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Molecular dynamics computer simulation has ben employed to study structure and 
isomerization dynamics of intact 55-atom clusters. The interactions used were selected to 
represent the heavier noble gases Ar, Kr, and Xe. As an aid for interpretation of results, the 
molecular dynamics computation was coupled to steepest-descent mapping to locate relevant 
cluster inherent structures (potential energy minima). A relatively sharp melting transition 
has been reproducibly observed. In its low-temperature "solid state" the cluster predominately 
inhabits the basins for the Mackay icosahedral inherent structure, with occasional excursions 
into and out of particle--hole states (an atom promoted from filled second to empty third 
icosahedral shell). Most inherent structures for the liquid droplet state are amorphous, are 
higher in energy than those for the solid, have no obvious icosahedral ancestry, and display 
surface capillary excitations. Freezing can produce defective solid structures which then can be 
annealed to the ground-state icosahedral structure. Root-mean-square distances under 
mapping to minima have been evaluated vs temperature; they show behavior qualitatively 
similar to, but quantitatively shifted from, the bulk-phase behavior prescribed by the 
Lindemann melting criterion and its conjugate freezing criterion. 

I. INTRODUCTION 

Understanding the properties of sm~l gas-phase clus
ters offers several significant benefits. First, these clusters 
provide a bridge between the regimes of single atoms, ions, 
or molecules on the one hand, to macroscopic condensed 
phases on the other hand. I ,2 Second, they offer natural ex
amples of dynamical systems with relatively few degrees of 
freedom within which various energy transfer processes can 
be examined.3,4 Third, they playa fundamental role in nu
cleation phenomena.5,6 Fourth, they can serve as catalytic 
media for chemical reactions. 7 

The structural chemistry of small atomic clusters has 
proven to be surprisingly complex. For example, the recent 
ab initio calculations by Raghavachari and Rohlfing for neu
tral silicon clusters Sin' n, 11, fail to exhibit bonding geome
try of the type present in the cubic macroscopic crystal of 
that substance.8,9 Similar discrepancies obtain for other ele
ments as well. 10,1 1 

Under these circumstances it seems prudent for the mo
ment to keep details of structural chemistry separated from 
the statistical mechanical phenomena associated with ther
mally activated processes, in particular cluster melting and 
freezing kinetics. To concentrate on the latter, then, it is 
advisable to restrict attention to relatively simple Hamilto
nian models. That is the course selected for the present work. 
Eventually it should become possible to reattach structural 
and statistical advances to achieve a more comprehensive 
understanding of gas phase clusters. 

This paper reports results from a classical molecular dy
namics study of a model whose interparticle interactions are 
appropriate for the heavier noble gases (Ar, Kr, Xe). The 
model is specified in Secs. II and III, and has previously been 
used to examine bulk-phase properties of the noble 
gases. 12-15 

Our calculations have been largely confined to clusters 
containing 55 particles. For noble gas interactions this in-

teger is one of the icosahedral magic numbers of the form 

(1.1 ) 

the ground-state structures of clusters comprising these in
teger numbers of atoms are the so-called Mackay polyhe
dra. 16 Here n indexes the number of closed icosahedral shells 
outside of the single central particle. 

The molecular dynamics prdtocol employed is de
scribed below in Sec. II. We have found it extremely useful in 
the present context to invoke a configurational mapping pro
cedure that was originally devised to probe phenomena in 
extended condensed phases. 17-19 This involves connecting 
any instantaneous dynamical configuration of the particles 
to a local potential energy minimum, the "inherent struc
ture." Details of the mapping technique also appear in Sec. 
II. The first application of this mapping ~to minima for clus
ters apparently occurred in study of ice ctrystallites and their 
melting.20 More recently several research groups21-24 have 
begun to utilize the same tool to describe some aspects of 
noble gas clusters of various sizes, though not in the same 
detail as examined below. 

Just as previous simulations have shown,23 our 55-parti
cle cluster exhibits a relatively sharp and distinctive melting 
transition. This is revealed by the existence of two principal 
branches to the thermal (caloric) equation of state, dis
cussed in Sec. IV. Both branches manifeSt substantial vibra
tional anharmonicity, but the mapping to minima reveals a 
fundamental difference in the inherent structures represent
ed by the "solid" and "liquid" branches. 

Details involved in kinetics of the cluster "phase transi
tion" appear in Sec. V. The mapping to minima helps to 
clarify the structural basis for hysteresis observed in succes
sive melting and freezing cycles. Furthermore, it aids in the 
interpretation of the transition entropy. 

It has been pointed out before that the concept ofinher
ent structures for condensed phases provides a novel inter-
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pretation of the Lindemann melting criterion for solids, and 
leads immediately and naturally to a complementary freez
ing criterion for liquids.25 Section VI shows how this notion 
can be adapted to clusters, and reinforces the view of the 
N = 55 cluster transition as a small-system version of the 
first-order liquid-crystal phase change. 

Our final section, Sec. VII, otTers a few general observa
tions and concluding remarks. 

II. DYNAMICAL MODEL 

We study the classical dynamics of N ( = 55) point par
ticles that interact through a potential energy function: 

<I>(rl"'rN) = L vs(rij)' 
i<j 

(2.1 ) 

The pair potential V5 has derivatives of all orders for r> 0, 
but vanishes identically beyond a cutotT distance a: 

v5 (r) =A(r- 12 -r5)exp[(r-a)-I] (O<r<a), 

= 0 (a<;r); (2.2) 

A = 6.767 441, a = 2.464 91832. 

The numerical values shown for A and a were selected so that 
Vs would display some of the same properties as the Lennard
Jones potential 

Vu (r) = 4(r- 12 - r- 6). (2.3) 

Specifically both Vs and Vu vanish at r = 1, and both have 
minima of depth - 1 at 

re = 21/6 = 1.122462048 .... (2.4 ) 

As regards the successful representation of real noble gas 
behavior, Vs otTers a significant advantage of vu: only the 
former produces the observed face-centered-cubic (fcc) 
structure as the stable crystal form at low temperature, while 
the latter erroneously predicts that the hexagonal close
packed (hcp) structure would appear.25,26 

For comparison with the equilibrium dimer distance in 
Eq. (2.4) it might be noted in passing that the nearest-neigh
bor spacing in the zero-temperature, zero-pressure fcc crys
tal with V5 interactions is 

rer = 1.098 709 .... (2.5) 

The corresponding cohesive energy per atom in this struc
ture is 

<I> (fcc)/N = - 7.162077 .... (2.6) 

The classical Newton equations of motion for our clus
ter system have been numerically integrated using the stan
dard Gear algorithm in fifth order.27

•
28 For technical rea

sons we have elected to use periodic boundary conditions 
with a large cubical unit cell (L = 20.0). The cluster config
urations encountered during the simulation are all suffi
ciently compact that the cluster cannot interact with its peri
odic images in neighboring cells. The cluster center of mass 
has been constrained to a fixed position near the cell center, 
so that cluster temperature during any simulation run was 
inferred from the mean value of the kinetic energy (KE) for 
that run as follows: 

kBT= 2(KE)/3(N - 1), (2.7) 

where k B is Boltzmann's constant. Angular momentum was 
not constrained. Total energy (and thus the temperature) 
was adjusted between runs by the standard velocity scaling 
method; during any given run total energy would typically 
be conserved to at least seven significant figures. 

At various regular and frequent intervals during some of 
the simulation runs the instantaneous configuration was 
mapped onto the relative <I> minimum within whose "basin 
of attraction" the dynamical system happened to find itself. 
This configurational quenching operation in principle re
quires finding the u --+ + 00 solution to the simultaneous re
laxation equations: 

drJdu = - Vi<l>(r l " 'rN ), (2.8) 

where the Newtonian configuration supplies the ini
tial(u = 0) condition. This mapping procedure in no way 
disturbs the Newtonian cluster dynamics, but is treated as a 
parallel numerical operation. Solutions to Eq. (2.8) have 
been obtained using the MINOP procedure.29 

The entire numerical program is carried out in dimen
sionless form, using the reduced pair potential (2.2) and unit 
mass for all atoms. In order to interpret results properly in 
terms of specific noble gases, it is necessary to redimension 
the quantities calculated. Table I lists the appropriate length 
(a), energy (€), and mass (m) to use for redimensioning in 
the cases of Ar, Kr, and Xe, respectively. It also presents the 
corresponding time units that can be constructed from these 
parameters: 

7' = a(m/€) 112. (2.9) 

It might be noted that the period of harmonic vibration for a 
dimer with interaction Vs is 0.827497'. 

A sufficiently short time increment fl.t must be chosen to 
guarantee that the numerical integration of the Newton 
equations conserves energy accurately. We have found that 
fl.t = 0.0057' suffices for clusters at low temperature, but that 
fl.t must be reduced to 0.001257' for the high temperature 
regime above the cluster melting point. 

III. INHERENT CLUSTER STRUCTURES 

A preliminary discussion of stable isomeric forms (in
herent structures) for the 55-atom cluster is warranted be
fore examining molecular dynamics results. The number of 
distinct structures is unknown, but it seems reasonable to 
suppose that it rises with N in an approximately exponential 
manner for any given interaction potential. Hoare30 has enu
merated inherent structures for Vu with N~ 13; his results 
for the larger N values conform roughly to the expression 

2.4444 X 10- 3 exp[0.99305N]. (3.1) 

TABLE I. Scale parameters for noble gases. 

0" (A.) 
E (K) 

m (10- 23 g) 

'T" (ps) 

Ar 

3.40 
120. 

6.6336 
2.152 

Kr 

3.60 
171 

13.916 
2.764 

Xe 

4.10 
221 

21.803 
3.466 

J. Chern. Phys .• Vol. 93, No.8, 15 October 1990  This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.112.66.66 On: Thu, 17 Apr 2014 03:38:32



F. H. Stillinger and D. K. StHlinget:Trahsltlon dynamics in 55·atom clusters 6015 

Formal extension of this function to N = 55 yields theesti
mate 1.283 X l(fl. Since Vu and Vs are qualitatively similar, 
this number can be taken as a crude estimate of the number 
of distinct inherent structures for the N = 55, Vs clusters. 

Figure 1 displays the icosahedral 'ground state for our 
55-atom cluster with Vs pair interactions. The view shown 
clearly illustrates the fivefold rotational symmetry that ex
ists at each ofthe 12 vertex particles in the outer shell. This 
outer shell, containing 42 particles in all, rests on an inner 
icosahedral shell of 12 particles that are hidden from view in 
Fig. 1. A single particle lies buried at the ce,nter. 

The potential energy of this icosahedral ground state is 

cl>ss{icos)= - 256.362 271 .... (3.2) 

The corresponding value for Vu is - 279.248 .... 
Each of the icosahedral Mackay polyhedra can be rear

ranged into a cuboctahedral fragment of the face-centered
cubic crystal that supplies the global cI> minimum in the 
large-N limit. 16 At least for Vu it has been established that 
the icosahedra remain lowest in energy for all magic 
numbers N(n), n < 14, but that for larger n the cuboctahe
dral form prevails. 31 When n = 1, the 13-particle cuboctahe
dral form is not even a local minimum, but a saddle point on 
the multidimensional cI> hypersurface. A<iding the next shell 
however confers local stability. Figure 2 illustrates the re
sulting cuboctahedral inherent structure, for which 

cl>ss(cubo) = - 246.248 674 .... (3.3) 

Locating with confidence the highest-lying relative min
imum for cI>, the least stable inherent structure for the clus
ter, seems to be a difficult task. Nevertheless an estimate of 
where this occurs on the cI> scale can be achieved by examin
ing the very extended "needle" cluster ·inherent structure 
presented in Fig. 3. This consists ofa stack of 18 triangles of 

FIG. 1. Icosahedral ground state structure for the 55-atom cluster with Vs 

pair interactions [Eq. (2.2)]. 

FIG. 2. Cuboctahedral inherent structure for the 55-atom cluster, substan
tially a fragment of the infinite fcc crystal. 

atoms, with a 60° twist from one to the next, and with the last 
particle stuck to one end. The relative minimum for this 
arrangement has depth: 

cl>ss(needle) = - 174.129509 .... (3.4) 

The totality of potential energy minima is obtained by 
taking particle permutations into consideration. The overall 
number n of minima for cI> can be expressed formally as the 
sum 

(3.5) 
a 

where a spans the distinct structures, and Sa denotes the 
symmetry number for structure a. The majority of the inher
ent structures for large N, and in particular for N = 55, will 
have no symmetry, i.e., Sa = 1. However the special struc
tures shown in Figs. 1, 2, and 3, respectively, have Sa = 60, 
24, and 3. 

The process that is least costly in potential energy for 
separating one of the particles from the icosahedral ground 
state involves removal of one of the 12 vertex particles in the 
outer shell. After fully relaxing the resulting 54-atom clus
ter, the potential energy is found to be 

cl>s4(vertex hole) = - 250.039444 ... . (3.6) 

Figure 4 shows this vertex-hole arrangement. 
Removal of the vertex particle appears to require no 

barrier crossing, so the energy shown in Eq. (3.6) is an evap
oration threshold. Whenever the total cluster energy in a 
dynamical run exceeds this threshold it is possible in princi
ple for the cluster of 55 particles to shed one particle. The 
theory ofunimolecular decay rates32 assures that the proba
bility of occurrence of such an event per unit time is very 
small just above threshold but increases strongly with in-
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FIG. 3. High-potential energy, but mechanically stable, needle-form clus
ter, N= 55. 

FIG. 4. Vertex-hole cluster for 54 particles. 

crease in total energy. We have taken pains to monitor the 
simulation dynamics so as to avoid fragmentation. Results 
reported in the following sections (IV, V, and VI) refer only 
to intact clusters. 

The 30 nonvertex particles in the outer shell of the icosa
hedral cluster are all equivalent, and reside at the midpoints 
of face edges. Removing anyone ofthese to infinity leaves a 
higher-potential energy structure for 54 particles with 

<1>54 (edge hole) = - 247.608 614 .... (3.7) 

Figure 5 presents the inherent structure. 
Addition of a 56th particle to the N = 55 icosahedron 

(the first step in building the third shell of 92) can occur at 
either of two types of surface sites. The more favorable site is 
at the center of a triangular face, creating a 56-particle inher
ent structure with 

<l>56(center) = - 260.181464 .... (3.8) 

The alternative is occupation of any of three equivalent off
center sites on a triangular face, with 

<l>56(off-center) = - 259.889 080 .... (3.9) 

The former particle position is legitimately part of the closed 
shell that completes at N(3) = 147, whereas the latter must 
be displaced to form the shell. 

IV. CALORIC EQUATION OF STATE 

One of the most basic statistical properties of a cluster is 
the way that its mean energy varies with temperature. In the 
present classical context this is essentially determined by the 
variation of mean potential energy with kinetic energy. 
When the total energy (with fixed center of mass) lies below 
the evaporation threshold shown in Eq. (3.6), the statistical 
average of interest requires sampling the entire bounded, 
classically allowed, configuration space. If the system dy
namics is quasiergodic, the average should automatically 
emerge from the simulation provided the molecular dynam
ics runs are sufficiently long. However, when total energy 
exceeds the threshold (3.6), care must be exercised to avoid 
cluster fragmentation. This can become a severe problem at 
high temperature. 

The statistical mechanical theory of physical clusters33 

suggests a definition of "intact cluster" that is useful for the 

FIG. 5. Edge-hole cluster for 54 particles. 
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present study. One imagines that each particle is centrally 
surrounded by an imaginary sphere with diameter b. Over
laps of b spheres define topological connectivity, and all par
ticle pairs within an intact cluster either must overlap direct
ly, or be indirectly connected through a chain of overlaps. It 
is obvious that evaporation causes disconnection. Above 
threshold the desired variation of mean potential energy 
with kinetic energy entails sampling only the "connected" or 
"intact" cluster configurations. 

For present purposes, the precise value of b is not cru
cial; it can be set equal to 2re for simplicity. It should be 
noted in passing that a unique b value is suggested by the 
general physical cluster theory, as a result of considering 
critical region percolation processes. During the course of 
our molecular dynamics runs we have tested for cluster con
nectivity. While particle evaporation has occurred on occa
sion, the results reported below refer strictly to intact cluster 
averages. 

Figure 6 displays the caloric equation of state (mean 
potential vs mean kinetic energy) from a single heating se
quence for the N = 55 cluster. In this case the system was 
started at the icosahedral ground state configuration with 
very small particle velocities, then heated in stages. The most 
obvious property shown by the results is that two branches 
are involved, a low temperature "solid" branch and a high 
temperature "liquid" branch.23 The. upper limit to the solid 
branch is its effective instability point; this occurs at about 40 
K when converted to the Ar case, to be compared with S4 K 
for the bulk Ar triple point temperature. Subsequent molec
ular dynamics heating calculations have verified that the 
overall behavior shown in Fig. 6 is substantially reproduc
ible. 

Each of the points appearing in Fig. 6 represents a con
stant-energy average of length 501" ( lOS ps for Ar). Between 
successive points the velocities were uniformly scaled up
ward to raise total energy, and a 51" equilibration period was 
then allowed to elapse before the next averaging interval be
gan. The average rate of temperature rise, in Ar terms, just 
before and just after the melting event was quite large by 
conventional standards: 

dT /dta5X 109 K/s. (4.1 ) 

While the system inhabits the solid branch at its lower 
temperature end, mapping the dynamical configuration to 
potential energy minima virtually always produces the ico
sahedral ground state, Eq. (3.2). In the higher range of the 
solid branch, however, the system undergoes excursions out
side of the icosahedral basin into neighboring basins for 
higher-lying relative ~ minima. Figure 7 offers a representa
tive case, a run at mean kinetic energy 25.032 (approximate
ly 37 K for Ar, length lOS ps). Vertical pairs of potential 
energy points are plotted, corresponding to before and after 
the mapping-to-minima operation. Although the mapping 
was effected at 126 equally spaced times (every 0.S61 ps for 
Ar), the dynamical prequench potential varies too rapidly 
with time to convey visually the fact that it is actually a 
continuous function of time. The majority of the mappings 
yield the icosahedral ground state, but a few are seen to lie 
higher in potential energy. 
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FIG. 6. Caloric equation of state for the intact 55-particle cluster. Points 
shown were generated during a single molecular dynamics heating se
quence. The straight line, shown for referenCe, represents the equipartition 
results expected for harmonic normal modes. 
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FIG. 7. Prequench and post-quench potential energies for a dynamical run 
along the solid branch of the caloric equation of state. The mean kinetic 
energy was 25.032. 
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The straight line included in Fig. 6 for comparison pur
poses would result if internal cluster motions were those of 
harmonic normal modes, i.e., it is the appropriate equiparti
tion line. Results in Fig. 6 obviously deviate substantially 
above this harmonic normal mode base line, thus demon
strating the influence of strong anharmonicity. It must be 
stressed that this reflects predominately intrabasin anhar
monicity for the icosahedral ground state. Only near the up
per temperature end of this branch does anharmonicity due 
to interbasin transitions begin to contribute substantially. 
The two anomalous high points along the solid branch at 
kinetic energy about 22-23 were dominated by long interba
sin excursions, while in other heating circumstances such 
cases do not appear as prominently. 

Figures 8 and 9 present a prequench and post-quench 
configuration pair from the run illustrated in Fig. 7. These 
correspond to the last of the lower structural excitations in 
that diagram, with inherent structure potential energy 

ct> = - 253.563 714 .... (4.2) 

Substantial vibrational amplitude is present in the pre
quench configuration of Fig. 8, making its description and 
identification ambiguous at best. However, removal of vi bra
tional distortion by the mapping amounts to a powerful im
age enhancement tool. The post-quench configuration dis
played in Fig. 9 should be described unambiguously as a 
"particle, vertex-hole" structural excitation (cf. Fig. 4). 
The higher excitations in Fig. 6 can similarly be identified as 
"particle, edge-hole" structures. 

Results of mapping from the liquid branch differ in two 
primary respects in comparison with those from the solid 
branch. First, the minima encountered are substantially 
higher. Second, the amount of time that the system spends 
within any basin tends to be much shorter. Figure 10 illus
trates these features with prequench and post-quench poten
tial energy pairs from a liquid-branch run with mean kinetic 
energy equal to 28.532 (42 K for Ar). Only a small fraction 
of the successive pairs of quench potential energies show no 
change. 

FIG. 8. Prequench cluster configuration from the molecular dynamics run 
of Fig. 7. 

FIG. 9. Post-quench cluster configuration resulting from the mapping 01 
the Fig. 8 configuration. The structure shown is a "particle, vertex-hole" 
excitation, with <I> = - 253.563 714 .... 

Figure 11 exhibits a typical amorphous quench struc
ture obtained from the low temperature end of the liquid 
branch. This specific case was generated during a run with 
mean kinetic energy equal to 20.061. In spite of the image
sharpening capacity of the mapping, this inherent structure 
defies simple description as a slightly mutated descendant of 
the icosahedral Mackay polyhedron. Its potential energy is 
- 240.772 516 .... 

·190 

-200 -

-210 -

0; 

1-220 -

-230 

-240 

-250 

'. .. .. .* •• - ." *. *. 
". .. .".. .. . . 

• * .* •••• ." .. * • .".* ." .:." ~." ...... ."." * .... '" ... 
."." .,,'" .,," *. •• 

.".*." . -

. . . '. 

" • ."." **... ...... .. *.,,*.. -* ..... *. ." ... .". 
." ." .. '" ." •••• _. ....... .* 11'. ." fir." ... *...... ..'" ." -- . . ... 

o 20 40 60 80 100 

time 

. . 
.. ., .. 

'.' 

120 

FIG. 10. Prequench and post-quench potential energies for a dynamical run 
along the liquid branch of the caloric equation of state. The mean kinetic 
energy was 28.532. 
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FIG. 11. Typical cluster inherent structure from the low-temperature end 
of the liquid branch. The potential energy at this relative minimum is 
- 240.772 516 .... 

As temperature rises along the liquid branch, the inher
ent cluster structures tend to become less compact and to 
have higher potential energies. Figure 12 offers an example 
from the run with mean kinetic energy 28.532. This struc
ture is clearly less compact than the one shown in Fig. 11. Its 
potential energy is - 235.876 827 ",. These changes can be 
described as due to the excitation of surface capillary waves 
on the liquid droplet,34.35 with the implication that such 
waves largely survive the mapping operation. 

The vertical displacement between the solid and liquid 
branches in Fig .. 6, in the neighborhood of the transition, is 
approximately 16.0 energy units. The average ofthe kinetic 
energies at the upper extremity of the solid branch and at the 

FIG. 12. Cluster inherent structure from the higher temperature region of 
the liquid branch. The corresponding potential energy is 
- 235.876 827 .... 

lower extremity of the liquid branch is 22.5. This corre
sponds to a reduced temperature [see Eq. (2.7)]: 

T'!, = 2(22.5)/3(54) = 0.278, (4.3) 

which we take as the effective thermodynamic melting tem
perature for the small cluster. This is equivalent to 33.3 K for 
Ar. The change in entropy that attends melting is then esti
mated to be 

!::SlkB ~ 16.0/0.278 = 57.6. (4.4) 

The exponential of this result represents the factor by which 
the inhabited configuration space expands upon melting: 

exp(aslkB)~9.89X1024. (4.5) 

In part, this large number reflects the fact that only a few 
low-lying basins are inhabited along the solid branch, while 
probably a substantial fraction of the total becomes accessi
ble after melting. It also probably reflects lower mean restor
ing forces for amorphous vs icosahedral basins. 

By two simple measures, the extent of anharmonicity 
along the solid and liquid branches in Fig. 6 is comparable. 
First, the rising-slope trend with increasing temperature ex
hibited along the solid branch appears essentially to be con
tinued (even in approximate magnitude) across the melting 
discontinuity onto the liquid branch. Second, the mean re
duction in potential energy resulting from quenching to 
minima is approximately the same (26.5 energy units) at 
T'!, whether the quenching occurs from the solid branch or 
the liquid branch. 

V. PHASE TRANSITION DYNAMICS 

The existence of a temperature range in Fig. 6 over 
which both solid and liquid branches of the caloric equation 
of state can be identified indicates a phase bistability phe
nomenon. This situation has been noted and discussed be
fore, and is particularly noticeable for magic number clus
ters.23 Within that temperature range, a constant-energy 
simulation of sufficient length will show occasional rapid 
transitions between extended periods of solid-like cluster be
havior and of liquid-like cluster behavior.' On account of the 
positive melting energy, kinetic temperature shows a higher 
mean value during solid-like intervals in a given molecular 
dynamics run than during the liquid-like intervals. The frac
tion of time spent in each of these phases must vary smoothly 
(though rapidly) across the coexistence temperature inter
val. Lengthy molecular dynamics simulations should repre
sent these fractions accurately and should in principle pro
duce a single continuous curve for the caloric equation of 
state. The effective cluster melting temperature T'!, would 
correspond to that cluster energy which yields equal times in 
the two states. 

The technique of mapping the dynamical cluster config
uration onto potential energy· minima offers a new way to 
examine the dynamics of transitions between solid and liquid 
forms. Figure 13 shows a short interval of n. 8(}r ( 1. 72 ps for 
Ar) during which a melting event occurred. Pairs of pre
quench and post-quench potential energies are presented as 
before, but now the mapping is so frequent that the contin
uous nature of the dynamical potential energy is obvious. 
This melting event occurred during an equilibration run in 
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FIG. 13. Short dynamical sequence (O.BOr, 1.72 ps for Ar) during which a 
melting event occurred. The initial configuration during the interval shown 
has the system within the icosahedral ground state basin. 

the heating sequence represented in Fig. 6, between the last 
solid-branch and first liquid-branch points of that earlier 
graph. During the short interval of Fig. 13, the system began 
its dynamics within the ground-state basin, momentarily 
flickered across boundaries of higher-lying basins with 
<I> ~ - 250.0, returned briefly to the ground-state basin, 
then went directly into a group of higher-lying amorphous
structure basins. In particular, the system was able to bypass 
the low-lying particle-hole structural excitations. Evidently 
the icosahedral ground state basin shared bounding hyper
surfaces with a wide range of other classes of basins. During 
other melting events, the particle-hole states do indeed 
make a momentary appearance. 

Time reversal symmetry implies that the scenario 
shown in Fig. 13 could in principle run backward for a freez
ing event. In practice, some hysteresis is probable and a more 
diverse set of scenarios is available. Just as in the freezing of 
real melts in bulk, we have observed an initially liquid-state 
cluster to freeze in stages, first to an imperfect solid, and 
then, by rejecting defects during an annealing state, to the 
structurally perfect ground state. Figure 14 shows a plot of 
mean potential energy vs mean kinetic energy during a se
quence of molecular dynamics runs that started with a warm 
liquid droplet, cooled it stepwise through an imperfect freez
ing, applied a warming subsequence to produce some an
nealing, then cooled slowly (with a final annealing event) to 
retrace finally the icosahedral ground-state branch. 

By carrying out quenches to minima and examining the 
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FIG. 14. Cooling and annealing sequence, starting with a warm liquid drop
let, and ending on the icosahedral ground state branch. 

resulting cluster configurations, it became clear that the first 
solidification state in Fig. 14 placed the cluster in a set of 
basins corresponding to two-particle, two-vertex-hole con
figurations. Figure 15 illustrates one of these configurations, 
with <I> = - 251.720 646 .... Notice that the vacant ver
tices are neighbors, with a shared particle in their respective 
pentagonal margins. Also notice that the two particles pro-

FIG. 15. Two-particle, two-vertex-holeclusterconfiguration. Notethatthe 
two pentagonal vertex holes share a pentagon vertex, and that the two parti
cles promoted to the next shell are a bound pair. 
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moted to the next shell form a bound pair. While the system 
remained on this defective solid branch, several distinct two
particle, two-vertex .. hole states appeared, all confined to a 
narrow band of local-minimum potentials. 

Figures 16 and 17 display prequench and post-quench 
potential energies during time intervals that yielded the two 
annealing events. The first of these occurred during heating 
and shows the system dropping from the two-particle, two
vertex-hole band to the one-particle, one-vertex-hole band. 
The second of these occurred during subsequent cooling, 
and records the system exiting the one-particle, one-vertex
hole band to take up residence in the icosahedral ground 
state basin. 

We believe that our quenching studies have been suffi
ciently complete to detect and classify all inherent cluster 
structures in the one-particle, one-vertex-h~le band. Eleven 
such structures have been found. Their energies are known 
to high accuracy, and are listed in Table II, as well as illus
trated in "line spectrum" form in Fig. 18. The 11 structures 
divide into two groups depending on whether the promoted 
particle sits over the center of an icosahedron face (four 
structures) ,or sits in an oft'-center site (seven structures). 
"Unperturbed" energies for each of these groups can be 
achieved by, combining 54, 55, and 56 particle potential ener
gies from Sec. III under the assumption that the hole and the 
particle are noninteracting. For the centered-particle group 
we have the estimate 
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FIG. 16. 501" time interval during which the imperfectly frozen cluster an
nealed from the two-particle, two-vertex-hole band to the one-particle, one
vertex-hole band. 
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FIG. 17. 50r time interval during which the imperfect cluster in the one
particle, one-vertex-hole band annealed into the icosahedral ground state 
basin. 

<l>S4(vertex hole) + <l>s6(center) - <l>ss(icos) 

= - 253.858 637 .... 

Similarly, for the oft'-center group we have 

<l>s4(vertex hole) + <l>s6(0ft'-center) - <l>ss(icos) 

= - 253.566 253 .... 

(5.1) 

(5.2) 

These unperturbed values lie within the limits for the respec
tive groups and are indicated by dotted lines in Fig. 18. 

In fact, two types of perturbations are present to split the 
unperturbed energies (5.1) and (5.2) into the observed lev
els. The larger perturbation is the missing pair interaction, if 
particle and hole are within the interaction range a, that 

TABLE II. Potential energies ofinherent cluster structures in the one-parti
cle, one-vertex-hole band. 

Oft'-center-particle states: 
- 253.519 377 96 
- 253.563 71494 
- 253.566 64217 
- 253.567 105 26 
- 253.567 548 79 
- 253.568 563 51 
- 253.570 840 31 

Centered-particle states: 
- 253.655 465 66 
- 253.857 3-35 48 
- 253.860'06727 
- 253.860 307 38 
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FIG. 18. Line spectrum for inherent cluster structure energies in the one
particle, one-vertex-hole band. Precise energies for the II states appear in 
Table II. Dotted lines are "unperturbed" energies for the two groups of 
states. 

would be present if the vertex hole were filled. Indeed, clus
ter pictures have demonstrated that the highest level in each 
group exhibits the closest approach between particle and 
vertex hole. The other, and much weaker, perturbation in
volves elastic deformation of the cluster. If either a vertex 
hole alone (N = 54) or an extra particle alone (N = 56) is 
present the icosahedral symmetry initially exhibited by the 
other particles is broken. This has the effect of making ine
quivalent the vertex-hole or excess particle sites that were 
identical in the icosahedron (N = 55). 

VI_ GENERALIZED LINDEMANN CRITERIA 

The Lindemann melting criterion for crystalline solids, 
originally proposed in 1910, has become a particularly useful 
and quantitatively reliable rule for locating the melting 
points of atomic substances.36

,37 Its conventional exposition 
involves the ratio of rms particle displacements from lattice 
sites to the nearest-neighbor spacing I: 

(6.1 ) 

Melting usually occurs when A (T) rises with increasing 
temperature to approximately the following magnitude: 

A(Tm) g';o'15. (6.2) 

Solid He4 and the electron-gas Wigner lattice are probably 
exceptional, with substantially larger A ( T m ) due to extreme 
quantum effects.38 

The inherent structure formalism trivially re-interprets 
{)r; as the displacement of particle i during mapping of the 
system configuration to the relevant local minimum of <1>. As 
a result, A (T) in Eq. (6.1) is automatically defined for both 
crystal and liquid phases since the mapping procedure is 
available regardless of what phase of matter is involved. This 
extension automatically leads to a freezing criterion for Ii-

quids that complements the Lindemann melting criterion.25 

Molecular dynamics simulation reveals that A (T) is sub
stantially larger in the liquid than in the crystal and rises 
with increasing temperature. Upon cooling, the liquid be
comes unstable with respect to nucleation and crystalliza
tion when A (T) declines to about 0.4. 

It is natural to examine A(T)for the 55-atom cluster 
and to relate the solid and liquid branch values at the melting 
point to those found in extended condensed phases. Figure 
19 presents results for «8r; )2)112, the rms quenching displa
cements for selected thermodynamic states of the cluster. As 
expected, the behavior of the solid branch in the low tem
perature limit reflects a square-root singularity in kinetic 
energy, i.e., in temperature. The rms displacement rises to a 
limit of about 0.14 at T:' (where the mean kinetic energy is 
22.5). The limiting value ofthe liquid-branch rms displace
ment at T:' is approximately 0.29. 

For this cluster application 1 should be taken to be the 
mean nearest-neighbor separation in the icosahedral ground 
state: 

/ = 1.10. (6.3) 

This choice leads to the following Lindemann-type melting 
and freezing criteria for the 55-atom cluster: 

(6.4) 

Here "s" and "/" refer to "solid" and "liquid," respectively. 
These values are both smaller than the corresponding bulk 
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FIG. 19. Root-mean-square displacements of particles resulting from map
ping to minima vs cluster kinetic energy. 

J. Chern. Phys., Vol. 93, No.8, 15 October 1990  This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.112.66.66 On: Thu, 17 Apr 2014 03:38:32



F. H. Stillinger and D. K. Stillinger: Transition dynIimics In 55-atom clusters 6023 

-226 • • " 
• • 

• • 0+ 0 
• + 

+ 
+ 

+ 

+ 

o 
+ 

• .' eo . 0, ." r:I" 0+-10 0 
~ .... ',. .' •• 0 0 + 00 +0.t + 

• 
.. • • • + 0 1"+ ~ 0 0.. 0 + + + 0 

• .. • •• ' • • 0 0 ~.s ++ 0 +0 -0 0++ ~ + 0+ 

-228 - FIG. 20. Potential energies sampled 
along a pair of chaotic liquid-droplet tra
jectories (denoted by 0 and +, respec
tively) of length SOT. The. initial condi
tions for the trajectories were identical 
except for a displacement of one coordi
nate of one particle by approximately 1 
part in 10'6. Exponential divergence of 
the trajectories becomes visibly obvious 
in this potential plot after about 20T' 
have elapsed. Mean kinetic energy was 
approximately 21. 

. .... .... CI-
'.' .. ' ,.1+0++0 $I'u:!i. +++olinfoOOO~"~~ 

f -230 -

15 

.. 0 ~ 00 00 + 0 0+ + 0 6' 1) .IJ 
I .. • • ~++ ct + dt,.." ooo+~ -ttl+ +tt; "b 

i -232 

•••••• • 8+~ .-'" 0 .. COP 
.' • • ..... + :-1&'0 Q.. "0+ 0

0
0 ~ olbO tpo~ .. 

• • :. + Oto + Q. o~ 0'tl 0
0 

• .'. • .' ++ 0 + 0 .0 0 -tOo + 
• -. 0 + 0 b +++41+0 • 0 0 + 0 + ++ + + 

• 

-234 

-236 -

I 

o 

• 

• 
50 

• + + 0+ 0 
+ + + 

o 
III 0 

o + 

100 150 

time 

phase quantities (0.16 and 0.44, respectively25), showing the 
effect of the small system size for the cluster. 

It would be instructive to see eventually if analogous 
calculations for larger and larger Mackay polyhedral clus
ters smoothly converge onto the bulk phase values of 
A..(T:') andA./(T:'). 

VII. DISCUSSION 

Coupling conventional molecular dynamics simulation 
with the mapping to potential-energy local minima, the in
herent structures, creates a powerful tool for analyzing 
many-body phenomena. The preceding text illustrates that 
point for the case of the 55-atom cluster, particularly regard
ing its phase transition behavior. In this connection one can 
ask about the role of the cuboctahedral cluster fragment of 
the fcc lattice, Fig. 2, which Sec. III points out is a locally 
stable 55-atom entity. One might have expected it to be en
countered as a quench result during study of cluster dynam
ics. Considering its energy, Eq. (3.3), its basin could in prin
ciple be an occasional contributor to the liquid droplet form 
of the cluster. In fact, we have searched in vain through 
thousands of quench potentials generated in the course of 
our simulations and have never seen the cuboctahedral 
structure spontaneously appear. In view of the order of mag
nitude estimated in Sec. III for the total number of distinct 
inherent structures for N = 55, this negative result may not 
be very surprising. 

Considering the fact that substantial anharmonicity ex
ists in the liquid droplet branches for both the caloric equa
tion of state and the rms displacements, it should come as no 
surprise that the dynamics is clearly chaotic there. The pres
ence of at least one positive Liapunov exponene9 can be, and 
has been, demonstrated by a simple numerical expedient. By 
changing the initial position of one particle by approximate
ly one part in 1016 for a 50T run at mean kinetic energy of 
about 21, the final configuration becomes drastically altered. 

o 
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200 

+ + 0 
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+ 

250 

Figure 20 provides an example. This occurs with virtually no 
change in the conserved energy. By comparing, side by side, 
the configurations of particles during a pair of such runs in 
this temperature range differing only by that initial tiny per
turbation, it is clear that the configurational discrepancy be
tween the two grows exponentially with time. By contrast, 
no such trajectory divergence occurs when a similar initial
state perturbation is applied to the cold icosahedral cluster 
(with mean kinetic energy approximately 3). 

Some variant ofunimolecular decomposition rate theo
ry32 doubtless could be devised to calculate evaporation 
rates of particles from the icosahedral ground state struc
ture. However, this would only be relevant to the 55-atom 
cluster at low temperature, where the evaporation process is 
too slow to observe during molecular dynamics simulation. 
By contrast, molecular dynamics is well suited to determine 
evaporation rates from the higher temperature liquid droplet 
state and it would be valuable to carry out a systematic study 
of this ph~nomenon in the future. The results would benefit 
understanding of accommodation (sticking) coefficients 
and thus understanding of cluster growth and decay pro
cesses in the vapor phase. 
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