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Abstract. For quantum systems, it is shown that the relative entropy S ( P ,  Q ) =  
-Tr P log P + Tr P log Q of two positive semi-definite operators P and Q satisfies 
y-' Tr[ P - P ' + y Q - y ]  s S( P, Q )  S y-' Tr[ P ' - y Q y  - PI for 0 < y s 1, and that these bounds 
become exact in the limit y + 0. Analogous inequalities hold, for states in classical statistical 
mechanics or information theory, with trace replaced by integration or summation. Further- 
more, the average of these bounds is, in general, a better approximation to S( P, Q )  than 
either bound alone, and the average is amenable to further improvement via repeated 
Richardson extrapolation. 

If P and Q are Gibbs equilibrium states, then these inequalities can also be used to 
obtain bounds on the free energy of a perturbed system in terms of the free energy of the 
unperturbed system and expectations of the perturbation. Several examples are presented 
which illustrate the salient features of these bounds and estimates in a variety of systems. 

A new expression for estimating the error from repeated extrapolation is given in an 
appendix on Richardson extrapolation. 

1. Introduction 

Only a few of the many statistical mechanical models of physical interest have been 
solved explicitly. While the search for more exactly solvable cases continues, the 
demands of physical science require the introduction and exploitation of approximate 
solutions. Unfortunately, many of these approximation schemes are uncontrolled, and 
thus leave unresolved serious questions about the validity and reliability of their 
implications. 

An especially useful class of approximations in classical statistical mechanics stems 
from an inequality of Gibbs (often referred to as the Gibbs-Bogoliubov inequality) 
that provides rigorous bounds on both free energies and relative entropy [l]. Many 
examples can be found in the literature [2,3]. The corresponding inequality in quantum 
statistical mechanics, which has been attributed to Bogoliubov [4,5], can be derived 
from an inequality of Peierls [ 6 ] .  Equivalent inequalities can be found in an earlier 
paper$ of Delbruck and MoliCre [7]. All of these inequalities can be considered as 
either special cases, or generalisations, of the well known Jensen's inequality for convex 
functions [8] (which might more appropriately be called the Holder-Jensen [9, 101 

P 1988-89 Sabbatical Visitor; on leave from Department of Mathematics, University of Lowell, Lowell, 
MA 01854, USA (permanent address). 
$.This rather obscure 1936 paper is the earliest reference we know of to inequalities of this type in the 
quantum case. Section 8 of this remarkable paper also contains proofs of many properties of quantum 
mechanical entropy including concavity, subadditivity, and the extrema1 property of Gibbs equilibrium states. 
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inequality). Useful reviews of these inequalities and related properties of thermody- 
namic variables have been given by Falk [ 111, Huber [ 121, Thirring [ 131 and Wehrl [ 141. 

This paper is devoted to the examination of convexity inequalities that extend those 
mentioned above. Specific numerical examples are presented which show that substan- 
tially tighter upper and lower bounds can be obtained in some cases. Furthermore, 
the average of these bounds, in conjunction with the well known technique of 
Richardson extrapolation [ 15,161, can be used to generate further improvements in 
the estimates of thermodynamic variables. These improvements, which can be 
extremely accurate, provide estimates, rather than absolute bounds. However, in 
practice, Richardson error estimation procedures can often be used to establish that 
a given estimate is actually a bound. We also establish that the estimates converge 
rapidly with repeated extrapolation; in doing so, we derive a formula, which appears 
to be new, for estimating the error at the kth extrapolation. 

The relevant theory is presented in section 2 .  Section 3 contains several specific 
numerical examples, as well as some analytic examples involving subsystems. This 
section also includes a comparison of our upper bounds to those obtainable from the 
subadditivity inequality for relative entropy. Finally, to make the paper self-contained, 
we include a brief appendix on Richardson extrapolation. 

Before presenting our results, we review some basic definitions. In the classical 
statistical mechanics of continuous systems, a state is described by a probability density 
p(x)  with respect to a measure p, i.e. p (x)>O and j p ( x )  d p ( x )  = 1. The Gibbs 
equilibrium state for a system at temperature T whose Hamiltonian is given by the 
function H ( x )  = H[p(x) ,  q(x)]  is 

where p = 1/ T, F =  - p - ’  log jexp(-pH(x))  d p ( x )  denotes the Gibbs free energy; 
and, for simplicity, we have chosen to work in units in which Boltzmann’s constant is 
1. The entropy of the state p can then be defined as 

S ( P )  = - P(X) log P ( X )  +(XI. I 
In classical discrete (i.e. lattice) systems, a state is defined by a set of discrete 
probabilities P k  > 0 normalised so that X k  p k  = 1. The entropy is defined by 

s ( p ) = - c p k  logpk. 
k 

In quantum statistical mechanics, a state is described by a density matrix P, i.e. a 
positive semi-definite operator on a Hilbert space 2if satisfying Tr P = 1. The Gibbs 
equilibrium state of a self-adjoint, semi-bounded Hamiltonian operator H is 

P = e x p ( - p H ) / T r  exp(-PH)=exp(P[F-H])  

where p is as above and the free energy satisfies F = -p- ’  log Tr exp(-pH). The 
entropy of P is defined by 

S ( P )  = -Tr P log P =  -1 Ak log A k  
k 

where { A k }  denote the eigenvalues of P, and we interpret ‘0 log 0’ as 0. 
In the quantum case, the differences between continuous and discrete systems are 

reflected in the choice of Hilbert space and Hamiltonian. The mathematical formalism, 
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as described above, is identical in both situations. It is also worth pointing out that 
the mathematical formalism for the two types of classical systems is identical to that 
used in information theory (see, e.g., [ 17-19]). Although we will emphasise applications 
to statistical mechanics, we anticipate that our results will also be of interest to those 
who work in information theory, signal analysis, and related areas. 

In order to treat simultaneously the three basic types of systems described above, 
let T denote integration, summation, or trace respectively, depending on the type of 
system so that, e.g. 

s ( P ) = - T ( P l O g P )  (1) 

denotes the entropy of the state P. Although one could use traces on von Neumann 
algebras or non-commutative measure theory to justify this [20-231, and even extend 
our results to general von Neumann algebras [23,24], we will not require this level of 
sophistication. We merely regard T as a notational convenience to emphasise that our 
techniques can be applied to any of the usual statistical mechanical formalisms, as 
well as to the corresponding situations in information theory. 

With this notation, the relative entropy of the states P and Q can be defined as 

s ( P ,  Q ) ~ - T ( P l O g P ) + T ( P l O g Q ) .  (2) 

(It should be noted that there is some disagreement in the literature about both the 
order of the arguments in, and the sign of, S ( P ,  Q).) If 

P =  e x ~ [ P ( F o -  Hn)l and Q = exp{P[F, -(Ho+ V)l) (3) 

are Gibbs states for which the Hamiltonian corresponding to Q, namely H = Hn+ V, 
is a perturbed version of that for P, then 

S ( P ,  0) = P [ F , -  Fo- T ( W 1 .  (4) 

This identity implies that bounds on S ( P ,  Q )  can be used to generate bounds on the 
free energy of the perturbed system. 

Rather than using the exponential form of the Gibbs-Peierls-Bogoliubov inequality, 
we will use an equivalent logarithmic version known as Klein’s inequality+ [25] (see 
also [7, 11-14,21,26,27]). This inequality can be stated as 

( 5 )  

Since T (  Q - P )  = 0 if both states are normalised, it follows immediately that S( P, Q) s 0 
in this case. Furthermore, if P and Q are given by (3), it then follows that 

s ( P ,  0) = - T ( P  log P ) +  T ( P  log 0) T ( Q -  P ) .  

F ,  c Fn+ T(PV).  (6) 

Similarly, by considering S (  Q, P ) ,  one finds 

F ,  3 Fo+ T( Q v ) .  (7) 

The upper bound (6) to F1 uses only information about the unperturbed state, whereas 
the lower bound (7) also requires an estimate involving the perturbed state. 

* Several authors [13, 14,261 use the term Klein’s inequality for the more general inequality T [ ~ ( A )  -f(B) - 
( A  - B)f’( B ) ]  3 0, where f is convex, although only ( 5 )  appears in [25]. 
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2. Theory 

By letting x + x*' in the elementary inequality 

log x s x - 1 

1 - x - y s  y log x s  x y -  1. 

v x z o  

one readily concludes that 

This observation leads to our main result. 

Theorem. If P and Q are states, then 

Proox By first letting x = a / b  in (8) and then multiplying by a /  y, one finds 

~ - ' [ u - u ' + ~ ~ - ~ ] s - u  log U + U  log b S y - ' [ ~ ' - ~ b ~ - a ]  Vu, b > 0. (10) 

This result also holds in a suitable limiting sense when a and b are both zero. The 
theorem then follows easily for classical systems. For continuous systems it suffices 
to let a = p ( x )  and b = q ( x )  and integrate; whereas for discrete systems, one should 
choose a = Pk, b = qk, and sum over k. Completion of the proof in the quantum case 
is somewhat more subtle, and follows the strategy given in Ruelle [26] for establishing 
Klein's inequality. Let {a,} and {bk} denote the eigenvalues of P and Q, and let {ak} 
and {Pk} denote the corresponding eigenfunctions. It then follows from (10) that 

In each of the double sums the quantities in brackets are all of one sign, so that these 
sums either converge absolutely or diverge to fa. The desired inequality (9) then 
follows from standard properties of the trace and the fact that 

where (12) should be regarded as the definition of ~ [ f ( P ) g ( Q ) l  if f ( P )  or g(Q) is 
unbounded. 0 

Note that y = 1 corresponds to the usual Klein's inequality ( 5 ) .  Because there is 
a correlation between the magnitude of S ( P ,  Q ) ,  and the extent to which T(P'- 'Q')  
deviates from T (  Q), one expects significant improvement in precisely those cases where 
( 5 )  is very bad. The examples presented in the next section show that this is indeed true. 

Although the upper bound will always be finite, the lower bound may diverge to 
-a. We will show how to combine these bounds with Richardson extrapolation to 
obtain very accurate estimates when both are finite. In actual applications, it is often 
necessary to restrict the system to a finite volume, and then take the thermodynamic 
limit, in order to insure that intensive thermodynamic variables like the free energy 
and entropy per degree of freedom are finite. We expect that these cut-off procedures 
will also suffice to yield finite lower bounds, so that the extrapolation procedure 
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described below can be widely applied. Before giving the details of our procedure, it 
will be useful to introduce some notation and to make a few technical remarks. 

For a fixed pair of states P and Q let 

Then our new bounds can be rewritten in the form 

U(- -Y)<S(P ,  Q ) < U ( Y )  vos y s  1. (14) 

With this definition, one expects U to be continuous at y=O and analytic in a 
neighbourhood of 0. We now assume that U is analytic in the disk Dr={z: / z I  <I?} 
for some r > 0, and depending on P and Q. The validity of this assumption, which 
we expect to be satisfied in those situations in which these estimates are computationally 
useful, is discussed in appendix 2. In particular, in the case of quantum systems, it is 
shown that rpg = sup{lyl: - u p g ( - y )  < 00) when Tr P = Tr Q. 

The analyticity of U implies 

4 7 )  = S(P ,  Q)+U’(O)Y+O(Y’ )  (15) 
so that the error in estimating S(P ,  Q) by either the upper bound U(?) or lower bound 
U(-?) is O ( y ) ,  with the leading linear term identical, except for sign, for the two 
bounds. Therefore, 

a v ( r ) = ; f [ u ( r ) + u ( - r ) l  

= ( 1 / 2 y ) T ( P 1 - Y Q Y - ~ ” Y  Q-9 
= S(P,  Q)+O(r2) .  (16) 

This suggests that the average of the two bounds will, in general, be a much better 
approximation than either bound. The results in tables 1-3 show that this is indeed 
the case, and that the improvement can be quite significant even when the individual 
bounds are far from optimal. 

Moreover, since av(y) is even and analytic, it can be written in the form 

where the coefficients { c k }  depend on P and Q. This implies that av(y) is amenable 
to Richardson extrapolation for improving the estimates even further. 

Although, in general, av( y )  can be either larger or smaller than the exact value for 
S(P ,  Q), heuristic arguments suggest that it will yield a lower bound when T( P )  = T (  Q). 
A simple computation shows that 

C,=-{T[P(lOg P-lOg Qy].  (18) 
Proceeding as above in the quantum case, it then follows that 

cl = ic  1 I ( (y j ,  pk)lz[aj(-log aj+log bkI3I. 
~k 

Terms with ak > bk will be negative, whereas those with ak < bk will be positive. Since 
terms of both signs are multiplied by ak, one expects the negative terms (i.e. those 
with relatively large a k )  to dominate when E k  ak = X k  bk. A similar analysis could be 
made in the classical cases. In practice, the Richardson error estimate $[av( y )  - av(2y)l 
can be used to determine whether or not the expectation av( y )  s S(P ,  Q) actually holds. 
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Some additional insights into the nature and potential uses of these estimates can 

(19) 

(20) 

be obtained by rewriting u ( y )  and av( y )  in the form 

U( y )  = y - l ~ [ P  exp(yW) - P] 
av( y )  = y - ' ~ [  P sinh( y W)] 

where 
W = y- l  log( ~ - ~ 1 2 Q Y ~ - ~ / 2 ) ,  

For simplicity, we first discuss commutative situations, in which case 

Then our estimates can be written as 

~ - ' T [ P (  1 - exp( - y  w))] s T (  PW) s y - l ~ [  P(exp( y W) - I ) ]  (23) 

and 
T( PW) = y - ' ~ [  P sinh( y W)]. 

Note that these estimates have the same form as elementary inequalities for the real 
variable functions exp( y x )  and sinh( y x ) .  If, furthermore, P and Q denote Gibbs states 
of the form (3) ,  then 

W = p [ Fl-  F o  - VI = p [ A F  - VI where A F  = Fl - Fo 

so that these relationships can be further rewritten as 

T[IP{l  -exp[yp(-AF+ V)]}DS ~ ~ [ A F - T ( P V ) ] S  r[P{exp[yp(AF- V)]-l}] (25) 
and 

yp[AF-~(Pv) ] i=  T { P  sinh[yp(AF- V)]}. 

Since yp  = y /  T, decreasing y from 1 toward 0 is equivalent to letting the temperature 
T increase toward CO. Thus y can be regarded as a rescaling of the temperature, but 
with the entropy and free energy fixed at the equilibrium values determined by the 
original temperature. 

Because A F  occurs in all terms of (25), these inequalities yield estimates rather 
than absolute bounds on the free energy. One can obtain such estimates by rewriting 
(26) in the form 

(27) 
where 4 = ypAF. This gives an approximate transcendental equation for 4, which can 
be solved numerically for any fixed value of yp to determine the corresponding 
approximation to AF.  

If P and Q do not commute, then W = W( y )  = y-l log( P-y'2QyP-y'2)  will depend 
upon y. If P and Q are strictly positive matrices on a finite-dimensional Hilbert space 
X, then (22) can be replaced by 

(28) 

(29) 

4 - ~ ~ T ( P v )  = i{e"T[ P exp( - yp V ) ]  - e-".r[ P exp( ypv)]} 

lim W( y )  = log Q - log P 

S(  P, Q) = lim T [  PW( y)]. 

Y - 0  

Y+O 

However, in the general case W(y) will be unbounded so that the existence of these 
formal limits is much more subtle. It is shown in appendix 2 that (29) holds when 
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U(?) is analytic. In any case, (23 )  still holds with W replaced by W(y);  similarly, 
both (23 )  and (24 )  remain valid if T(PW) is replaced by S(P, Q )  as well as W by 
W ( y ) .  The discussion for the Gibbs states is more complicated since, in this case, 

w = P A F +  y- l  log{exp(yp~,/2) exp[-yp(Ho+ VI exp(ypHo/2)I = P [ A F -  ~ ( Y ) I .  

Then (25) - (27)  must be modified by substituting the effective potential q= f ( y )  for 
V; the appropriate transcendental equation for 4 = ypAF thus becomes 

4 - ~ ~ T ( P v )  -+{e".[P exp(-ype) ] -e -"T[~  exp(yp311). (30 )  

A final curious observation can be made by recalling that, for functions of real 
variables, sinh x = x -sin x when x 2: 0. This suggests that one might also consider 
the estimates 

S(P, Q) -y - '~ [Ps in (yW)]  and yp[AF-~(PV)]=~{Psin[yp(bF- ?)]}, 
Although these approximations are also valid, we see no obvious way to exploit this 
observation in practical computations. The estimates involving sinh( y W) are easily 
computed if efficient methods are available to calculate the real roots P" and Qy,  along 
with the corresponding integrals or traces. (In fact, an efficient method for computing 
square roots?, together with a procedure for evaluating U( y )  when y is a dyadic rational 
of the form 2-k or (2& * 1 ) / 2 k ,  is all that is required for Richardson extrapolation.) 
However, we are unaware of any techniques for evaluating Piy and Q" which are 
computationally efficacious. 

3. Examples 

Most of the features of these new bounds and estimates are illustrated by a simple 
two-level classical discrete example. Let Q = 11 - E, E }  and P = ( E ,  1 - E )  where E is a 
small, positive real number. Then S( P, Q )  = (1 - 2 ~ )  log[ E / (  1 - E ) }  2: log E + --CO as 
E + O .  Because P and Q approach 0 on non-overlapping regions of their domains, this 
simple example effectively illustrates the essential features of the approximations 
described above when E is small. For E = 0.05, S(P, Q )  = -2.649 995 0812. The results 
of our estimates for this case are summarised in tables 1 and 2. 

In table l (a) ,  the values of the new upper bound, lower bound, and av(y) are 
given for decreasing values of y as indicated. The last two columns give both the 
actual error S( P, Q )  - av( y ) and an estimation of the error using Richardson extrapola- 
tion as in (A1.10) with k = 0. 

In table 1( b ) ,  repeated extrapolation is applied to the values of av( y )  from the first 
five rows (i.e. y = 2-k, ( k  = 0 , l  . . . 4 ) ) .  Note that (using the notation of appendix 1) 
the estimate S(P, 0) - R ( 3 , 3 )  = -2.649 983 8891, which requires only four evaluations 
of av(y), is already better than that obtained from av(2-I0), which requires almost 
three times (i.e. 11) as many evaluations of av(y); and the final estimate R ( 4 , 4 )  = 
-2.649 995 0845 is accurate to nine significant figures. 

Table l ( c )  lists the ratio of successive error estimates for this example; as explained 
in appendix 1, this will be close to 4c0'=4ki-1,  when the hypotheses of Richardson 
extrapolation procedure are satisfied. Only the first three rows and columns are relevant 

t Higham [28,29] has discussed efficient methods for computing the square root of a positive definite matrix. 
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Table 1. (Example 1 )  Relative entropy for a two-level classical discrete system. For 
P={O.O5, 0.95) and Q={O.95, 0.05). S(P,  Q)=-2.6499950812 . . .  . 

( a )  Bounds and averages. 

k Y  Upper bound Lower bound Average Error Error estimate 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

1 .o 
0.5 
0.25 
0.125 
0.0625 
0.03125 
0.015625 
0.0078125 
0.00390625 
0.001953 125 
0.9766 X 

0.4883 x 
0.2441 x 

0.6104X 
0.3052 x 
0 . 1 5 2 6 ~  

0.1221 x 1 0 - ~  

0 
-1.128220211 
- 1.762 340 697 
-2.162 229 516 
- 2.393 283 678 
-2.518 176047 
-2.583 185 881 
-2.616 361 208 
-2.633 120 274 
-2.641 543 141 
- 2.645 765 468 
- 2.647 879 363 
- 2.648 936 994 
-2.649 465 981 
-2.649 730 517 
- 2.649 862 795 
- 2.649 928 937 

- 17.052 631 579 -8.526 315 789 5.876 
-6.304 849 566 -3.716 534889 1.067 
-4.029 425 719 -2.895 883 208 0.2459 
-3.258 233 737 -2.710231 627 0 . 6 0 2 4 ~  lo-’  
-2.936672 178 -2.664977 928 0 . 1 4 9 8 ~  lo-’ 
- 2.789 296 03 1 0.3741 x lo-’ 
- 2.718 674 166 -2.650 930 024 0.9349 x lo-’ 

- 2.653 736 039 

- 2.684 096 389 - 2.650 228 798 0.2337 x 
- 2.666 986 745 - 2.650 053 509 0.5843 x 
-2.658 476 236 -2.650 009 688 0.1461 x 
- 2.654 231 998 0.3652 x lo-’ 
-2.652 112 626 -2.649 995 994 0.9129 x lo-’ 
- 2.651 053 625 0.2282 x lo-‘ 
-2.650 524 296 -2.649 995 138 0.5706X lo-’ 
-2.650 259 674 -2.649 995 096 0.1426 x lo-’ 
-2.650 127 374 - 2.649 995 085 0.3565 x lo-’ 
-2.650 061 227 - 2.649 995 082 0.8896 x 

- 2.649 998 733 

- 2.649 995 309 

0 
1.603 
0.2736 
0.6188 x lo-’ 
0.1508 x lo-’ 
0.3747 x IO-’ 
0.9353 x 
0.2337 x 
0.5843 x 
0.1461 x 
0.3652 x IO-’ 
0.9129 x 
0.2282 x 
0.5706 x lo-’ 
0.1426 X lo-’ 
0.3566 x lo-’ 
0.8919 X 

(6 )  Richardson extrapolation:. 

j k = O  k = l  k = 2  k = 3  k = 4  

0 -8.526 315 7894 
1 -3.716 5348887 -2.113 2745884 
2 -2.895 883 2080 -2.622 332 6478 -2.656 269 8518 
3 -2.710231 6265 -2.648347 7660 -2.650082 1072 -2.649983 8891 
4 - 2.664 977 9278 - 2.649 893 3615 - 2.649 996 4012 - 2.649 995 0408 - 2.649 995 0845 

( c )  Error ratiost. 

Double precision Single precision 

i k = O  k = l  k = 2  k = 3  k = 4  k = O  k = l  

1 5.86 
2 4.42 
3 4.10 
4 4.03 
5 4.01 
6 4.00 
7 4.00 
ideal value 4 

5.86 
19.57 4.42 19.57 
16.83 72.20 4.10 16.83 

16.05 64.48 261.10 1082.74 4.01 8.55 
16.01 64.12 257.95 669.12 4.02 2.23 
16.00 64.00 1793.67 2.31 4.24 0.39 
16 64 256 1024 4 16 

16.20 65.95 277.15 4.03 15.47 

t In these two tables, j and k are as defined in (A1.6) and (A1.12) respectively. 



Estimating free energy and relative entropy 2429 

for the extrapolation given in table 1( b), for which double precision was used. However, 
we present additional values, as well as two columns for the corresponding single 
precision values, in order to illustrate the use of this ratio as a detector of round-off error. 

To explore the effect of non-commutativity, consider a similar two-level quantum 
system where Q is a diagonal matrix with eigenvalues 1 - E  and E and let P = P, = 
U,QU, where 

U, = (c"; ; cos 0) 
-sin 0 

is a real, symmetric, orthogonal matrix corresponding to a pseudo-rotation para- 
meterised by angle 0. When 0 =0, one obtains the previous example; when 0 = *1r/2, 
P =  Q and S ( P ,  Q) = u ( y )  = O .  For all values of 8 one has 

U , , Q ( Y )  = cos2 8 U , Q ( Y )  S ( P , ,  Q) = COS' 0 S (  Po, Q) .  

Thus, the only effect of non-commutativity is to multiply the results in tables l ( a )  and 
1( b )  by cos2 0. This suggests that commutativity is not an issue; the essential point is 
how P and Q compare in a region which one might describe as the 'approximate null 
space' of Q. 

Several interesting examples of a different type can be obtained by considering 
states involving subsystems. Suppose that p12  is the state of a system composed of 
subsystems related by partial traces so that pl = 7'(p12) and p2 = ~ ~ ( p ~ ~ )  describe states 
of subsystems [13,14,21,23,26,30-341. In the quantum case, the Hilbert space XI2 
for the total system is a tensor product of those for the subsystems, i.e. XI2 = XI 0 X 2 .  
Similarly, in classical situations, the probability space for the total system will be a 
product space with a product measure p12 of the form F~~ = p1 x p 2 .  Physically, the 
subsystems may represent disjoint sets of particles, or disjoint regions of phase space. 
If ~ ~ ~ ( p ~ ~ )  = 1, then ~ ~ ( p ~ )  = 1 and = 1, but ~ ~ ~ ( p ~ )  = d2 where d2 = ~ ~ ( 1 ~ )  and Z2 
denotes the identity for subspace 2 .  Thus, the traditional upper bound ( 5 )  yields 

~ ~ P 1 2 , P 1 ~ ~ ~ 1 2 ~ P 1 - P 1 2 ~ = ~ 2 - ~ .  (31) 

We first consider a quantum example in which p1 and p2 are both one-dimensional 
projections and let p12 = p l o p 2 .  Then 

S(P12) = S(P1) = S(P2)  = o  and S(P12, P I )  = S ( P 1 2 ,  P2)  =o. 
Since pY2 = p12 and pY = p1  V y  > 0, it is easy to see that the new upper bound (9) implies 

S(P12, P I )  c Y-'712(P12P1 -PI21 = 0 for 0 < y < 1. 

Thus, as soon as y is decreased even slightly from 1, the bound jumps discontinuously 
to the exact value of zero. Similarly, by taking limits, or using generalised inverses, 
one can show that the lower bound also gives the exact result, 

In the next example p12 is an arbitrary state of a product system. By applying 
Holder's inequality to (9), one can conclude that 

S(P12, P I )  Y - ' ~ ~ 7 . 1 2 ~ P 1 2 ~ 1 ' - ' ~ ~ l ~ P l ~ l y  - 71* (P12) )  

y - ' [ d ; -  11 -j log d2 when y + 0. 

This is a substantial improvement over the estimate d 2 -  1. 
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However, in both of these examples, one could have used subadditivity [7,32-341 
(see also [l l-14,21,23,26]) 

S(PI2 ,  PI) Sb2) (32) 

to obtain bounds which are identical to those from our improved estimates. ( In  the 
second case, one also needs the fact that S ( p 2 )  s log d 2 . )  One might therefore ask 
whether our new upper bounds ever surpass those obtainable from subadditivity. The 
following numerical example shows that, in certain cirumstances, our new bounds are 
much better than those obtainable from subadditivity. 

If the subsystems 1 and 2 are both simple discrete two-level systems, then the state 
pI2 of the corresponding four-level product system has the form p12 = {pl p12, p Z l ,  p Z 2 )  
and p1={p11+p12,p2,+pz2} .  In the next example, the pJk are chosen so that p I 2 =  
{ a a ’ a ’ a }  where a + a ’ = f .  Then p 1 = p 2 = { f , i }  so that S ( p l ) = S ( p 2 ) = l o g 2 ,  and 
S ( p , , ,  p l )  = -2(a log a + a’ log a ’ )  -log 2. A summary of our estimates is given in table 
2; the upper bound should be compared with the subadditivity bound of l o g 2 =  
0.693 147 180 5 6 . .  . . It should be noted that p I 2  = p1 Op2 if and only if a = a’,  and 
that the deviation of p12 from a simple tensor product corresponds to the extent to 
which a deviates from $. It is also worth pointing out that the average is an upper, 
rather than a lower, bound in this case. This is not inconsistent with the discussion 
following (18) because T (  Q - P )  = ~ ( p ,  - p 1 2 )  = d2 - 1 # 0; on the contrary, bk = a, = 
{ a ,  a ’ }  Vj,  k so that cI 3 0. 

In order to determine whether subadditivity or the new procedure will yield a better 
upper bound, one should recall that subadditivity follows from the standard Klein 
inequality ( 5 )  with P = p12  and Q = p1  O p 2 .  Thus we expect the new inequality to be 
preferable when p12  is very different from p l o p 2 .  Of course, unless subadditivity is 
exact, our new procedures will always yield better results if y is sufficiently small; the 
relevant issue is which estimate gives a better result for comparable computational effort. 

A final example illustrates our procedures for estimating the free energy in the case 
of a classical continuous system. Specifically, we consider a one-dimensional quartic 
oscillator on the real line, and its approximation with an appropriately chosen harmonic 
oscillator. Let 

P ( x )  =exp[p(F,-ax2)] (33a) 

a x )  = exp[P(F, -AX4)] (33b)  

PFo(P) = t  log(Pa/rr) (34a) 

PFI ( P )  = $ log( 16PA/[r($)l4). 

where a, A > 0 and 

(34b) 
Furthermore, one has 

r (QV) = 

X 

exp[P(F, -Ax4)](Ax4- ax2) d x  

Because upo( y )  is divergent when y < 0, we obtain free energy bounds of the form 

(36) 

(7) corresponding to S( Q, P ) ,  i.e. 

- U Q P (  7 )  P [F , -  F,, - T(QV) l  s - U o p ( -  Y) 
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Table 2. (Example 2) Relative entropy of a system and subsystem. For P = p l z =  
{ P , ~ ,  p l z ,  p Z l ,  p z 2 }  = {a a '  a '  a}  with a + a ' = 1  2 ,  Q = P ~ = P ~ = { ~ , $ }  and S ( P , Q ) =  
S ( p , * , p , ) =  -2(a l o g a + a ' l o g a ' ) - l o g 2 .  Subadditivity implies S(p, , ,  p I ) S S ( p , ) =  
log 2 = 0.693 147 180 56 . . . . ( a )  Bounds and averages. 

(i) For a = 0.05, a '  = 0.45, S( P, Q )  = 0.325 082 973 391. 
y = 1.0 y = 0.5 y = 0.25 y =0.125 y = 0.0625 

Upper bound 1.000 000 00 0.529 822 13 0.407 396 11 0.362 268 78 0.342 788 54 
Average 0.590 000 00 0.379 473 32 0.338 023 05 0.328 278 09 0.325 879 28 
Lower bound 0.180 000 00 0.229 124 51 0.268 649 98 0.294 287 41 0.308 970 02 

( i i )  For a = 0.10, a '  = 0.40, S( P, Q )  = 0.500 402 423 538. 
y =  1.0 y = 0.5 y = 0.25 y = 0.125 y = 0.0625 

Upper bound 1.000 00000 0.683 281 57 0.579 867 07 0.537 579 08 0.518 399 13 
Average 0.660 000 00 0.536 656 31 0.509 250 84 0.502 601 28 0.500 951 31 
Lower bound 0.320 000 00 0.390 031 06 0.438 634 61 0.467 623 48 0.483 503 50 

(iii) For a = 0.15, a '  = 0.35, S(P,  Q )  = 0.610 864 302 055. 
y = 1.0 y = 0.5 y = 0.25 y =0.125 y = 0.0625 

Upper bound 1.000 000 00 0.768 765 17 0.682 582 50 0.645 109 10 0.627 604 88 
Aver age 0.710000 00 0.634 403 80 0.616 673 86 0.612 312 02 0.611 225 94 
Lower bound 0.420 000 00 0.500 042 43 0.550 765 22 0.579 514 95 0.594 847 00 

(iv) For a = 0.20, a '  = 0.30, S(P,  Q )  = 0.673 01 1 667 009. 
y = 1.0 y = 0.5 y = 0.25 y = 0.125 y = 0.0625 

Upper bound 1.000 000 00 0.814 104 40 0.738 819 97 0.704 823 23 0.688 654 93 
Average 0.740 000 00 0.689 31 1 99 0.677 059 32 0.674 021 87 0.673 264 11 
Lower bound 0.480 000 00 0.564 519 57 0.615 298 67 0.643 220 52 0.657 873 29 

( v )  For a = 0.25, a ' =  0.25, S( P, Q )  = 0.693 147 180 550. 
y = 1.0 y = 0.5 y = 0.25 y = 0.125 y = 0.0625 

Upper bound 1.000 000 00 0.828 427 12 0.756 828 46 0.724 061 86 0.708 380 52 
Average 0.750 000 00 0.707 106 78 0.696 621 40 0.694 014 76 0.693 36401 
Lower bound 0.500 000 00 0.585 786 44 0.636 414 34 0.663 967 65 0.678 347 51 

( b )  Richardson extrapolates 

a R ( 1 , l )  R(2 ,2)  R(3,3) R(4,4) 

0.05 0.309 297 758 960 0.325 200 190 709 0.325 082 842 854 0.325 082 973 416 
0.10 0.495 541 752 800 0.500 420 606 983 0.500 402 413 478 0.500 402 423 539 

0.610 864 302 055 0.15 0.609 205 064 285 0.610 867 805 621 
0.20 0.672 415 982 556 0.673 012 366 834 0.673 01 1 666 885 0.673 01 1 667 009 
0.25 0.692 809 041 582 0.693 147 420 981 0.693 147 180 535 0.693 147 180 560 

0.610 864 300 963 
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where 

uQp( y )  = y -’( 1 - 1 PyQ’- ’  dx).  
- X  

The quadratic force constant a appearing in P ( x )  can be chosen to maximise the linear 
free energy estimate F,+ T (  QV), with the result that 

1 
F o + ~ ( Q V ) = - l o g  

4P 
(37) 

This choice optimises the tightness of the lower bound in (36). 
It is straightforward to show that u Q p ( z )  is analytic for Iz/ < 1; and that for y < 1 

the integrals appearing in uQp(  y )  can be readily evaluated [35 ]  in terms of the modified 
Bessel function Kl,4(z).  Consequently, numerical values can be obtained for the upper 
and lower bounds in (36); some values are displayed in table 3. It follows from (34) 
and (38) that these bounds should be compared to the exact value of 

= 0.031 692 4024.. . . 

Entries in table 3 once again illustrate that both upper and lower bounds improve as 
y decreases from the conventional value of 1 toward 0; and furthermore, that the 
average of the two bounds is a superior estimate. 

It should be noted that this model example is presented solely to illustrate the 
efficacy of the bounds. If one actually wished to estimate F1 from F,,, or vice-versa, 
one would need to use a modified version of (27) involving T (  QV) rather than T( PV).  

Table 3. (Example 3 )  Classical one-dimensional oscillators. For P ( x )  = exp[P(F, - ax ’ ) ] ,  
and Q(x)  = exp[P(F, - Ax4)]  with a = [ r (a ) /2 r ( t ) ] (A /p) ”2 ,  P [ F ,  - F,- T( Q V ) ]  = 
0.031 692 4024.. . . Free energy bounds. 

Gamma Lower bound Upper bound Average 

O . l +  
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

0.028 81 
0.026 81 
0.024 23 
0.021 60 
0.018 84 
0.015 91 
0.012 75 
0.009 25 
0.005 17 
0.000 00 

0.033 95 
0.036 50 
0.038 19 
0.041 10 
0.043 41 
0.045 7 1 
0.048 02 
0.050 32 
0.052 63 
0.054 95 

0.031 38 
0.031 65 
0.031 51 
0.031 35 
0.031 12 
0.030 8 1 
0.030 38 
0.029 78 
0.028 90 
0.027 47 

Entries for this gamma are subject to large relative computational errors. 



Estimating free energy and relative entropy 2433 

Acknowledgment 

The authors are pleased to thank Professor H Falk for his scholarly advice on historical 
attribution (any errors in which remain their responsibility). The research of M B 
Ruskai was partially supported by NSF grants DMS-8709805 and DMS-8808112; some 
of this work was done while she was a Visiting Member of the Courant Institute of 
Mathematical Sciences at NYU 1988-89. 

Appendix 1. Richardson extrapolation 

Richardson extrapolation [ 15, 161 is essentially a procedure to combine two approxima- 
tions so that the leading error term cancels, resulting in an improved estimate. The 
approximation is assumed to depend upon a parameter A so that the error can be 
written in the form 

err(A) =x(A)-ap(A)= c,A”+O(A”’) (Al . l )  

where v’ > v, typically v‘ = v + 1 or v + 2. It is most convenient, particularly if repeated 
extrapolation will be used, to assume that successive values of A differ by a factor of 
2. Then one expects that the new approximation, 

2” ap(A) -ap(2A) aP(A 1 - ap(2A 1 Rich(A) = =ap(A)+ 
2“-1  2“-1 

(Al.2) 

will have an error x(A) - Rich(A ) = O(A ”). Instead of using the Richardson extrapola- 
tion procedure to produce an improved estimate, one could use it to estimate the error, 
i.e. 

(Al.3) 

In our numerical examples, this estimate always correctly predicted the number of 
significant figures, even when the estimates themselves were extremely bad. Further- 
more, one can examine the ratio of successive estimates to determine whether or not 
they satisfy the condition 

(Al.4) 

When err(A) = c,,A + c,A ” 2 +  c,A ’3 +. . . this extrapolation procedure can be repeated 
until the round-off error becomes excessive provided that one knows the values of vk 

for which cyx is non-zero. 
In the case of interest here, one expects 

X 

err( y )  = S(  P, 0) - av( y )  = C c , yZm,  
m = l  

To use repeated Richardson extrapolation, let 

(A1.5) 

R ( j ,  0) = av(2-’) j = O  . . .  n (A1.6a) 
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j = l  . . .  n R ( j ,  0) - R ( j  - 1 ,  k )  
3 

= R ( j ,  0) + 

R (  j ,  k - 1) - R (  j - 1 ,  k - 1) 
22k - 1 R ( j ,  k ) =  R ( j , k - l ) +  j =  k . .  . n. 

(A1.66) 

(A1 .6~)  

This procedure will give a pyramid of values, culminating in R ( n ,  n ) .  
One might expect the error at the kth level to be O ( y - Z ' k + l )  ); however, estimation 

of the leading error term is more subtle because the extrapolation procedure alters the 
coefficients in the series, i.e. after k steps one has 

r 

S ( P ,  Q )  = R ( n ,  k ) +  c iy"  l s k < n  
m = k + l  

where 

and c; = c,. (A1.7) 

Both n and y should now be regarded as fixed, with y having the value used in R (  n, 0) 
(i.e. y = 2-"). Then (A1.7) implies ct = 0, as expected, and the error after k steps is 

2 ( k + l )  E ( n ,  k )  = S ( P ,  Q )  - R ( n ,  k )  = C k + I Y  

where 

k 

=(-l)kCk+l n 4' 
, = I  

k i  k+ I ) / 2  = ( - 1 ) k ~ k  + I 4 

= (-  1) kCk+12 k ( k + l  '. 
Thus, with the choice y = 2-", one has 

(A1.8) 

1 (A1.9) 

so that, in the absence of significant round-off error, R ( n ,  n) is the best estimate that 
can be generated from av( 1) . . . av(2-") with an error satisfying 

~ ( n ,  ~ ) = s ( P ,  Q ) - R ( n ,  n)=*~ ,+~2-" ( "+ ' ) .  (A1.lO) 

This suggests E ( n ,  n )  =O(2-"'"+1)); however, the total error depends on both the 
behaviour of the coefficients ck and the round-off error. In view of (20) the coefficients 
used in this paper satisfy ck = ~ [ P W ' ~ + l ] / ( 2 k +  I ) !  so that the error decays exceedingly 
rapidly with n. This is born out by the very rapid convergence of R (  n, n )  to S( P, 0) 
in examples 1 and 2. (In example I ,  ck = [ ( I  -2~)/(2k+l)!]( log[(1 - E ) / E ] } ~ ~ + '  so 
that for E =0.05 the leading term in E ( n ,  n )  has the values 3.89, -4.15 x l o - ' ,  5.35 x 

k ( k i - 1 )  2 i k + l )  ( k + l ) l k - 2 n )  E ( n ,  k )  = *Ck+1(2 y ) = *ck+,(2 

- 1.01 x 3.10 x lo-' for n = 0, 1 ,2 ,3 ,4  respectively.) 
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The possible intrusion of round-off error can be checked by examining the ratio 
of successive error estimates to determine how closely they satisfy 

( A l . l l )  

This ratio is shown in table l ( c )  for the first example. Its reliability in detecting 
round-off error enhances the utility of the estimation procedure presented in this paper. 

Note again that, as above, extrapolation can also be used to estimate the error 
instead of producing further estimates. Thus, as in (A1.3), the error after k < n steps 
can be estimated as 

(A1.12) 

Appendix 2. Continuity and analyticity 

In this appendix, we show that U( y )  is analytic in a neighbourhood of 0 under certain 
conditions. The details are presented only for quantum systems, which automatically 
include classical discrete systems. A similar analysis, including an appropriately 
modified version of theorem A2.1, can be presented for the classical continuous case; 
the details are left to the reader. 

In order to study the quantum case, let 
y - ' a [ ( b / ~ ) ~  - 11  

0 a = b = O .  

1 3 I y (  2 0, b # 0 
w a b ( y ) = [  a log(b/a) y = o ,  b f O  (A2.1) 

(A2.2) 

where uj,  bkr and aJ, Pk are as in ( l l ) ,  and it is understood that the sum is to be taken 
over those values of j ,  k for which (a,, P k )  f 0. It follows from standard properties of 
the trace that this is consistent with (13). (Note that although W a , b i  is undefined when 
bk = 0 and a, Z 0, the finite entropy conditions imply that (a,, & )  = 0 in this situation, 
so that such terms are omitted from the sum.) Because w&( y)  is a monotone increasing 
function of y, (10) can be improved to 

WO,(-?) w a b ( o )  s w a b ( Y )  b - a y > o .  (A2.3) 

It is easy to check that w a b ( y )  can be extended to an entire function w , b ( z ) .  It 
then follows from the maximum modulus principle that 

SUP{( w a b ( z ) l :  ( z ( <  YO} = sup{( w a b ( z ) l :  I Z I  = YO) 
s max{ ay;'[ 1 + (b /  a 

s {ay; I[ 1 + ( b/ a )  yo + ( b/  a )-'a]} (A2.4) 
for U,  b # 0. We now show that u ( z )  is analytic on a suitable region. 

Definition. If S (  P )  < 00 and S (  P, Q) <CO, let 

(A2.5) 
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Note that, if T r P = T r Q ,  then U P ,  Q ) = s u p { O S y < l :  -u ( -y )<CO} .  

Theorem A2.1. If r ( P ,  Q) > 0, u ( z )  is analytic on D,.(p,Q) = { z :  121 < I?( P, 0)). 

R o o t  Let O <  yo<<(P, Q) and let 

mjk = a,yi'[l +(bk/aj)yn+(bk/~,)-']. 

Then it follows from (A2.4) that on D, = {z: 1z/ < y o }  

Since Wa,bk(~)  is analytic on &(p ,Q) ,  it follows by repeated application of the 
0 Weierstrass M test [36] that u ( z )  is also. 

The next theoreom shows that the second limit in (30) holds. 

Proof: Fix P, Q and y > 0 and let 

l o z p  d E ( p ) =  P-y '2QyP-y '2=exp(yW(y))  (A2.6) 

be the spectral decomposition of the indicated unbounded positive semi-definite 
operator. Then if U (  . ) is the measure defined by w (  ) = T [ P E (  11, 

(A2.7) 

and similarly for integrals over the interval (1, CO). Furthermore, 

o <  loK p dw(p)  = T ( P ' - ' Q ~ )  =[?U(?)+ T ( P ) ]  <Q3 

and 

0 < loz b-' dw(p)  = T (  ~ " r Q - y )  = [ T (  P )  - ?U(-?)]  < Q3. 

Therefore, if O< y < r (P ,  Q ) ,  all of the integrals in (A2.7) converge on both the intervals 
(0 , l )  and (1,m). It then follows that the corresponding integrals on the interval (0, CO) 

converge absolutely and satisfy 

U ( - y )  = y-1 Jo= (1 - p - I )  d w ( p )  

and 



Estimating free energy and relative entropy 2431 

Therefore, V 0 < y < I?( P, 0) 
u ( - Y ) s  T [ P W ( Y ) l ~  U ( Y ) .  

It then follows from the continuity of U( y )  at y = 0 that 

lim T[ PW( y ) ]  = lim U( y )  = S (  P, 0). 
Y+O Y + O  

0 
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