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To represent the apparent inability of supercooled liquids to form infinite amorphous well-bonded
regions, we add frustration interactions to the Stillinger-Weber tiling model. Using a simple ap-
proximation to the tiling model entropy, we demonstrate that these frustration interactions, which
limit tile sizes, can reduce a first-order phase transition to a continuous “transition” with a sharply
peaked heat capacity. The role of frustration is explained using arguments similar to those that ap-
ply to finite-size effects in first-order phase transitions. When corrections from the virial series are
added to the simple approximation to the tiling model entropy, previously unexpected first-order
phase transitions appear even when limited frustration is present. Because such phase transitions
are due to the constraints on the packings of hard cubes, they are artifacts of the tiling models’ re-
striction to cubic domains and may not reflect the behavior of real glass formers.

I. INTRODUCTION

Glasses and deeply supercooled liquids represent states
of matter that are far from equilibrium. The frequent
dependence of the observable properties of the glass on
factors such as the history of its preparation make it
difficult to define good thermodynamic variables upon
which to build a theory.

Glass-forming materials can be classified between
“strong” and “fragile” extremes."? In the former, the
dynamical properties, such as viscosity and self-diffusion,
follow an Arrhenius type of behavior in which atoms
presumably must cross a single type of activation barrier
in order for the substance to flow.

In the fragile glass formers, the shear viscosity follows
a strongly non-Arrhenius behavior, as if the activation
energy increased with temperature decrease. Experimen-
tal evidence on some substances suggests that the product
of the diffusivity and the viscosity can be much higher
than that predicted by the Stokes-Einstein condition.>*
This indicates that shear flow involves the cooperative
motions of many atoms, a process that should be slower
than the self-diffusion of individual atoms.’

The supercooled liquids that form fragile glasses also
exhibit an anomalously large heat capacity, i.e., much
larger than the heat capacity of the solid phase.>” The
heat capacity continues to increase with decreasing tem-
perature until the metastable liquid is cooled to the point
at which the relaxation processes are too slow to permit
equilibration on an experimental time scale. If the heat
capacity at temperatures above this “glass transition” are
used to extrapolate the entropy of the glass to lower tem-
peratures, the extrapolation predicts that at some positive
temperature, Ty, the Kauzmann point, the entropy of the
glass will equal that of the crystal.® The suggestion that a
second-order phase transition intercedes to prevent the
entropy of the glass from dropping below that of the
crystal has been discounted for substances with finite-
range interactions.’

The theory of glasses suffers from the difficulty that the
partition function of the substance is really dominated by
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the inaccessible (on the laboratory time scale) crystalline
configurations. One solution to this problem is the use of
the inherent structure formalism of Stillinger and
Weber,!° in which the partition function of N atoms in-
teracting through a potential energy surface U (r) is bro-
ken up into a sum of Boltzmann factors integrated
around local potential energy minima,

1
Z:mzi"fﬂlexp[—U(r)/kBT]dsNr ’ ”

in which the region of the integration, (2;, around each
minimum is the configuration space region which would
collapse to the local minimum under a mass-weighted
steepest-descent evolution. The amorphous-state parti-
tion function is defined by evaluating the sum over only
basins which are noncrystalline, and the thermodynamic
properties computed from this partition function are
those of the supercooled liquid. These may differ from
those observed in a laboratory experiment if sluggish re-
laxation does not permit the system adequately to sample
the basins dominating the amorphous-state partition
function.

The experimental evidence already presented suggests
that in the supercooled fragile glass former, the atoms are
clustered into well packed and strongly cohering amor-
phous (or even quasicrystalline) domains. The atoms at
the edge of a domain experience weaker interactions than
those in the interior, and the material can therefore flow
by domains sliding against each other or forming new
domain walls.> This accounts for the anomalously large
viscosity of the deeply supercooled liquid. The “conden-
sation” of atoms into larger domains as the substance is
cooled should cause a large decrease in the internal ener-
gy, explaining the large heat capacity.

Stillinger and Weber developed a tiling model to study
the qualitative nature of the distribution of domain sizes
as a function of temperature in fragile glass formers.!!
To make the statistics more manageable, the tiling model
is formulated on a d-dimensional cubic lattice with
periodic boundary conditions, and all domains are cubic
tiles with lengths that are integer multiples of the lattice

519 ©1990 The American Physical Society



520 J. G. HARRIS AND F. H. STILLINGER 41

constant. Since the tiles represent the well-coordinated
domains of the material, they must fill the lattice without
overlapping and without leaving gaps. For the two-
dimensional version, Monte Carlo simulations of Stil-
linger, Weber, and Frederickson,'*!3 and transfer-matrix
calculations of Bhattacharee and Helfand'* have provid-
ed accurate estimates of the thermodynamic properties.
The entropy favors states with smaller domains, while the
energy, which increases with the amount of boundary be-
tween domains, favors the formation of one macroscopic
amorphous strongly bonded region. In a previous pa-
per,’5 hereafter referred to as I, it has been shown that a
first-order phase transition separates two states. It has
also been shown that when frustration effects are present
the first-order phase transition is replaced by rapid but
continuous property variations.

The obstacle to the exact solution of the tiling model is
the determination of the entropy as a function of the
number of tiles of various sizes. In I, we presented an ap-
proximation to the entropy which is exact for a one-
dimensional version of the tiling model. We demonstrat-
ed that when the ground state of the system is a macro-
scopic tile, this model predicts a first-order phase transi-
tion from a heterogeneous tiling, which we call the
“liquid state,” to a large macroscopic tile we refer to as
the “condensed state.” This phase transition is associat-
ed with a weak essential singularity in the free energy at
which all derivatives approach finite values as the tem-
perature approaches the transition from above. We also
demonstrated that when the amorphous well-bonded
domains are frustrated so that the formation of the mac-
roscopic tile is prevented, this first-order phase transition
disappears and is replaced by a continuous transition
from a fine to a coarse tiling in a temperature range in
which the heat capacity has a maximum. As the frustra-
tion energy becomes smaller and the ground-state tiles
become larger, the maximum in the heat capacity be-
comes sharper.

In this paper we derive some systematic corrections to
the tiling model entropy which significantly change its
behavior when frustration is present. In particular the
improved entropy, which incorporates the geometry of
the tiles through a second virial coefficient approximation
level, predicts the existence of new phase transitions
when there is a limited amount of frustration. We also
clarify the role of frustration and spatial dimensionality
in the thermodynamics of the fragile glass formers near
the glass transition.

The paper is divided as follows. In Sec. II, we briefly
describe the tiling model and discuss the phase transi-
tions predicted by it. In Sec. III we discuss the properties
of the tiling model entropy function. We also develop
two approximations to this entropy. In Sec. IV, we
present the results of computations of the thermodynam-
ic properties of the tiling model based on the two entropy
approximations presented in III. In Sec. V we discuss a
simple two-state model for incorporating the effects of
frustrations which prevent the formation of macroscopic
well-bonded domains. We compare the predictions of
this conceptual model with those of the calculations
presented in Sec. IV. In Sec. VI we summarize the impli-

cations of our model for the properties of real glass form-
ing materials.

II. THE FORMULATION OF THE TILING MODEL

In the tiling model the medium is treated as a d-
dimensional simple cubic lattice, completely covered by
nonoverlapping tiles. To make the statistics of the sys-
tem more manageable, we make the approximation that
all tiles are cubic, (i.e., squares in the two-dimensional
case) with lengths that are integer multiples of the lattice
constant. Except for the excluded volume condition,
there are no interactions between tiles. Hence in an al-
lowed configuration of a system with n, tiles of length /
the internal energy is the sum of the energies of all the
tiles,

E=3ne, , 2)
=1

where ¢, is the internal energy of each length [ tile, and is
assumed to be the same for all tiles of a given length, [.
The fact that the tiles completely cover the lattice
without overlapping implies that

S nli=v, (3)

=1

where V is the volume of the lattice in lattice spacing
units.

The thermodynamics of the system is determined by
the €,’s and the number of distinct ways of arranging the
tiles on the lattice. The energy of a length / tile can be di-
vided into three contributions. First there is a bulk con-
tribution, proportional to /9, which does not affect the
distribution of tiles because of the constraint in Eq. (2)
and can thus be set to zero. The second contribution re-
sults from the fact that the atoms situated at a boundary
between tiles have a less favorable potential energy com-
pared to interior atoms. The number of these atoms and
hence the energy should be proportional to the boundary
size, 197!, The third contribution occurs when the well-
bonded amorphous packings do not completely fill space
in the Euclidean dimension of the system. If the amor-
phous packings are natural in some dimension d','® then
as shown in Appendix A, there should be an energy
penalty proportional to /¢*, where v=|d —d’|. Thus
the tile energies should be

g, =d(A1? 14919t 4)

In this work, A will always be assumed to be 1. A rescal-
ing of temperature and 6 will generalize this to all values
of A.

In an experiment, the number of particles, the temper-
ature, and either the pressure or volume of the system
can be maintained at particular values. The texture of
the material, i.e., the distribution of domain sizes,
remains uncontrolled. Thus the material should adopt
the texture which minimizes the free energy. In the tiling
model, this means adopting the concentrations of tile
sizes, p; =n;/V, which minimize the free-energy density
function,
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fledI=ellp}1—Tol{pi}], (5}

where the energy density is e and the entropy density is
o. The temperature, T, is in units such that ky=1. In
the infinite system limit, the number of distinct ways of
arranging the {n,;} tiles in an allowed configuration is
exp(Vo). When 6=0 the system exhibits a first-order
phase transition between the macroscopic tile (I = V1/9)
of the condensed state and a heterogeneous tiling of the
liquid state. At the condensation point of the 6=0 sys-
tem, the minimum free energy is zero. At higher temper-
atures, the entropy effect dominates and the free energy is
negative. At any lower temperature the macroscopic tile
has a lower free energy than any other distribution of tile
sizes.

III. THE TILING MODEL ENTROPY

To evaluate the temperature of condensation, the heat
of condensation, and other thermodynamic properties, it
is necessary to compute the entropy of a given distribu-
tion of tiles. Currently, it is impossible to compute an ex-
act entropy; however, it is possible to deduce several
properties of the entropy function from the geometry of
the tiling model and thus to develop some reasonable ap-
proximations for o. In this section we will summarize
the known properties of o, and then present a derivation
for an approximation to ¢ similar in spirit to the scaled
particle theory of hard spheres.!’

The five conditions that the entropy should satisfy are
(i) a scaling law, (ii) the existence of a viral expansion in
the limit that p;,—0 for all / 22, (iii) the existence of a
homogeneous form for the entropy, (iv) the ‘“dense tiling
limit” -—a limiting behavior when the system is dominat-
ed by tiles of one size, / > 1, and (v) a convexity condition.

The scaling law, presented in I, is

ol{p/}1=b%1{pi"}], (6)

where b is a positive integer, pi’=b"%,, and p{*’=0
whenever [/ is not a multiple of b. This condition is
justified by the fact that if all of the tile lengths are in-
creased by a factor of b and the system volume is also in-
creased by a factor of b%, the number of ways of arrang-
ing the tiles is unchanged, aside from a translation factor
(with periodic boundary conditions) which does not in-
crease exponentially with system size and thus cannot
affect the thermodynamics. The scaling condition trivial-
ly implies that the entropy density of a tiling with only
one tile size must be zero, because a function that follows
the scaling law and is zero for the uniform system of the
unit size tiles will be zero for all uniform tilings.

A virial expansion can be derived by considering the
uniform system of length 1 tiles as the empty system, i.e.,
a “vacuum.” The entropy of a partially filled system with
no length 1 tiles and a distribution, {p,;}, remains un-
changed when all of the vacancies are replaced by length
1 tiles. In the noninteracting limit the entropy is

> pil1—1In(p;)] . (7
=2

Corrections for the excluded volume can be computed

from the irreducible cluster diagrams. Because the ex-
cluded volume interaction is repulsive, the next two virial

corrections are negative. The second-order correction to
Eq. (7)is

k122

Higher-order corrections quickly become very complicat-
ed and computationally intractable.

The third condition observes that the entropy can be
written as a homogeneous function of the p,’s (1 = 1),

roglipi/1oll )
where the moments are defined as
Hp= 2 pik? . (10)
k>1

Because the entropy is defined only at complete filling,
there may be many physically equivalent ways of writing
o as a function of all of the tile concentrations. In Ap-
pendix B, we show that the equilibrium tile concentra-
tions for large k behave asymptotically as

In(p ) ~BfL{p}1k?—Bey , (11)

where B=1/(kgT). The minimization of the free energy
subject to the constraint in Eq. (2) implies

Sa
Be,— —8;=Adld , (12)
where A, is the Lagrange multiplier. The derivative of
the entropy includes a In(p;) term so that the solution to

Eq. (12) is
In(p,)=A41%—Be,+ (terms from the entropy derivative) .

(13)

The terms from the entropy derivative may contain at
most contributions proportional to /¢ which can be re-
moved by redefining the entropy function, as is allowed
because any function of the p}’s which is also zero when
the constraint in Eq. (3) is met can be added to o. The
resulting function will still be the entropy for any physi-
cally relevant tiling. There is a unique o which produces
no /¢ terms in the parentheses of Eq. (13) and is the en-
tropy of the tiling at complete filling. In such a case, Eqs.
(11) and (13) require A, =pBf.

To prove the homogeneity condition, we then multiply
Eq. (12) by p; and sum over all / to obtain

So
o = _— . (14)
[{p:}] glpz 5,

This is equivalent to the stated homogeneity condition,
which only holds for the equilibrium concentrations of
the tiles. Except in the vicinity of a singularity in the en-
tropy, the equilibrium concentrations can be continuous-
ly varied by changing the tile energies.

The fourth condition states that when a binary system
of length k and length [ tiles approaches the limit of a
uniform tiling of length [ tiles, the entropy should ap-
proach zero as

[k /(k,1)]¢ " Vp,In(p,) , (15)
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where (k,/) is the least common multiple of £ and /. In
this limit most of the size k tiles are geometrically forced
to appear in aggregates of size [(k,)/k]*® ~"). The aggre-
gation is most easily seen in a mixture of 2X2 and 1X1
tiles in the square tiling model (d =2), illustrated in Fig.
1. In order to place four 1X1 tiles on the lattice when
the other tiles are 2 X 2, the four tiles must be in the form
of two aggregates of two tiles each. In order to fit an iso-
lated 1X1 tile into the matrix, a total of at least twelve
1 X1 tiles must be inserted, as shown, for example, in Fig.
1(b)—two of these in a fixed configuration and several of
the rest subject to constraints in their positions. Hence in
a dilute solution of 1X 1 in a matrix of 2X2, the dimers
will predominate, as more configurations can be generat-
ed from a group of dimers than from a cluster producing
isolated 1X1 tiles. Equation (15) for this example is the
dilute limit for the entropy of mixing of the binary aggre-
gates. A similar argument for a general pair of sizes, k
and /, leads to the common form of Eq. (15).

The fifth condition requires that —o be a convex func-
tion of the densities. If there are two macroscopic sys-
tems of volumes V and ¥V’ and respective tile distributions

(a)

(b)

FIG. 1. Allowed arrangements of 1X1 tiles in a matrix of
2X2 tiles. (a) Dimerized 1X1 tiles. (b) The configuration with
the fewest number of 1X1 tiles in which some 1X1 are not
dimerized. The hatched squares cannot move relative to each
other.

{p;] and {p;}, the combined entropy of the systems is
just the sum of the entropies. If the two systems are com-
bined and their tiles are no longer kept separated, a new
system is formed with volume V + ¥V’ and tile concentra-
tions ap; +(1—a)p;, where a=V/(V +V’). Its entropy
must be no less than that of the two separate systems be-
cause the combined system is no longer subject to the
constraint that the two subsystems have the tile concen-
trations {p,} and {p;}. Thus

ollap;+(1—a)p;}1Zaol{p;}1+(1—alol{p;}] .

Whenever the internal energy is of the form of Eq. (2),
the free energy is also convex.

In the following discussion we derive an approximation
to the tiling model entropy based on the scaled-particle
theory of hard spheres. This approximation was present-
ed without derivation in I. We first note that the entropy
of a distribution of tiles all of lengths greater than or
equal to 2 which do not completely fill the lattice is un-
changed by the placement of 1X1 tiles on all of the emp-
ty lattice spaces. Thus we can remove from consideration
the 1X 1 tiles and the complete filling constraint [Eq. (3)].
The entropy and its partial derivatives with respect to p;
are thus well-defined functions of the p,, where k >2.
When k is large, the entropy change that occurs when a
size k tile is added to the system can be broken up into a
translational term representing the change in the transla-
tional entropy of the size k tiles, a “bulk” term propor-
tional to the volume of the inserted tile, resulting from
the fact that when the location of the added tile is fixed
the volume available to the other tiles is reduced by kd,
and a geometric term proportional to the size of the in-
serted boundary, resulting from the geometric constraints
imposed by the insertion of the size k tile. As shown in
Appendix B, this scaled particle theory predicts

B9 — in(pe)+In(1—py) — (k=)o {p;]]

dp

(16)

+b,[{pi}], a7

oled
+(k9—1) o
1§sz |5P1

where b, is the “geometric term” of order k!, and the
primed moments of the tile size distribution are

up= 3 kfpy . (18)
k>2
It is important to note that solutions to Eq. (17) do not
exist for arbitrary functions b;[{p;}]. When b, =0 the
solution to Eq. (17) is

0o=— 2 piInlpy/po) - (19)
k>l

This entropy is consistent with the virial expansion to
first order and follows all of the other conditions, except
for (iv), the “high-density-limit condition.” We refer to
0, as the “one-dimensional approximation” to the entro-
py, because it is the exact entropy of a set of {n;} rods
with lengths /¢ on a line of length V.

Two routes are available to improving our estimate of
o. One is the development of approximations for b, ; and
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the other is the addition of terms to o, which maintain
its scaling property and its homogeneity and make it con-
sistent with the virial expansion to a given order. We
have not been able to develop approximations of this
latter kind for b, for which Eq. (17) has a solution. How-
ever, the second procedure has been carried out to pro-
duce an approximation to ¢ that is consistent with a
J

oznp,}1=aonp,n—2¢%§

1im2=22

IV. CALCULATIONS

The equilibrium distributions of tiles for many values
of B3, 6, and v and d =2 and d =3 have been determined
by solving Eq. (12) by simple iteration using the entropy
approximations of Egs. (19) and (20). The sums are trun-
cated at a value of / =N. This is equivalent to a tiling
model with a maximum allowed tile size. When 6=0 a
value of N-=100 is adequate to obtain acurate results,
although there is a very slight rounding of the liquid-
condensed phase transition. At each step in the iteration
the right-hand side of Eq. (13) is calculated using an esti-
mate for the density obtained from the previous iteration
and the Lagrange multiplier chosen so that the constraint
in Eq. (3) is satisfied. (In some cases using entropy ap-
proximation o,, the input and output tile concentrations
must be mixed to obtain efficient convergence of the
iterations.) A, is found by using the bisection method
followed by Newton’s method. The procedure is contin-
ued until the change in the absolute value of the densities
is less than one part in 10'". In generating tile concentra-
tions as a function of B for a sequence of 8’s the initial tile
concentrations supplied to the iterative procedure are
equilibrium concentrations at the previous value of .

When the one-dimensional entropy approximation, o,
is used the procedure can be simplified to just finding the
Lagrange multiplier satisfying

TABLE 1. The tiling model phase transition: location and
heats of condensation.

d=2 d=3
Source B Ae® B. Ae
Monte Carlo/Padé* 0.271 0.943
Transfer matrix? 0.270
Mean field® 0.628
Using a4 0347 0667 0116 157
Using sz 0.264 1.008 0.073 2.12

2 B. is the condensation point at which f =0.

®Ae is the latent heat of the transition.

°Obtained by fitting a Padé approximate to Monte Carlo simula-
tions and the energy expansion around 8= — «. See Refs. 12
and 13.

4See Ref. 14,

“See Ref. 11.

From this work.

second-order virial expansion and all of the other condi-
tions except for convexity and the high-density-limit con-
dition. Note that this procedure does not uniquely define
0.

The simplest approximation to o consistent with the
virial expression to second order and satisfying the scal-
ing and homogeneity conditions is

[(kl +km —1)4—(kD)*—(km)*+ 1)pxpriPrm - (20)

I=N,
S exp[Agl?—dB(4 T +o19)]=1 (21)
I=1

using a bisection method followed by Newton’s method.
In this case the tile densities are given by

exp[A k4—dBkd 1+ 0k?*)]
Pk = TZW, . (22)

3, 9exp[Ayl9—dBI? T +01977)]
1=1

When 6=0 both entropy approximations predict a
first-order phase transition between a heterogeneous til-
ing and a large macroscopic tile. This condensation
occurs at f,, the value of 8 at which A=8f=0. The
condensation point and latent heats of the transitions in
two and three dimensions are shown in Table I along
with the values predicted by the transfer matrix, comput-
er simulations, and an earlier mean-field theory.'°

In Figs. 2 and 3 we compare the entropy, energy, and
free energies as functions of temperature according to en-
tropy approximations o, and o,. The virial correction
significantly improves the location of the condensation
point and the latent heat because small tiles predominate
at the transition. However, it violates the convexity con-
dition at high concentrations of larger tiles. In particu-
lar, the entropy of a binary mixture of 1 tiles and /¢ tiles
is not concave (i.e., —0o, is not convex) near complete
coverage with /9 tiles when d =2 and />3 and when
d =3 and | 22 as demonstrated in Fig. 4. A free energy
satisfying the convexity property can be constructed from
0, using the double tangent rule. When the maximum al-
lowed tile size (N() is finite, two local free energy minima
occur in {p;] space. Because the initial guess used to
start the iterative procedure to find the equilibrium tile
concentrations at 3 is the equilibrium distribution of tiles
at an adjacent 8 on the curve, two separate curves of tile
distributions versus S are obtained. They correspond to
starting in the vicinity of one or the other minimum. Of
course the correct distributions are those corresponding
to the lowest free energy, and the liquid-condensed tran-
sition of the finite system in which No-= e occurs at the
point where the free energy of the correct distribution be-
comes zero.

The presence of frustration, 60, causes the singulari-
ty in the free energy to disappear completely from the
one-dimensional appoximation. Instead the heat capacity
shows a maximum, which broadens as 0 increases. The
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ground state is no longer a macroscopic tile, but a uni-
form tiling of size /=~(v) 1/**1 except at discrete
values of 8 in which there are two tile sizes with equal en-
ergy densities lower than those of any other tile. Accu-
rate numerical distributions of tiles can be obtained as
long as N, the maximum tile size appearing in the sum-
mations, is at least one and a half times the ground-state
tile size. In Fig. 5 we show heat capacity as a function of
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FIG. 2. Thermodynamic functions of the equilibrium tiling
of the d =2 tiling model computed using entropy approxima-
tions o (solid line) and o, (dashed line), and the extra solution
of the model using o, (.. .) (when N-=100) (a) free energy den-
sity, (b) internal energy density, and (c) entropy density.

J. G. HARRIS AND F. H. STILLINGER 41

B for several values of the frustration exponents for both
two and three dimensions.

Under entropy approximation o,, frustration removes
the liquid-condensed phase transition; but the noncon-
vexity of the approximate free energy induces another
kind of first-order transition. All calculations done with
this approximation for the entropy used the frustration
exponent v=1. The two phases differ in that the one
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FIG. 3. Same as Fig. 2, but for the three-dimensional tiling
model.
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FIG. 4. o, of binary mixtures of unit size and length k tiles
for the (a) two-dimensional and (b) three-dimensional tiling
models. The lines correspond to k =2 (solid line), kK =3 (dashed
line), and k =10 (dotted line).

stable at low temperature lacks the unit size tiles, while
the one stable at high temperature has a significant con-
centration of these tiles. In Fig. 6, we compare the con-
centrations of tiles that appear in these two phases at the
transition point for this system. In two dimensions, this
transition has a critical point at 8, =0.117 and 8=0.84,
while in three dimensions the critical point is at 6, =0.5
and B= . For 6> 6, no phase transition occurs. In the
three-dimensional case this can be easily understood, be-
cause when 6 exceeds 0.5, the ground state becomes the
uniform tiling of unit size tiles and there is no driving
force for the transition. In the two-dimensional case, be-
cause the entropy is convex for a mixture of 1X1 and
2X2 tiles there should be no phase transition for 8> 1,
but the effects of the frustration prevent the free energy
from having multiple minima at an even lower 6. As 6
approaches 6, the two phases become similar, hence the
appearance of unit size tiles in the condensed phase in the
d =2, 0=0.115 case shown in Fig. 6(a).
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FIG. 5. Heat capacity of the frustrated tiling model using en-
tropy approximation o, with frustration exponents of 0.5 (solid
line), 0.75 (solid-solid line), 1.0 (dotted line), and 1.5 (dashed
line). (a) Two dimensional tiles with 6=0.01. (b) Three-
dimensional tiles with 6=0.05.

V. SIMPLE MODEL DESCRIBING
PHASE TRANSITION FRUSTRATION

The one-dimensional approximation, @, predicts the
disappearance of the phase transition under any positive
amount of frustration. The disappearance of the phase
transition with frustration can be understood using a
two-state model similar to that described in Hill'® and ar-
guments similar to the finite-size-scaling theory.!*-?

Nonzero values of 6 introduce a natural length scale
Lo=(0v)~1/1*Y) | the ground-state tile size. (The
ground-state tile size must be one of the two integers
bracketing L.) Fluctuations to much larger tile sizes are
forbidden because of the large frustration energy. We
can thus divide the substance into regions of length L.
In a real substance, it is reasonable to expect that the til-
ing of a region of size L. does not strongly affect the til-
ing of adjacent regions. The heat capacity per unit
volume is
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” (23)
Near the transition temperature, the dominant fluctua-
tions in the energy will be from the heterogeneous tiling
to very large squares of size L. Neglecting the small en-
ergy of the condensed state, each region will experience a
mean-square total energy fluctuation proportional to ap-
proximately (e; L)%, where e; is the energy density of
the liquid state. The mean-square total energy fluctua-
tion of the entire system is the sum of the mean-square
total energy fluctuations of all of the ¥ /L regions and
hence the heat capacity maximum is proportional to

C~PlefL¢~Bef(6v)~ 41T, (24)

CZBZ<(E—E” )2> .

A more quantitative argument proceeds by classifying
the available states in each region as either liquid or con-
densed, the condensed state being one tile filling the
whole region. The partition function for a region can be
separated into a sum over all of the liquid states, the
liquid partition function, and a sum over the condensed
states, the condensed partition function. The total parti-
tion function of the material is
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FIG. 6. Fraction of volume covered by length I squares, /%,
as a function of / for the low-temperature phase (X) and the
high-temperature phase (O) when entropy approximation o, is
used. (a) d=2, 6=0.115, =0.83933 (b) d=3, 6=0.20,
$=0.34525. In both cases B is approximately the transition
point.

Z=(z;+2.) 'k, (25)

where Ny =V /L¢ is the number of regions and z; and
z are the liquid and condensed partition functions for a
region, respectively. We can approximate Eq. (25) by the
maximum term in its binomial expansion. The logarithm
of this maximum term is the total free energy, thus the
fraction of regions in the liquid state is

Zr 1

L zptze  l+exp[—B(fc—fL)] 26

and the free energy density is

f=—1lj[xLln(xL )+ (1—xy)In(1—x;)]

+x;le, —Top)+(1—x  Nec—Toc)

=f; —(1/Bv)Inf1+exp[v(—BAe+Ac)]} , (27)

where f, is the liquid free energy, v=L&~=(Qy) /D

is the region size, Ae=e-—e;, Aoc=0c—0, and
Af=Ae—TAo. For any finite value of v this function is
analytic and varies smoothly from the liquid to the con-
densed free energy. When v becomes infinite, a singulari-
ty appears at Af =0 where the two free energies are equal
and the slope is discontinuous.

The heat capacity is the second temperature derivative
of Eq. (27) and is approximately

_ B*v(Ae)’exp(BvAe—vAo)
[1+exp(BvAe—vAc)]?

(28)

where the derivatives of f;, Ae, and Ao have been omit-
ted because they are insignificant contributors to the heat
capacity peak. The addition of these terms would make
the heat capacity higher on the liquid side, since in this
model the liquid phase has more excitations available.
To estimate the position and height of the heat capacity
peak, we make the approximation that Ao is the entropy
of the transition of the wunfrustrated model and
Ae EA€0+8LC —d0ul, ,, where Ae, is the latent heat of

the phase transition without frustration, and the other
terms correct for the shift in the energy of the liquid and
condensed phases due to frustration. u_ ; is the moment
[defined in Eq. (10)] of the unfrustrated system at the
transition point. It is these corrections which produce
the shift in the heat capacity maximum towards lower
temperature.

The maximum in the heat capacity should occur at the
temperature at which Af =0, and should be
B*Ae?(v0)~4/YT1) Because the heat capacity maximum
occurs at B, =Ao /Ae, the temperature shift is given by
Ao /Ae—Ao0 /Aeg— KO as 0 where K is a posi-
tive multiplicative constant. The width of the heat capa-
city curve is approximately the latent heat of the transi-
tion divided by the height of the curve. Two fair require-
ments of this approach are that it reproduces the scaling
behavior of the one-dimensional approximation and that
it reproduces the temperature shift. The former can be
tested by plotting the logarithm of the heat capacity max-
imum as a function of the logarithm of L. for various
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values of f and d. As L.— o the slope of the plot,
shown in Fig. 7, approaches d for all of the three values
of v tested. In Fig. 8, we compare In(B),—B,) with

In(Ly). The slope of the plot approaches 1/(v+1) as
6—0.

It appears that this two-state approach gives a reason-
able description of the development of the singularity in
the free energy as the frustration vanishes. We note that
even the one-dimensional rod model cannot be complete-
ly described as a set of regions of size L since there are
certainly liquid regions much smaller than L. which can
be surrounded by condensed domains. This does not
affect the scaling exponents in the low frustration limit.
Its applicability to the square or cubic tiling model hinges
on the assumption that there are no infinite-range corre-
lations in the system. In the next section, it will be ar-
gued that such correlations are not relevant to the phys-
ics in real fragile glass-forming materials.
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FIG. 7. The derivative dInCy, /dInL. where C,, is the max-
imum heat capacity as a function of the logarithm of L, for (a)
d =2 and (b) d =3. The frustration exponents are v=0.5( X),
v=1.0(0), and v=1.5 (O).
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FIG. 8. The logarithm of 8,;,—f. as a function of 6 for (a)
d =2 and (b) d =3. The solid lines are predicted from the two-
state model and the exponents shown are v=0.5(X),
v=1.0(0), and v=1.5(0). The symbols are the values of
In(By, —B,) predicted by the solution of the one-dimensional
model.

VI. DISCUSSION

In this section we discuss the relevance of the calcula-
tions already presented to the exact square tiling model
and to the real fragile glass-forming materials. The mod-
el for the frustration effects hinges on the assumption
that there are no infinite-range correlations in the tile dis-
tribution which would correspond to singularities in the
entropy as a function of the tile concentrations, as is sug-
gested by the virial correction to the one-dimensional
model. The methods used in this paper prevent the en-
tropy approximations from exhibiting any such singulari-
ty; however, as in the mean-field theories, the free energy
may become concave in the region around the singulari-
ty. Such phase transitions could preempt the continuous
transition. At this time, we cannot make a conclusive
statement on the existence of such phase transitions in
the tiling models; however calculations on hard square
lattice gases may shed some light on the issue.?!

For example a binary mixture of 1 X1 and 2X 2 square
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tiles is equivalent to the lattice gas with first- and
second-neighbor exclusions. This particular two-
dimensional lattice gas has been studied using virial
series,?>?* high-density expansions,?? and transfer-matrix
techniques.?>?*~2®  The different authors have claimed
that there are no phase transitions at densities less than
close packing,? that there is a second-order phase transi-
tion,?>2%2% and that there is a third-order phase transi-
tion.?* All studies agree that there is no first-order phase
transition. The application of finite-size scaling to the
transfer matrices?> %6 indicates the existence of a second-
order phase transition in the system at p,~0.24. Other
studies have demonstrated that the lattice gas with
nearest-neighbor exclusions has a second-order phase
transition, while the lattice gas with first-, second-, and
third-nearest-neighbor exclusions has a first-order transi-
tion.! This pattern is consistent with the entropy ap-
proximation o,. As the excluded volume of the particle
becomes isotropically larger, the tendency towards a
first-order phase transition becomes greater, as the sys-
tem becomes more like the hard disk fluid. We are aware
of no studies done on the three-dimensional hard-core
lattice gases, for which o, predicts a first-order phase
transition even for first-, second-, and third-neighbor ex-
clusions (the mixture of 1X1X1, and 2X2X2 tiles). Al-
though o, implicitly includes corrections to the virial ex-
pansion of all orders, it would be premature to assume
that our calculations describe the phases of the lattice
gases accurately. We also note that the third-order irre-
ducible diagrams are always negative, so that adding this
correction will not qualitatively change the conclusions
presented in this work.

The differences between the square tiling model and
the one-dimensional approximation to it are substantially
irrelevant to the statistical mechanics of the fragile glass
formers. These differences arise from the packing restric-
tions imposed by the use of only square domains. In a
real glass former, large domains would reduce the total
entropy in proportion to their volume; but the domain
shapes can be adjusted to allow the domains to fit togeth-
er.

Frustration can occur when the shapes of the atoms or
molecules prevent the amorphous well-bonded packings
from compactly filling space. Phillips has suggested that
a similar form of frustration can occur in amorphous co-
valent network glasses, i.e., Si and Ge.?7 In these sub-
stances, the number of constraints on each atom originat-
ing from the strong covalent bonds exceeds the number
of degrees of freedom—the spatial dimension. In the
crystal these constraints are redundant; but if the liquid is
quenched too rapidly for the relaxation to a crystalline
structure to occur, a highly strained covalent network is
formed.

The calculations reported here show that in these two
cases, the frustration energy limits the size of the
domains that form and a singularity in the thermodynam-
ic functions is completely avoided. As demonstrated in
Secs. IV and V, the formation of large domains of well-
packed atoms can account for an anomalously large heat
capacity. It has also been argued that this domain forma-
tion also accounts for the rapid increase in the viscosity

near the glass transition, which accompanies the large
heat capacity.’ If a material showing the behavior of the
one-dimensional approximation to the tiling model were
being studied in the laboratory, the maximum in the heat
capacity peak would likely not be observed; when the
temperature gets low enough to form the larger domains,
the relaxation becomes so slow that heat capacity mea-
surements depend on the history of the sample’s prepara-
tion and the duration of the experiment. The observer
extrapolates the heat capacity beyond the observed ap-
parent maximum and thus obtains the Kauzmann point
where the entropy of the glass would equal the entropy of
the solid. As our calculations show, such extrapolation is
risky and the Kauzmann paradox can be avoided without
any phase transition. The avoidance of the first-order
phase transition could occur in the formation of micro-
crystalline phases in cases for which the atoms of these
materials cannot fill the space compactly in the crystal or
quasicrystal packings. In cases where the crystal, quasi-
crystal, or amorphous packings of a group of atoms can
fill the space, a first-order phase transition in principle
appears abruptly at a temperature at which the excess en-
tropy of the collection of small domains no longer com-
pensates for the energy associated with the defects along
the boundary.

APPENDIX A: FRUSTRATION ENERGY AND PACKING

In this appendix we propose a rationale for our form
for the frustration energy. If a well-packed structure of
the substance is “natural” in d’ instead of d dimensions,
then in a spherical shell of thickness &7 at a distance »
from some central particle the amount of substance
should be proportional to r¢~'8r. The frustration ener-
gy results when this shell is stretched or compressed to a
surface of size r¢ ~!. If this compression or expansion is
small enough for linear elasticity theory to apply and ra-
dial contraction or expansion effects are small, the shell
contributes

(rd—l_rd'—l)Zar

rd*—l

1K (A1)
to the frustration energy. Here K is a suitable elastic con-
stant. The total frustration energy is just the integral of
the shell contributions from the minimum particle size to
the region radius, R =//2, which is

(A2)

where C is the constant of integration. For large tile sizes
this frustration energy is dominated by the term with the
largest exponent, v+d =d +|d —d’|.

APPENDIX B: THE DERIVATION OF EQ. (17)
AND THE ASYMPTOTIC BEHAVIOR
OF THE CONCENTRATIONS OF LARGE TILES

The derivative 80 /8p;, where o is treated as a well-
defined function of {p,}, for k =2, is



Qf{n;},n,+1,V]
Qf{n}]

b0 _
dpy

(B1)

Q[{n;},V] is the microcanonical partition function, the
number of ways of arranging the #; tiles in a volume ¥ on
the lattice, and the notation “[{n;},n; +1]” means the
system with {n,} tiles, but with 1 additional length k tile
replacing k¢ unit length tiles. We introduce the partition
function, Q,[{n;},n,,V —k?), in which the volume,
V —k¢, is formed from the system with volume V by ex-
cluding the tiles from a region the size and shape of a
length k tile. Because the fraction, (n;+1)/¥, of
configurations summed in Q. {{n;},n, +1,V] generate
configurations in Q,{{n,,},n, V —k“],

Ql{n},n +1L,VI=Q {0}, V—kW /(n,+1) . (B2)
The derivative in Eq. (B1) is equal to
Q. l{n},V—k?9 n
So =In «[in) ] 1 (B3)
pi Qy[{n;},V—1] n+1

Equation (17) is obtained by expanding the right side of
Eq. (B3) and omitting any terms of order 1/V or smaller.
For a large tile, the dominant effect of the insertion of an
additional size k at a specific location is the reduction of
the volume available to the rest of the tiles, hence
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Ql{n ),V —k=Q[{n},V —k“].

The corrections to this approximation in Eq. (17) are the
b,, which must be of the order of the boundary size,
k¢!, In the one-dimensional system, b, =0.

The equilibrium tiling distribution is found by minim-
izing the free energy as a function of the {p,} for k > 2.
Because the concentration of unit length tiles is included
only as an explicit function of the other concentrations,
no constraint is needed and

b0

(B4)
Bpy

Ble, —k%e))=
The €, term is required because the inserted length k tile
replaces k9 size 1 tiles and

E
e== S pile—k%,) .

k=2

(BS)

The substitution of Eq. (15) into Eq. (B4) yields

In(p )=~ Be, —k %ol {pi]1+K¢ 3, pr 22 +O (k4 ™)
{22 !

(B6)

The asymptotic behavior of the tile distribution for large
k shown in Eq. (11) is proven by using Eqgs. (B4) and (BS5)
to simplify the sum over the entropy derivatives in Eq.
(B6).
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(a)

(b)

FIG. 1. Allowed arrangements of 1X1 tiles in a matrix of
2 X2 tiles. (a) Dimerized 1 X1 tiles. (b) The configuration with
the fewest number of 1X1 tiles in which some 1X1 are not
dimerized. The hatched squares cannot move relative to each
other.



