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Molecular dynamics computer simulation has ben employed to study structure and
isomerization dynamics of intact 55-atom clusters. The interactions used were selected to
represent the heavier noble gases Ar, Kr, and Xe. As an aid for interpretation of results, the
molecular dynamics computation was coupled to steepest-descent mapping to locate relevant
cluster inherent structures (potential energy minima). A relatively sharp melting transition
has been reproducibly observed. In its low-temperature “solid state” the cluster predominately
inhabits the basins for the Mackay icosahedral inherent structure, with occasional excursions
into and out of particle-hole states (an atom promoted from filled second to empty third
icosahedral shell). Most inherent structures for the liquid droplet state are amorphous, are
higher in energy than those for the solid, have no obvious icosahedral ancestry, and display
surface capillary excitations. Freezing can produce defective solid structures which then can be
annealed to the ground-state icosahedral structure. Root-mean-square distances under
mapping to minima have been evaluated vs temperature; they show behavior qualitatively
similar to, but quantitatively shifted from, the bulk-phase behavior prescribed by the
Lindemann melting criterion and its conjugate freezing criterion.

I. INTRODUCTION

Understanding the properties of small gas-phase clus-
ters offers several significant benefits. First, these clusters
provide a bridge between the regimes of single atoms, ions,
or molecules on the one hand, to macroscopic condensed
phases on the other hand."”* Second, they offer natural ex-
amples of dynamical systems with relatively few degrees of
freedom within which various energy transfer processes can
be examined.>* Third, they play a fundamental role in nu-
cleation phenomena.>® Fourth, they can serve as catalytic
media for chemical reactions.’

The structural chemistry of small atomic clusters has
proven to be surprisingly complex. For example, the recent
ab initio calculations by Raghavachari and Rohlfing for neu-
tral silicon clusters Si,,, n< 11, fail to exhibit bonding geome-
try of the type present in the cubic macroscopic crystal of
that substance.®® Similar discrepancies obtain for other ele-
ments as well.'%!!

Under these circumstances it seems prudent for the mo-
ment to keep details of structural chemistry separated from
the statistical mechanical phenomena associated with ther-
mally activated processes, in particular cluster melting and
freezing kinetics. To concentrate on the latter, then, it is
advisable to restrict attention to relatively simple Hamilto-
nian models. That is the course selected for the present work.
Eventually it should become possible to reattach structural
and statistical advances to achieve a more comprehensive
understanding of gas phase clusters.

This paper reports results from a classical molecular dy-
namics study of a model whose interparticle interactions are
appropriate for the heavier noble gases (Ar, Kr, Xe). The
model is specified in Secs. II and ITI, and has previously been
used to examine bulk-phase properties of the noble
gases.'>!5

Our calculations have been largely confined to clusters
containing 55 particles. For noble gas interactions this in-

J. Chem. Phys. 93 (8), 15 October 1990

0021-9606/90/206013-12$03.00

teger is one of the icosahedral magic numbers of the form

(LD

the ground-state structures of clusters comprising these in-
teger numbers of atoms are the so-called Mackay polyhe-
dra.'® Here n indexes the number of closed icosahedral shells
outside of the single central particle.

The molecular dynamics protocol employed is de-
scribed below in Sec. I1. We have found it extremely useful in
the present context to invoke a configurational mapping pro-
cedure that was originally devised to probe phenomena in
extended condensed phases.””'* This involves connecting
any instantaneous dynamical configuration of the particles
to a local potential energy minimum, the “inherent struc-
ture.” Details of the mapping technique also appear in Sec.
II. The first application of this mapping to minima for clus-
ters apparently occurred in study of ice crystallites and their
melting.?’ More recently several research groups®'* have
begun to utilize the same tool to describe some aspects of
noble gas clusters of various sizes, though not in the same
detail as examined below.

Just as previous simulations have shown,? our 55-parti-
cle cluster exhibits a relatively sharp and distinctive melting
transition. This is revealed by the existerice of two principal
branches to the thermal (caloric) equation of state, dis-
cussed in Sec. IV. Both branches manifest substantial vibra-
tional anharmonicity, but the mapping to minima reveals a
fundamental difference in the inherent structures represent-
ed by the “solid” and “liquid” branches.

Details involved in kinetics of the cluster “phase transi-
tion” appear in Sec. V. The mapping to minima helps to
clarify the structural basis for hysteresis observed in succes-
sive melting and freezing cycles. Furthermore, it aids in the
interpretation of the transition entropy.

It has been pointed out before that the concept of inher-
ent structures for condensed phases provides a novel inter-

N(n) =1(2n + 1)(5n% + 5n + 3);
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pretation of the Lindemann melting criterion for solids, and
leads immediately and naturally to a complementary freez-
ing criterion for liquids.?® Section VI shows how this notion
can be adapted to clusters, and reinforces the view of the
N = 55 cluster transition as a small-system version of the
first-order liquid-crystal phase change.

Our final section, Sec. VII, offers a few general observa-
tions and concluding remarks.

Il. DYNAMICAL MODEL

We study the classical dynamics of N ( = 55) point par-
ticles that interact through a potential energy function:

q>(r1"'l'1v)=zvs(rij)- (2.1
i<j

The pair potential v; has derivatives of all orders for »> 0,
but vanishes identically beyond a cutoff distance a:

vs(r) =A(r~ 2 —r=exp[(r—a) 'l (0<r<a),
=0 (a<r); 22)
A=6.767441, a=2.46491832.

The numerical values shown for A and @ were selected so that
vs would display some of the same properties as the Lennard-
Jones potential

vy (r) =4(r—2—r=°%), (2.3)

Specifically both v and v, ; vanish at » = 1, and both have
minima of depth — 1 at

r,=2Y6=1.122462048 .... (2.4)

As regards the successful representation of real noble gas
behavior, vs offers a significant advantage of v ;: only the
former produces the observed face-centered-cubic (fcc)
structure as the stable crystal form at low temperature, while
the latter erroneously predicts that the hexagonal close-
packed (hcp) structure would appear.?>?¢

For comparison with the equilibrium dimer distance in
Eq. (2.4) it might be noted in passing that the nearest-neigh-
bor spacing in the zero-temperature, zero-pressure fcc crys-
tal with vs interactions is

r, = 1098709 .... (2.5)

The corresponding cohesive energy per atom in this struc-
ture is

PO (fec)/N= —-17.162077 ... (2.6)

The classical Newton equations of motion for our clus-
ter system have been numerically integrated using the stan-
dard Gear algorithm in fifth order.?”*® For technical rea-
sons we have elected to use periodic boundary conditions
with a large cubical unit cell (L = 20.0). The cluster config-
urations encountered during the simulation are all suffi-
ciently compact that the cluster cannot interact with its peri-
odic images in neighboring cells. The cluster center of mass
has been constrained to a fixed position near the cell center,
so that cluster temperature during any simulation run was
inferred from the mean value of the kinetic energy (KE) for
that run as follows:

ks T=2(KE)/3(N — 1), Q2.7

where kj is Boltzmann’s constant. Angular momentum was
not constrained. Total energy (and thus the temperature)
was adjusted between runs by the standard velocity scaling
method; during any given run total energy would typically
be conserved to at least seven significant figures.

At various regular and frequent intervals during some of
the simulation runs the instantaneous configuration was
mapped onto the relative ® minimum within whose “basin
of attraction” the dynamical system happened to find itself.
This configurational quenching operation in principle re-
quires finding the ¥ —» + o solution to the simultaneous re-
laxation equations:

dl‘,/du= —V,¢(r1"'rN), (2.8)

where the Newtonian configuration supplies the ini-
tial(u = 0) condition. This mapping procedure in no way
disturbs the Newtonian cluster dynamics, but is treated as a
parallel numerical operation. Solutions to Eq. (2.8) have
been obtained using the MINOP procedure.?®

The entire numerical program is carried out in dimen-
sionless form, using the reduced pair potential (2.2) and unit
mass for all atoms. In order to interpret results properly in
terms of specific noble gases, it is necessary to redimension
the quantities calculated. Table I lists the appropriate length
(o), energy (€), and mass (m) to use for redimensioning in
the cases of Ar, Kr, and Xe, respectively. It also presents the
corresponding time units that can be constructed from these
parameters:

(2.9)

It might be noted that the period of harmonic vibration for a
dimer with interaction v, is 0.827497.

A sufficiently short time increment Az must be chosen to
guarantee that the numerical integration of the Newton
equations conserves energy accurately. We have found that
At = 0.0057 suffices for clusters at low temperature, but that
At must be reduced to 0.001257 for the high temperature
regime above the cluster melting point.

r=o(m/e)"

lli. INHERENT CLUSTER STRUCTURES

A preliminary discussion of stable isomeric forms (in-
herent structures) for the 55-atom cluster is warranted be-
fore examining molecular dynamics results. The number of
distinct structures is unknown, but it seems reasonable to
suppose that it rises with ¥ in an approximately exponential
manner for any given interaction potential. Hoare*® has enu-
merated inherent structures for v;; with N¥<13; his results
for the larger N values conform roughly to the expression

2444410 ~° exp[0.993 05N ]. 3.1)
TABLE 1. Scale parameters for noble gases.
Ar Kr Xe
o (R) 3.40 3.60 4.10
€ (K) 120. 171 221
m(10-2 g) 6.6336 13.916 21.803
7 (ps) 2.152 2.764 3.466
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Formal extension of this function to N = 55 yields the esti-
mate 1.283 X 10?1, Since v;; and v, are qualitatively similar,
this number can be taken as a crude estimate of the number
of distinct inherent structures for the N = 55, vs clusters.

Figure 1 displays the icosahedral ground state for our
55-atom cluster with v pair interactions. The view shown
clearly illustrates the fivefold rotational symmetry that ex-
ists at each of the 12 vertex particles in the outer shell. This
outer shell, containing 42 particles in all, rests on an inner
icosahedral shell of 12 particles that are hidden from view in
Fig. 1. A single particle lies buried at the center.

The potential energy of this icosahedral ground state is

@, (icos) = — 256.362271 . (3.2)

The corresponding value for v, ; is —279.248 ...

Each of the icosahedral Mackay polyhedra can be rear-
ranged into a cuboctahedral fragment of the face-centered-
cubic crystal that supplies the global & minimum in the
large-N limit.'® At least for v, it has been established that
the icosahedra remain lowest in energy for all magic
numbers N(n), n < 14, but that for larger n the cuboctahe-
dral form prevails.>! When n = 1, the 13-particle cuboctahe-
dral form is not even a local minimum, but a saddle point on
the multidimensional ® hypersurface. Adding the next shell
however confers local stability. Figure 2 illustrates the re-
sulting cuboctahedral inherent structure, for which

P (cubo) = — 246.248 674 .... 3.3

Locating with confidence the highest-lying relative min-
imum for ®, the least stable inherent structure for the clus-
ter, seems to be a difficult task. Nevertheless an estimate of
where this occurs on the ® scale can be achieved by examin-
ing the very extended “needle” cluster inherent structure
presented in Fig. 3. This consists of a stack of 18 triangles of

FIG. 1. Icosahedral ground state structure for the 55-atom cluster with v
pair interactions [Eq. (2.2)].
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FIG. 2. Cuboctahedral inherent structure for the 55-atom cluster, substan-
tially a fragment of the infinite fcc crystal.

atoms, with a 60° twist from one to the next, and with the last
particle stuck to one end. The relative minimum for this
arrangement has depth:

®;s(needle) = — 174.129 509 ... (3.4)

The totality of potential energy minima is obtained by
taking particle permutations into consideration. The overall
number Q of minima for ® can be expressed formally as the
sum

O.=N!2s;‘, (3.5)
where a spans the distinct structures, and s, denotes the
symmetry number for structure a. The majority of the inher-
ent structures for large &, and in particular for N = 55, will
have no symmetry, i.e., s, = 1. However the special struc-
tures shown in Figs. 1, 2, and 3, respectively, have s, = 60,
24, and 3. ,

The process that is least costly in potential energy for
separating one of the particles from the icosahedral ground
state involves removal of one of the 12 vertex particles in the
outer shell. After fully relaxing the resulting 54-atom clus-
ter, the potential energy is found to be

®,,(vertex hole) = — 250.039 444 ..

Figure 4 shows this vertex—hole arrangement.

Removal of the vertex particle appears to require no
barrier crossing, so the energy shown in Eq. (3.6) is an evap-
oration threshold. Whenever the total cluster energy in a
dynamical run exceeds this threshold it is possible in princi-
ple for the cluster of 55 particles to shed one particle. The
theory of unimolecular decay rates®? assures that the proba-
bility of occurrence of such an event per unit time is very
small just above threshold but increases strongly with in-

(3.6)
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FIG. 3. High-potential energy, but mechanically stable, needle-form clus-
ter, N =355.

FIG. 4. Vertex-—hole cluster for 54 particles.
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crease in total energy. We have taken pains to monitor the
simulation dynamics so as to avoid fragmentation. Results
reported in the following sections (IV, V, and VI) refer only
to intact clusters.

The 30 nonvertex particles in the outer shell of the icosa-
hedral cluster are all equivalent, and reside at the midpoints
of face edges. Removing any one of these to infinity leaves a
higher-potential energy structure for 54 particles with

@, (edge hole) = — 247.608 614 ...

Figure 5 presents the inherent structure.

Addition of a 56th particle to the N = 55 icosahedron
(the first step in building the third shell of 92) can occur at
either of two types of surface sites. The more favorable site is
at the center of a triangular face, creating a 56-particle inher-
ent structure with

®,(center) = — 260.181464 .... (3.8)

The alternative is occupation of any of three equivalent off-
center sites on a triangular face, with

@, (off-center) = — 259.889 080 .... (3.9)

The former particle position is legitimately part of the closed
shell that completes at N(3) = 147, whereas the latter must
be displaced to form the shell.

3.7

IV. CALORIC EQUATION OF STATE

One of the most basic statistical properties of a cluster is
the way that its mean energy varies with temperature. In the
present classical context this is essentially determined by the
variation of mean potential energy with kinetic energy.
When the total energy (with fixed center of mass) lies below
the evaporation threshold shown in Eq. (3.6), the statistical
average of interest requires sampling the entire bounded,
classically allowed, configuration space. If the system dy-
namics is quasiergodic, the average should automatically
emerge from the simulation provided the molecular dynam-
ics runs are sufficiently long. However, when total energy
exceeds the threshold (3.6), care must be exercised to avoid
cluster fragmentation. This can become a severe problem at
high temperature.

The statistical mechanical theory of physical clusters**
suggests a definition of “intact cluster” that is useful for the

FIG. 5. Edge-hole cluster for 54 particles.
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present study. One imagines that each particle is centrally
surrounded by an imaginary sphere with diameter 4. Over-
laps of b spheres define topological connectivity, and all par-
ticle pairs within an intact cluster either must overlap direct-
1y, or be indirectly connected through a chain of overlaps. It
is obvious that evaporation causes disconnection. Above
threshold the desired variation of mean potential energy
with kinetic energy entails sampling only the “connected” or
“intact” cluster configurations.

For present purposes, the precise value of b is not cru-
cial; it can be set equal to 2r, for simplicity. It should be
noted in passing that a unique b value is suggested by the
general physical cluster theory, as a result of considering
critical region percolation processes. During the course of
our molecular dynamics runs we have tested for cluster con-
nectivity. While particle evaporation has occurred on occa-
sion, the results reported below refer strictly to intact cluster
averages.

_Figure 6 displays the caloric equation of state (mean
potential vs mean kinetic energy) from a single heating se-
quence for the N = 55 cluster. In this case the system was
started at the icosahedral ground state configuration with
very small particle velocities, then heated in stages. The most
obvious property shown by the results is that two branches
are involved, a low temperature “solid” branch and a high
temperature “liquid” branch.?® The upper limit to the solid
branch s its effective instability point; this occurs at about 40
K when converted to the Ar case, to be compared with 84 K
for the bulk Ar triple point temperature. Subsequent molec-
ular dynamics heating calculations have verified that the
overall behavior shown in Fig. 6 is substantially reproduc-
ible.

Each of the points appearing in Fig. 6 represents a con-
stant-energy average of length 507 (108 ps for Ar). Between
successive points the velocities were uniformly scaled up-
ward to raise total energy, and a 57 equilibration period was
then allowed to elapse before the next averaging interval be-
gan. The average rate of temperature rise, in Ar terms, just
before and just after the melting event was quite large by
conventional standards:

dT /dt=5x10° K/s. 4.1

While the system inhabits the solid branch at its lower
temperature end, mapping the dynamical configuration toc
potential energy minima virtually always produces the ico-
sahedral ground state, Eq. (3.2). In the higher range of the
solid branch, however, the system undergoes excursions out-
side of the icosahedral basin into neighboring basins for
higher-lying relative ® minima. Figure 7 offers a representa-
tive case, a run at mean kinetic energy 25.032 (approximate-
ly 37 K for Ar, length 108 ps). Vertical pairs of potential
energy points are plotted, corresponding to before and after
the mapping-to-minima operation. Although the mapping
was effected at 126 equally spaced times (every 0.861 ps for
Ar), the dynamical prequench potential varies too rapidly
with time to convey visually the fact that it is actually a
continuous function of time. The majority of the mappings
yield the icosahedral ground state, but a few are seen to lie
higher in potential energy.
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FIG. 6. Caloric equation of state for the intact 55-particle cluster. Points
shown were generated during a single molecular dynamics heating se-
quence. The straight line, shown for reference, represents the equipartition
results expected for harmonic normal modes.
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FIG. 7. Prequench and post-quench potential energies for a dynamical run
along the solid branch of the caloric equation of state. The mean kinetic
energy was 25.032.
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The straight line included in Fig. 6 for comparison pur-
poses would result if internal cluster motions were those of
harmonic normal modes, i.e., it is the appropriate equiparti-
tion line. Results in Fig. 6 obviously deviate substantially
above this harmonic normal mode base line, thus demon-
strating the influence of strong anharmonicity. It must be
stressed that this reflects predominately intrabasin anhar-
monicity for the icosahedral ground state. Only near the up-
per temperature end of this branch does anharmonicity due
to interbasin transitions begin to contribute substantially.
The two anomalous high points along the solid branch at
kinetic energy about 22~23 were dominated by long interba-
sin excursions, while in other heating circumstances such
cases do not appear as prominently.

Figures 8 and 9 present a prequench and post-quench
configuration pair from the run illustrated in Fig. 7. These
correspond to the last of the lower structural excitations in
that diagram, with inherent structure potential energy

P = —253.563714 ... (4.2)

Substantial vibrational amplitude is present in the pre-
quench configuration of Fig. 8, making its description and
identification ambiguous at best. However, removal of vibra-
tional distortion by the mapping amounts to a powerful im-
age enhancement tool. The post-quench configuration dis-
played in Fig. 9 should be described unambiguously as a
“particle, vertex~hole” structural excitation (cf. Fig. 4).
The higher excitations in Fig. 6 can similarly be identified as
“particle, edge-hole” structures.

Results of mapping from the liquid branch differ in two
primary respects in comparison with those from the solid
branch. First, the minima encountered are substantially
higher. Second, the amount of time that the system spends
within any basin tends to be much shorter. Figure 10 illus-
trates these features with prequench and post-quench poten-
tial energy pairs from a liquid-branch run with mean kinetic
energy equal to 28.532 (42 K for Ar). Only a small fraction
of the successive pairs of quench potential energies show no
change.

FIG. 8. Prequench cluster configuration from the molecular dynamics run
of Fig. 7.

FIG. 9. Post-quench cluster configuration resulting from the mapping of
the Fig. 8 configuration. The structure shown is a “particle, vertex—hole”
excitation, with ¢ = — 253.563 714 ....

Figure 11 exhibits a typical amorphous quench struc-
ture obtained from the low temperature end of the liquid
branch. This specific case was generated during a run with
mean kinetic energy equal to 20.061. In spite of the image-
sharpening capacity of the mapping, this inherent structure
defies simple description as a slightly mutated descendant of
the icosahedral Mackay polyhedron. Its potential energy is

—240.772 516 ....
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FIG. 10. Prequench and post-quench potential energies for a dynamical run
along the liquid branch of the caloric equation of state. The mean kinetic
energy was 28.532.
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FIG. 11. Typical cluster inherent structure from the low-temperature end
of the liquid branch. The potential energy at this relative minimum is
—240.772 516 ....

As temperature rises along the liquid branch, the inher-
ent cluster structures tend to become less compact and to
have higher potential energies. Figure 12 offers an example
from the run with mean kinetic energy 28.532. This struc-
ture is clearly less compact than the one shown in Fig. 11. Its
potential energy is — 235.876 827 ... . These changes can be
described as due to the excitation of surface capillary waves
on the liquid droplet,>*> with the implication that such
waves largely survive the mapping operation.

The vertical displacement between the solid and liquid
branches in Fig. 6, in the neighborhood of the transition, is
approximately 16.0 energy units. The average of the kinetic
energies at the upper extremity of the solid branch and at the

FIG. 12. Cluster inherent structure from the higher temperature region of
the liquid branch. The corresponding potential energy - is
— 235.876 827 ....

lower extremity of the liquid branch is 22.5. This corre-
sponds to a reduced temperature [see Eq. (2.7)]:

T¥ =2(22.5)/3(54) = 0.278, (4.3)

which we take as the effective thermodynamic melting tem-
perature for the small cluster. This is equivalent to 33.3 K for
Ar. The change in entropy that attends melting is then esti-
mated to be

AS/kp=16.0/0.278 = 57.6. (4.4)

The exponential of this result represents the factor by which
the inhabited configuration space expands upon melting:

exp(AS /ky)=9.89 X 10%. (4.5)

In part, this large number reflects the fact that only a few
low-lying basins are inhabited along the solid branch, while
probably a substantial fraction of the total becomes accessi-
ble after melting. It also probably reflects lower mean restor-
ing forces for amorphous vs icosahedral basins.

By two simple measures, the extent of anharmonicity
along the solid and liquid branches in Fig. 6 is comparable.
First, the rising-slope trend with increasing temperature ex-
hibited along the solid branch appears essentially to be con-
tinued (even in approximate magnitude) across the melting
discontinuity onto the liquid branch. Second, the mean re-
duction in potential energy resulting from quenching to
minima is approximately the same (26.5 energy units) at
T* whether the quenching occurs from the solid branch or
the liquid branch.

V. PHASE TRANSITION DYNAMICS

The existence of a temperature range in Fig. 6 over
which both solid and liquid branches of the caloric equation
of state can be identified indicates a phase bistability phe-
nomenon. This situation has been noted and discussed be-
fore, and is particularly noticeable for magic number clus-
ters.”> Within that temperature range, a constant-energy
simulation of sufficient length will show occasional rapid
transitions between extended periods of solid-like cluster be-
havior and of liquid-like cluster behavior. On account of the
positive melting energy, kinetic temperatre shows a higher
mean value during solid-like intervals in a given molecular
dynamics run than during the liquid-like intervals. The frac-
tion of time spent in each of these phases must vary smoothly
(though rapidly) across the coexistence temperature inter-
val. Lengthy molecular dynamics simulations should repre-
sent these fractions accurately and should in principle pro-
duce a single continuous curve for the caloric equation of
state. The effective cluster melting temperature 7% would
correspond to that clustér energy which yields equal times in
the two states. ’ ‘

The technique of mapping the dynamical cluster config-
uration onto potential energy minima offers a new way to
examine the dynamics of transitions betweén solid and liquid
forms. Figure 13 shows a short interval of 0.80+ (1.72 ps for
Ar) during which a melting event occurred. Pairs of pre-
quench and post-quench potential energies are presented as
before, but now the mapping is so frequent that the contin-
uous nature of the dynamical potential energy is obvious.
This melting event occurred during an equilibration run in

J. Chem. Phys., Vol. 93, Mo, 8, 15 Qstober 1990
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FIG. 13. Short dynamical sequence (0.807, 1.72 ps for Ar) during which a
melting event occurred. The initial configuration during the interval shown
has the system within the icosahedral ground state basin.

the heating sequence represented in Fig. 6, between the last
solid-branch and first liquid-branch points of that earlier
graph. During the short interval of Fig. 13, the system began
its dynamics within the ground-state basin, momentarily
flickered across boundaries of higher-lying basins with
= — 250.0, returned briefly to the ground-state basin,
then went directly into a group of higher-lying amorphous-
structure basins. In particular, the system was able to bypass
the low-lying particle-hole structural excitations. Evidently
the icosahedral ground state basin shared bounding hyper-
surfaces with a wide range of other classes of basins. During
other melting events, the particle-hole states do indeed
make a momentary appearance.

Time reversal symmetry implies that the scenario
shown in Fig. 13 could in principle run backward for a freez-
ing event. In practice, some hysteresis is probable and a more
diverse set of scenarios is available. Just as in the freezing of
real melts in bulk, we have observed an initially liquid-state
cluster to freeze in stages, first to an imperfect solid, and
then, by rejecting defects during an annealing state, to the
structurally perfect ground state. Figure 14 shows a plot of
mean potential energy vs mean kinetic energy during a se-
quence of molecular dynamics runs that started with a warm
liquid droplet, cooled it stepwise through an imperfect freez-
ing, applied a warming subsequence to produce some an-
nealing, then cooled slowly (with a final annealing event) to
retrace finally the icosahedral ground-state branch.

By carrying out quenches to minima and examining the

F. H. Stillinger and D. K. Stillinger: Transition dynamics in 55-atom clusters
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FIG. 14. Cooling and annealing sequence, starting with a warm liquid drop-
let, and ending on the icosahedral ground state branch.

resulting cluster configurations, it became clear that the first
solidification state in Fig. 14 placed the cluster in a set of
basins corresponding to two-particle, two-vertex—hole con-
figurations. Figure 15 illustrates one of these configurations,
with ® = — 251.720 646 .... Notice that the vacant ver-
tices are neighbors, with a shared particle in their respective
pentagonal margins. Also notice that the two particles pro-

FIG. 15. Two-particle, two-vertex-hole cluster configuration. Note that the
two pentagonal vertex holes share a pentagon vertex, and that the two parti-
cles promoted to the next shell are a bound pair.
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moted to the next shell form a bound pair. While the system
remained on this defective solid branch, several distinct two-
particle, two-vertex—hole states appeared, all confined to a
narrow band of local-minimum potentials.

Figures 16 and 17 display prequench and post-quench
potential energies during time intervals that yielded the two
annealing events. The first of these occurred durifig heating
and shows the system dropping from the two-particle, two-
vertex-hole band to the one-particle, one-vertex—hole band.
The second of these occurred during subsequent cooling,
and records the system exiting the one-particle, one-vertex—
hole band to take up residence in the icosahedral ground
state basin.

We believe that our quenching studies have been suffi-
ciently complete to detect and classify all inherent cluster
structures in the one-particle, one-vertex—hole band. Eleven
such structures have been found. Their energies are known
to high accuracy, and are listed in Table II, as well as illus-
trated in “line spectrum” form in Fig. 18. The 11 structures
divide into two groups depending on whether the promoted
particle sits over the center of an icosahedron face (four
structures) or sits in an off-center site (seven structures).
“Unperturbed” energies for each of these groups can be
achieved by combining 54, 55, and 56 particle potential ener-
gies from Sec. III under the assumption that the hole and the
particle are noninteracting. For the centered-particle group
we have the estimate
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FIG. 16. 507 time interval during which the imperfectly frozen cluster an-

nealed from the two-particle, two-vertex—hole band to the one-particle, one-
vertex—hole band.
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FIG. 17. 50r time interval during which the imperfect cluster in the one-

particle, one-vertex-hole band annealed into the icosahedral ground state
basin.

P, (vertex hole) + Ps4(center) — Pss(icos)

= —253.858 637 .... (5.1)
Similarly, for the off-center group we have
P, (vertex hole) + ®,.(off-center) — Py5(icos)

= —253.566 253 .... (5.2)

These unperturbed values lie within the limits for the respec-
tive groups and are indicated by dotted lihes in Fig. 18.

In fact, two types of perturbations are present to split the
unperturbed energies (5.1) and (5.2) into the observed lev-
els. The larger perturbation is the missing pair interaction, if
particle and hole are within the interaction range a, that

TABLE II. Potential energies of inherent cluster structures in the one-parti-
cle, one-vertex-hole band.

Off-center-particle states:
—253.519 37796
— 253.563 71494
— 253.566 642 17
— 253.567 105 26
— 253.567 548 79
— 253.568 563 51
— 253.570 840 31

Centered-particle states:
— 253.655 465 66
—253.857 33548
— 253.860067 27
— 253.860 307 38
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FIG. 18. Line spectrum for inherent cluster structure energies in the one-
particle, one-vertex—hole band. Precise energies for the 11 states appear in
Table II. Dotted lines are “unperturbed” energies for the two groups of
states.

would be present if the vertex hole were filled. Indeed, clus-
ter pictures have demonstrated that the highest level in each
group exhibits the closest approach between particle and
vertex hole. The other, and much weaker, perturbation in-
volves elastic deformation of the cluster. If either a vertex
hole alone (N = 54) or an extra particle alone (N = 56) is
present the icosahedral symmetry initially exhibited by the
other particles is broken. This has the effect of making ine-
quivalent the vertex—hole or excess particle sites that were
identical in the icosahedron (N = 55).

V1. GENERALIZED LINDEMANN CRITERIA

The Lindemann melting criterion for crystalline solids,
originally proposed in 1910, has become a particularly useful
and quantitatively reliable rule for locating the melting
points of atomic substances.>**’ Its conventional exposition
involves the ratio of rms particle displacements from lattice
sites to the nearest-neighbor spacing /:

A(T) = ((6r,)2) /1. (6.1)

Melting usually occurs when A(T) rises with increasing
temperature to approximately the following magnitude:

A(T,,)=0.15. (6.2)

Solid He* and the electron-gas Wigner lattice are probably
exceptional, with substantially larger A(T,, ) due to extreme
quantum effects.*®

The inherent structure formalism trivially re-interprets
ér; as the displacement of particle i/ during mapping of the
system configuration to the relevant local minimum of ®. As
aresult, A(T) in Eq. (6.1) is automatically defined for both
crystal and liquid phases since the mapping procedure is
available regardless of what phase of matter is involved. This
extension automatically leads to a freezing criterion for li-

F. H. Stillinger and D. K. Stillinger: Transition dynamics in 55-atom clusters

quids that complements the Lindemann melting criterion.?
Molecular dynamics simulation reveals that A(7T) is sub-
stantially larger in the liquid than in the crystal and rises
with increasing temperature. Upon cooling, the liquid be-
comes unstable with respect to nucleation and crystalliza-
tion when A (T) declines to about 0.4.

It is natural to examine A(T) for the 55-atom cluster
and to relate the solid and liquid branch values at the melting
point to those found in extended condensed phases. Figure
19 presents results for {(8r;)?)"?, the rms quenching displa-
cements for selected thermodynamic states of the cluster. As
expected, the behavior of the solid branch in the low tem-
perature limit reflects a square-root singularity in kinetic
energy, i.e., in temperature. The rms displacement rises to a
limit of about 0.14 at T* (where the mean kinetic energy is
22.5). The limiting value of the liquid-branch rms displace-
ment at 7% is approximately 0.29.

For this cluster application / should be taken to be the
mean nearest-neighbor separation in the icosahedral ground
state:

I=1.10. (6.3)

This choice leads to the following Lindemann-type melting
and freezing criteria for the 55-atom cluster:

A,(T*)=0.13, A,(T*)=0.26. (6.4)

Here “s”” and “1” refer to “solid” and “liquid,” respectively.
These values are both smaller than the corresponding bulk
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FIG. 19. Root-mean-square displacements of particles resulting from map-
ping to minima vs cluster kinetic energy.
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phase quantities (0.16 and 0.44, respectively?®), showing the
effect of the small system size for the cluster.

It would be instructive to see eventually if analogous
calculations for larger and larger Mackay polyhedral clus-
ters smoothly converge onto the bulk phase values of
A(T3) and A,(T7).

VIl. DISCUSSION

Coupling conventional molecular dynamics simulation
with the mapping to potential-energy local minima, the in-
herent structures, creates a powerful tool for analyzing
many-body phenomena. The preceding text illustrates that
point for the case of the 55-atom cluster, particularly regard-
ing its phase transition behavior. In this connection one can
ask about the role of the cuboctahedral cluster fragment of
the fcc lattice, Fig. 2, which Sec. III points out is a locally
stable 55-atom entity. One might have expected it to be en-
countered as a quench result during study of cluster dynam-
ics. Considering its energy, Eq. (3.3), its basin could in prin-
ciple be an occasional contributor to the liquid droplet form
of the cluster. In fact, we have searched in vain through
thousands of quench potentials generated in the course of
our simulations and have never seen the cuboctahedral
structure spontaneously appear. In view of the order of mag-
nitude estimated in Sec. III for the total number of distinct
inherent structures for N = 55, this negative result may not
be very surprising.

Considering the fact that substantial anharmonicity ex-
ists in the liquid droplet branches for both the caloric equa-
tion of state and the rms displacements, it should come as no
surprise that the dynamics is clearly chaotic there. The pres-
ence of at least one positive Liapunov exponent®® can be, and
has been, demonstrated by a simple numerical expedient. By
changing the initial position of one particle by approximate-
ly one part in 10'¢ for a 507 run at mean kinetic energy of
about 21, the final configuration becomes drastically altered.

J. Cherm. Phys.,
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Figure 20 provides an example. This occurs with virtually no
change in the conserved energy. By comparing, side by side,
the configurations of particles during a pair of such runs in
this temperature range differing only by that initial tiny per-
turbation, it is clear that the configurational discrepancy be-
tween the two grows exponentially with time. By contrast,
no such trajectory divergence occurs when a similar initial-
state perturbation is applied to the cold icosahedral cluster
(with mean kinetic energy approximately 3).

Some variant of unimolecular decomposition rate theo-
ry>? doubtless could be devised to calculate evaporation
rates of particles from the icosahedral ground state struc-
ture. However, this would only be relevant to the 55-atom
cluster at low temperature, where the evaporation process is
too slow to observe during molecular dynamics simulation.
By contrast, molecular dynamics is well suited to determine
evaporation rates from the higher temperature liquid droplet
state and it would be valuable to carry out a systematic study
of this phénomenon in the future. The results would benefit
understanding of accommodation (sticking) coefficients
and thus understanding of cluster growth and decay pro-
cesses in the vapor phase.
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