated. In order to 
keep the statistics manageable, the D-dimensional tiling model 
assumes that the domains (tiles) are all D-dimensional “cubes” 
(squares for D = 2, cubes for D = 3, etc.) whose edge lengths are 
integer multiples of some fundamental molecular-scale unit dis- 
tance. Furthermore, these tiles are required to fit together without 
gaps or overlaps with vertices residing on the nodes of a D-di- 
mensional “cubic” lattice. The distinct configurations permitted 
in the tiling models are all such tilings (domain patterns) satisfying 
this description. 

The definition of equilibrium aspects of the tiling model is 
completed by specifying the potential energy CP for any tiling. 
Three kinds of contributions to CP will be distinguished. The first 
represents the energy penalty associated with the presence of 
domain walls (tile boundaries) and is conveyed by a positive 
coupling constant X that stands for energy per unit of domain wall. 
The second contribution is a “frustration” energy with positive 
coupling constant 8 that limits the size of the tiles, whose relevance 
is suggested by the observed shear viscosity of fragile glasses.I0 
The third contribution provides a driving force for crystallization 
and has a coupling constant p. 

The generic form of CP is the following: 

@ = D C  (XI*’ + Banl - pablN,, (2.1) 
I2 1 

Here n/ represents the number of tiles with linear size I ,  and the 
exponentfoccurring in the frustration term must exceed D in order 
to limit tile sizes. It has been assumed that tiles of linear size 
a have a special status, namely that they contain a crystalline 
arrangement of particles; it is favorable for pairs of such size-a 
tiles to be in full contact along a shared boundary, and N, counts 
the number of such full-contact pairs. 

If N is the number of sites in the underlying lattice, then the 
n, are subject to the constraint of complete filling: 

lDnl = N (2.2) 
121 

Furthermore we must have 

N,, I Dn, (2.3) 

A, 8, p I 0 (2.4) 
in the following. It is clear that the ground state of the tiling model 
will be a periodic array of fully registered size-a tiles (a macro- 
scopic crystal) if p is sufficiently large.’ An elementary calculation 

We will suppose that 
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shows that this will be the case if 
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p > x + 8@+’ (2.5) 
Since A, 8, and p are independent coupling constants in the tiling 
models it is possible to vary at will the driving force for nucleation 
and crystal growth. Indeed if (2.5) is not satisfied the ground 
state will be noncrystalline. 

For the remainder of this paper the emphasis is on the 
amorphous state alone, and for that reason we will now suppose 
that p = 0. Consequently the ground state will be determined 
by a competition between the tile boundary (A)  and frustration 
(0) terms in CP. It is straightforward to verify that if, for some 
integer j I 1, X and 6 are such that 
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W%I) = exP[N~(lPrDl 

P /  = n1/N (3.3) 
Here the intensive quantity u has been expressed as a function 
of tile concentrations; it is the per-site configurational entropy 
divided by kB. Evaluating equilibrium properties of the tiling 
model essentially reduces to determination of U .  

The canonical partition function can be obtained for large N 
by the maximum term method. The equations locating the ex- 
tremum are 

au - - D ~ ( A I D - ~  + e q  + A ( P ) I D  = o 
aP/  

(3.4) 

where A(@) is a Lagrange multiplier associated with the complete 
filling constraint (2.2), or equivalently 

, W p /  = 1 (3.5) 
12 1 

The set of concentrations ( ~ ~ ( ( 3 ) )  which satisfy variational eq 3.4 
at any P are the equilibrium values for that temperature. 

In virtue of the fact that (aside from a factor kB-l) u is an 
absolute entropy density, it cannot be negative: 

.((P/l) 2 0 (3.6) 

Equality with the lower limit zero is achieved if all tiles have the 
same size, say n: 

&/=m”J) = 0 (3.7) 
a property mentioned in the previous section 11. 

u obeys an exact scaling relation. Imagine expanding the extent 
of the underlying lattice by an integer factor b > 1 in all D 
directions, so that it then possesses bDN sites. Also expand each 
tile by the same factor, so that any valid tiling of the original N-site 
system dilates into a valid tiling of the bDN-site system. Under 
this operation the starting concentration set (p r )  transforms into 
the new set (p ib)] :  

pib’ = b-Dp/ (n = bl, I2 1) 

= 0 (n # bl) (3.8) 

the only nonvanishing concentrations are those for which the size 
is a multiple of b. As was the case before dilation, concentrations 
are still reckoned on a per-site basis. 

While every tiling of the starting system maps into a distinct 
image tiling of the dilated system, not all dilated system tilings 
would be generated this way. This mapping specifically fails to 
produce all of the bD translates that become possible or the oc- 
casional row translates (assuming periodic boundary conditions). 
However, these extra configurations are not sufficiently numerous 
to have any thermodynamic significance in the large system limit. 
Consequently we must have 

4 P / D  = bDa(bib’l) (3.9) 
The factor bD compensates for the fact that even after dilation 
the configurational entropy quantity u is still computed on a 
per-site basis. 

Enumeration of distinct tilings only requires considering tiles 
with I 1 2. Once the larger tiles are in place only a single way 
remains to fill the untiled space with unit tiles. In particular this 
simplifies the enumeration task when the larger tiles form a dilute 
solution in nearly pure unit-tile solvent, for then the standard 
cluster techniques for dilute systems can be invoked.I2 The leading 
terms in the dilute solution expansion can readily be obtained 
through pair cluster order, with the following explicit result: 

then the ground state consists entirely of size-j tiles. This ground 
state is degenerate however, since rows of such tiles can slide 
relative to one another without energy penalty. In the large system 
limit such configurations are aperiodic with unit probability. 
Nevertheless, the degeneracy is not exponential in system size and 
so would not affect any intensive thermodynamic properties of 
the system. 

If A/8 happened to equal, say, the upper limit shown in (2.6), 
the ground state would display an indeterminate mixture of size-j 
and size+ + 1) tiles. This special circumstance creates a positive 
residual entropy per unit area (or volume). 

If both p and 8 vanish, the ground state consists of that tiling 
or set of tilings with the minimum possible boundary. This can 
be achieved with a single tile of linear dimension N’lD if the system 
has the proper shape. Other system shapes require a combination 
of tiles, but for any reasonable system shape the boundary con- 
centration on a per-lattice-site basis will be vanishingly small in 
the large system limit7 

Time-dependent attributes of the tiling models stem from the 
selection of Markovian kinetic transition rates K(C+C’, j3) that 
transform tiling configuration C to C’ a t  inverse temperature j3 
= (kBT)-’ .  Any physically relevant case involves several basic 
requirements on the Rs. First, the system must be ergodic, Le., 
a positive-rate pathway of successive transitions must be available 
between any two tiling configurations (though the direct transition 
rate may vanish). Second, detailed balance must be obeyed to 
assure that equilibrium is attainable: 

Third, every K > 0 should be a nonincreasing function of j3. 
Finally, nonvanishing ICs should involve only pairs of tilings that 
differ locally, not globally, over the entire macroscopic system. 
Two distinct sets of ICs meeting these requirements have previously 
been inve~t iga ted .~ .~  

111. Exact Relations 

inverse temperature P = (kBT)-’ is 
The canonical partition function Z(P) for the tiling model at 

Z(P) = Cexp(-B@) (3.1) 

where the sum includes all distinguishable tilings of the underlying 
lattice. Because we limit present attention to the special case p 
= 0, eq 3.1 becomes 

Z(P) = m-”) exp[-P@(ld)I (3.2) 
bi 

where now the sum covers all sets of tile numbers (nr) which satisfy 
the constraint eq 2.2, and where Q((n,)) represents the number 
of distinguishable tilings with the given set of tile numbers. 

The combinatorial quantity il is expected to rise exponentially 
with N, the system size, in the large system limit.” Consequently 
we can write 

( 1 1 )  Stillinger, F. H.; Weber, T. A. Phys. Reu. A 1982, 25, 978. 

It is necessary to extend the formal definition of u beyond the 
sets of concentrations obeying eq 3.5 to include independent p f  

(12) Mayer, J. E.; Mayer, M. G. Statistical Mechanics; Wiley: New 
York, 1940; Chapter 13.  
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variations, so that the variational equations (3.4) can be employed 
to locate the equilibrium concentrations P I ( @ ) .  In this extended 
regime u must be a function of the p i s  that is homogeneous of 
first degree: 

a(lcPr1) = C d ( P r 1 )  (3.1 1) 

A step-by-step demonstration of this property is too lengthy to 
include here. However, the key to such a demonstration lies in 
the behavior of p I ( @ )  for 1 - m, Very large tiles in effect provide 
internal macroscopic boundaries for the other smaller tiles, re- 
ducing the effective system size, and so their Occurrence probability 
is related to the system's free energy density itself. Equation 3.1 1 
assures that this internal consistency obtains. 

IV. Approximate Solution 
The next step involves introduction of a simple approximation 

to the configurational entropy quantity u. The specific form to 
be utilized is 

fJ = -c PI  In (P I /PO)  (4.1) 
I>  1 

where po is the zeroth moment of the size distribution: 

kk = E lkP/ (4.2) 
I t  1 

Obviously expression 4.1 displays the first-degree homogeneity 
property (3.1 1) in the extended regime of independent p i s .  In 
the physical regime for which constraint (3.5) is obeyed, it is 
straightforward to show that exact conditions (3.6), (3.7), and 
(3.9) are satisfied as well. 

When the tiles of sizes I L 2 form a dilute solution in the 1 = 
1 solvent, expression 4.1 can be expanded thus 

+ I D  - l)pjpI + ... (4.3) 

Notice that this agrees with exact result (3.10) when D = 1. The 
reason is clear. Expression 4.1 is equal to the combinatorial 
entropy (divided by kB) for a set of objects arranged along a line. 
Consequently, use of expression 4.1 is open to two interpretations. 
The first is that we are engaged in obtaining an exact solution 
for a strictly one-dimensional model whose tile lengths are re- 
stricted to the values lD, 2O, 3O, ..., and where parameter D can 
be varied at will. The second is that expression 4.1 will be accepted 
simply as an approximation to the correct u for the tiling models 
in D = 2 or 3 dimensions. We adopt the latter point of view for 
the remainder of this paper, while noting in passing that improved 
approximations to u can be constructed.13 

When (4.1) is substituted into the variational eq 3.4, one obtains 
the following expression for the tile concentrations: 

u = &(I - In p,) - ' / z  E 
I 2 2  j . t t 2  

P , W  = Po(@) exp[-D@(XlP' + err, + A(P)lDI (4.4) 

1 = E exp[-D@(AIpl + err, + A(@)lD] (4.5) 

which determines the Lagrange multiplier A(@). Also the 
preexponential factor po in eq 4.4 must be selected to satisfy the 
complete filling condition ( 3 . 3 ,  leading to 

cc0-l = E l D  exp[-D@(AI&' + BlJ) + A(@)lD] (4.6) 

The free energy per lattice site F / N  can be obtained from the 
logarithm of the maximum term of Z ( @ ) ,  eq 3.2. Using eq 4.4 
this yields the result: 

-N-I In Z ( @ )  = N-IPF(@) 

Clearly we must have, from the definition of w0 

I t  1 

I t  1 

= A(P) (4.7) 
This identification of the Lagrange multiplier A with the free 
energy density (divided by kBT) is not restricted to approximation 
4.1 but is entirely general, and is connected to the homogeneity 
property of u expressed in eq 3.11 above. 

(13) Stillinger, F. H.; Harris, J. G., to be published. 
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Figure 1. Series coefficient ratios for the D = 2 quantity A(@), evaluated 
for the high-temperature branch a t  the transition point. 

By way of orientation we now make a few remarks concerning 

(4.8) 

At very high temperature where the positive quantity fiX is small 
in magnitude, it is obvious that A(@) must be negative to make 
the infinite sum in eq 4.8 converge to 1. As temperature declines 
PA increases, and since this parameter enters the exponent with 
a negative sign, A(@ need not be so large and negative to keep 
the sum equal to 1. Eventually temperature declines to the point 
where A = 0, which simple calculation shows to occur a t  

the B = 0 limit. The basic relation 4.5 then simplifies to 
1 = 2 exp[-Dphl&' + A(/3)lD] 

I21  

(PA), = y2 In 2 = 0.34657359 ... ( D  = 2) 

= 0.11635528 ... (D = 3) (4.9) 
It is not possible for A to become positive, because the sum in 

eq 4.8 would diverge. Consequently A(@) discontinuously changes 
its slope at  the appropriate PA value shown in eq 4.9, and this 
quantity sticks at zero thereafter (Le., as temperature continues 
to decline). Such a slope change in the free energy heralds the 
existence of a first-order phase transition. This is the point a t  
which the system becomes unstable with respect to expulsion of 
essentially all tile boundary, to leave a system-spanning macro- 
scopic tile. 

Monte Carlo  calculation^^^^ for D = 2 indicate that the transition 
point is located at  (PA), z 0.270. The discrepancy between this 
number and the first in eq 4.9 provides a quantitative measure 
for approximation 4.1. 

The function A(P) is expected to be analytic in /3 over the 
high-temperature interval 

0 < P A  < (PA), (4.10) 
However, there is reason to suspect that the upper limit of this 
interval, the transition point, is an essential singularity of the 
high-temperature free energy function'e17 and hence of A(@). To 
examine this presumption for the present approximation we have 
used eq 4.8 to generate a large number of terms in the formal series 
expansion of A(@ on its high-temperature branch at the transition 
point (setting X = 1 for convenience): 

- Ea,$ 
n 2  1 

Y = P - P E  (4.1 1) 

Examining ratios of successive coefficients is often a useful way 
to reveal series properties. With this in mind we have used eq 
4.8 and the first of eq 4.9 to produce an algorithm for the a, in 
eq 4.1 1, which were then evaluated to high order by computer. 
Figure 1 displays the resulting ratios a,+,/a, versus n, for D = 
2. Except for a minor initial transient these ratios adhere closely 
to a linear function of n which diverges to infinity. The ratio test'* 

(14) Andrew, A. F. Sou. Phys. JETP 1964, 18, 1415. 
(15) Fisher, M. E. Physics 1967, 3, 255 .  
(16) Klein, W.; Wallace, D. J.; Zia, R. K. P. Phys. Reu. Lett. 1976, 37, 

679 --. . 
(17) Krivnov, V. Ya.; Provotorov, B. N.; Eidus, V. L. Theor. Moth. Phys. 

1976, 26, 238. 
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Figure 2. A versus ,9 for the case D = 2, 8 = 0.001. 

applied to this case indeed indicates that series 4.1 1 is divergent. 
Nevertheless it is B~re l -summable ,~~ so we can write 

30 

2 5  

PO 

1 5 -  

10 

C 

A(8) = Jm dt exp(-t)L(yt) + M b )  (4.12) 
0 

~ 

- 

- 

L ( x )  = C(a, /n! )x"  (4.13) 

where M ( y )  is a function which vanishes a t  y = 0 faster than any 
positive power of y ,  and which therefore cannot be revealed by 
asymptotic series 4.1 1. 

The power series for the Borel transform L(x) ,  eq 4.13, has a 
positive radius of convergence determined by the presence of a 
simple pole a t  

x = XO 0.1801698 (4.14) 

whose location is indicated by the fact that coefficient ratios now 
approach the limit x0-'. Standard methods of analysis then show 
that the Borel integral in (4.12) indeed possesses an essential 
singularity at @, with an associated branch cut in the complex /3 
plane directed along the positive real axis. The leading-order 
(small y )  imaginary part of A(@) at  this branch cut is found to 
be 

n 2  I 

R, = exp(-2@J) 
j 2  1 

(4.15) 

and al and a2 are the leading coefficients in eq 4.1 1 .  
The Borel transform L ( x )  is amenable to accurate approxi- 

mation with Padt  appro~imants , '~  using the available ais.  
Consequently the integral in eq 4.12 may be evaluated numerically. 
When this is done the result agrees to high precision with A(@) 
in 0 5 0 < & obtained by direct numerical solution of eq 4.8. We 
conclude that M(y)  in eq 4.12 for D = 2 either vanishes or is 
undetectably small. 

Formally it is possible to extend the preceding method for 
generating the a, to arbitrary real positive D. When this was done 
for D in the range 

1.75 5 D I 3.00 (4.16) 

we found that ratios a,,+,(D)/a,(D) for large n are proportional 

The calculations described in this section are similar (but not 
identical) with those required to describe Fisher's one-dimensional 
droplet model for c~ndensat ion. '~  

V. Numerical Results 

the sake of definiteness we set 

to nI/Wl) .  

We now return to the frustrated tiling models with t9 > 0. For 

f = D + l  (5 .1 )  

(18) Buck, R. C. Aduanced Calculus, 2nd ed.; McGraw-Hill: New York, 

(19) Baker, G. A. Essentials of Pad; Approximants; Academic: New 
1965; p 161. 

York, 1975. 
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Figure 3. Mean interaction energy per lattice site for the case D = 2, 
8 = 0.001. 
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Figure 4. Heat capacity per lattice site for the case D = 2, 8 = 0.001, 
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Figure 6. Heat capacity per lattice site for the case D = 3, 8 = 0.01. 

in the following. Equation 4.5 has been used to determine A(@) 
numerically for closely spaced @ values, after which the other 
thermodynamic functions were evaluated. 

As a first example consider the case D = 2, t9 = 0.001. We 
continue to use X = 1 in this section. Equation 2.6 implies that 
the ground state consists of tilings composed entirely of 32 X 32 
tiles. Figures 2-5 respectively show computed values for A, mean 
energy, heat capacity, and entropy plotted versus @. It is clear 
that the first-order transition which occurs a t  @ = I / ,  In 2 for 0 
= 0 has been smeared out into a continuous variation for all 
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is possible for a given equilibrium behavior, since the rates are 
independently assigned. 

A well-known relation due to Adam and Gibbs20 describes the 
temperature (7') dependence of average relaxation time (7) in 
glasses in terms of the configurational entropy S,: 

(7) = 70 exp[A/TSc(T)] (6.1) 

' 0 .  -..... ...* ..... 
O b  0.b5 O.;O 0.\5 0.20 O L 5  O!O 

B 

Figure 7. Configurational entropy per lattice site, divided by ke, for the 
case D = 3. 0 = 0.01. 

properties. Furthermore the results indicate a shift of the smeared 
transition to larger 0 (lower temperature): the heat capacity 
maximum in Figure 4 occurs a t  0 z 0.416. 

Figures 6 and 7 respectively present heat capacity and entropy 
curves versus 0 for another case, namely D = 3, B = 0.01. The 
qualitative pattern agrees with the preceding two-dimensional 
example, with the B = 0 sharp transition now smeared out and 
shifted to larger ,13. The heat capacity maximum in this case occurs 
a t  0 = 0.182. 

The entropy curves in Figures 5 and 7 are relevant to the "ideal 
glass transition" controversy. Both display regions of rapid decline 
toward zero. If kinetic sluggishness a t  lower temperatures were 
to make observation of the remainder of the heat capacity curves 
impossible, it would seem natural to extrapolate the entropy curves 
to zero at  a finite 0 (approximately 0.44 and 0.19 for D = 2 and 
D = 3 ) .  However, we see that the entropy curves smoothly turn 
over and approach zero only as 0 approaches infinity. Conse- 
quently, tiling model behavior with frustration present seems to 
be inconsistent with the existence of an ideal glass transition. 
Nevertheless, the presence of well-developed heat capacity peaks 
in the tiling models with aDDroDriatelv chosen couDling Darameters 

Here T~ and A are temperature-independent positive constants, 
which can be expected to vary from substance to substance. While 
the Adam-Gibbs relation appears to describe the glass-transi- 
tion-region behavior of many substances quite satisfactorily?' both 
experimentalzz and theoretical* exceptions have been noted. 

In order to understand in principle how such exceptions could 
arise, it is worthwhile inquiring what circumstances in a kinetic 
tiling model should produce substantial violations of the Adam- 
Gibbs relation. One qualifying scenario has 

x / e  = j~ + 1) 

where j is a large integer, so that the ground state consists of a 
degenerate mixture of size-j and size-(j + 1) tiles. In this event 

lim Sc(7') = Sc(0) > 0 (6.3) 
T-0 

as a result of the degeneracy. At very low (but positive) tem- 
peratures the system would be tiled almost exclusively with these 
two large sizes, and relaxation rates would be controlled just by 
the basic transition rates K(C-4') within this special tiling set. 
If these rates have a common Arrhenius form, then (7) in this 
very low temperature regime can be expected to adopt the 
Adam-Gibbs form (5.1) with appropriate T~ and A values. At 
somewhat higher temperatures the mean tile size will be sub- 
stantially smaller, and concentrations pj and will be negligibly 
small. Consequently a different set of basic transition rates K 
will be involved that in principle can be assigned independently. 
In particular these rates could be given Arrhenius form with a 
very different activation energy. If the result for (7) were forced 
into Adam-Gibbs form the constant A so obtained would differ 
from that appropriate to the very low temperature regime. . -. 

make the& useful in atiiining a qualitative understanding of 
enhanced configurational heat capacities in fragile glass formers." 

VI. Discussion 
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fication of {he basic iraisition rates betwe& configuraiions. Even 
after accounting for the constraints on these rates mentioned in 
section 11, it appears that a wide range of relaxation behaviors 
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Molecular dynamics calculations are reported for a microscopic model of a sodium octanoate micelle in aqueous solution. 
The micelle, whose equilibrium structure is found to be a prolate spheroid, undergoes shape fluctuations with a characteristic 
time scale of order 30 ps. The results are discussed in the light of recent theoretical and experimental studies on related 
systems. 

introduction between polar head groups, the attractive interactions between 
the surfactant tails (hydrophobic effect), and the solvation forces 
associated with the hydrophilic head groups. Considerable the- 
oretical progress has recently been made in understanding the 
overall behavior of micelles and related microemulsion systems 
in terms of mean-field theories and simplified or idealized mod- 
els.2-'z However, the bulk of experimental and theoretical work 

The rich variety of phase behavior exhibited by ionic surfactant 
solutions' can ultimately be traced back to the competing inter- 
actions between the constituent species: the repulsive interactions 

demic: New York, 1975; Vol. 1, p 1. 
(1) Ekwall, p. I,, Adoances in ~ i ~ ~ i d  ,-,ystuls; B ~ ~ ~ ~ ,  G. H,, Ed.; 
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